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Abstract: In this paper, the robust linear quadratic regulation problem with cheap control
is studied for uncertain systems with norm-bounded uncertainty and integral quadratic
constraint uncertainty, respectively. A Riccati equation approach is employed as a tool to
investigate the limiting case in which a scalar weighting coefficient on the control input in the
quadratic cost functional approaches zero. The corresponding performance limit is derived.
Some results about monotonicity properties and the limiting behavior of the minimal positive
definite solution to the Riccati equation are given. Using the limiting behavior of the minimal
positive definite stabilizing solution to the Riccati equation, we find that perfect regulation
with cheap control can be achieved if the uncertain system has a particular structure.
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1. INTRODUCTION

One of the most important problems in control sys-
tem design is concerned with the maximally achiev-
able performance and fundamental performance limi-
tations. For linear systems, the so-called cheap control
problem has attracted much attention since the 1970’s
(Francis, 1979; Scherzinger and Davison, 1985). This
problem consists of an optimal linear regulator prob-
lem with a quadratic cost functional which is the
weighted sum of the integral squared output and the
integral squared input and such that a scalar weighting
coefficient on the control input in the quadratic cost
functional tends to zero. If the integral squared output
approaches zero as the weighting on the control input
tends to zero, cheap control is said to provide perfect
regulation for the control system.

Recently, the problem of performance limitations in
feedback design has received a great deal of interest
from many researchers. For uncertain linear systems,
the results on maximally achievable performance and
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performance limitations are sparse to our knowledge.
This paper is concerned with the problem of per-
fect regulation with cheap control for linear uncer-
tain systems. The motivation for studying this prob-
lem comes from a desire to extend classical results
for linear systems to linear uncertain systems. This is
because many systems are inherently uncertain and a
good understanding of the maximal achievable per-
formance has a profound significance in the trade-
off between system performance and control input.
We hope it will be helpful to understand the rela-
tionship between the maximal achievable performance
and the description of the plant to be controlled in-
cluding a characterization of the uncertainty. We will
employ a Riccati equation approach to quadratic guar-
anteed cost control to investigate the limiting case
of a quadratic cost functional with cheap control for
linear uncertain systems. Some results concerning the
monotonicity properties and limiting behavior of the
minimal positive definite solution to Riccati equations
are given in Section 2. Using the limiting behavior
of the minimal positive definite stabilizing solution
to the Riccati equation, the performance limit for the
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uncertain systems with norm-bounded uncertainty and
integral quadratic constraint uncertainty, respectively,
is derived. We find that perfect regulation with cheap
control can be achieved if the uncertain system has a
particular special structure.

2. NORM-BOUNDED UNCERTAINTY

The class of uncertain systems under consideration is
described by the following state equation

ẋ(t) = [A+B2∆(t)C1]x(t)+ [B1+B2∆(t)D1]u(t)(1)

x(0) = x0

wherex(t) 2 Rn is the state,u(t) 2 Rm is the control
input, ∆(t) is a time-varying matrix of uncertain pa-
rameters. Also∆(t) 2 Ξ is the set of all admissible un-
certainties for the uncertain system (1) and is defined
as follows:

Ξ = f∆(t);∆0(t)∆(t)� Ig: (2)

Associated with this system is the cost functional

J =

Z ∞

0
fx(t)0Rx(t)+u0(t)Gu(t)gdt (3)

whereR;G> 0. All matrices are real and have com-
patible dimensions.

Definition 1. A control law u(t) = Kx(t) is said to
define a quadratic guaranteed cost control with asso-
ciated cost matrixX > 0 for the system (1) and cost
functional (2) if

x0[R+K0GK]x+2x0X[A+ B2∆(C1+D1K)

+ B1K]x< 0 (4)

for all non-zerox2 Rn and for all∆ 2 Ξ.

From Theorem 5.2.1 (Petersenet al., 2000), if the
control lawu(t) =Kx(t) is a quadratic guaranteed cost
control with cost matrixX > 0, then the corresponding
value of the cost functional(3) satisfies the bound
J� x00Xx0 for all admissible uncertainties∆(t).

Lemma 2.(Petersenet al., 2000) Suppose that there
exists a constantε > 0 such that the Riccati equation

(A�B1(εG+D0
1D1)

�1D0
1C1)

0X

+ X(A�B1(εG+D0
1D1)

�1D0
1C1)+ εXB2B

0
2X

� εXB1(εG+D0
1D1)

�1B01X

+
1
ε

C01(I �D1(εG+D0
1D1)

�1D0
1)C1+R= 0 (5)

has a solutionX > 0 and consider the control law

u(t) =�(εG+D0
1D1)

�1(εB01X+D0
1C1)x(t) (6)

Then given anyδ > 0, there exists a matrix̃X such
thatX < X̃ < X+δ I and (6) is a quadratic guaranteed
cost control for the uncertain system (1) with cost
matrix X̃, and thusJ � x00X̃x0. Conversely, given any
quadratic guaranteed cost control with cost matrixX̃,
there exists a constantε̃ > 0 such that Riccati equation
(5) has a stabilizing solutionX+ > 0 whereX+ < X̃.

The following propositions give monotonicity results
about the Riccati equation(5) as some matrices are
varied. To prove these propositions, some results
(Lancaster and Rodman, 1995; Petersen, 1988; Pe-
tersenet al., 2000) about some Riccati equations will
be needed. Due to space limitations, the proofs have
been omitted.

Proposition 3.Let ε = ε̃ > 0 be fixed. Suppose that
for G = eG > 0, the Riccati equation(5) has a sym-
metric solutioneX > 0. Then with any 0< G < eG,
the Riccati equation(5) will have a minimal positive
definite solutionX > 0, andX is non-increasing with
decreasingG. Moreover, for each 0< G< eG, X is the
unique strong solution to(5).

Proposition 4.Suppose that forε = ε̃ > 0 andG =eG> 0, the Riccati equation(5) has a positive definite
solutionX( eG; ε̃). Then for any fixedε 2 (0; ε̃) and any
0< G< eG, the Riccati equation(5) will have a min-
imal positive definite stabilizing solutionX(G;ε) and
X(G;ε) is non-increasing with decreasingG. More-
over,X(G;ε) is the unique stabilizing solution to the
Riccati equation(5) with these values ofε andG.

Next, letG=η I whereη > 0. Suppose that there exist
η > 0 andε = ε̃ > 0 such that the Riccati equation(5)
has a positive definite solutioñX.

Proposition 5.Suppose thatD1 has full column rank.
Then with G = η I and for any fixedε 2 (0; ε̃), the
unique minimal positive definite stabilizing solution to
the Riccati equation(5), X(η ;ε) tends to the minimal
positive definite stabilizing solution of the Riccati
equation:

(A�B1(D
0
1D1)

�1D0
1C1)

0X+X(A�B1(D
0
1D1)

�1

D0
1C1)+ εXB2B

0
2X� εXB1(D

0
1D1)

�1B01X

+
1
ε

C01(I �D1(D
0
1D1)

�1D0
1)C1+R= 0 (7)

asη ! 0+.

PROOF. For a fixedε 2 (0; ε̃), it follows from Propo-
sition 4 that limη!0+ X(η ;ε) exists and is positive
semidefinite. SinceD1 has full column rank, the ma-
trix D0

1D1 is nonsingular. Also,X(η ;ε) is a continuous
function of η ; see Theorem 11.2.1 (Lancaster and



Rodman, 1995). Hence limη!0+ X(η ;ε) = X(0;ε).
Since the eigenvalues of a matrix are a continuous
function of its elements,X(0;ε) is a strong solution
to the Riccati equation (7). Note that the conclusion
in Proposition 4 is still valid forG = η I = 0 when
D0

1D1 is nonsingular. Since the strong solution to (7)
is unique forR> 0, it follows from Proposition 4 that
X(0;ε) is the minimal positive definite and unique
stabilizing solution to the Riccati equation (7).

From Proposition 5, we see that whenD1 has full
column rank, for a givenε 2 (0; ε̃), taking the limit
η ! 0+ does not ensure perfect regulation for the
uncertain system(1). To achieve perfect regulation,
we will assume thatD0

1D1 is singular. Hence, there
exist two unitary matricesT1 andT2 such that we have
singular value decomposition ofD1:

D1 = T1

�eD 0
0 0

�
T2: (8)

LettingT1 =[T11 T12], we have the following equalities

D1 =
�
T11

eD 0
�
T2 =

�eD1 0
�
T2;

B1T 02 =
�
B11 B12

�
(9)

whereB112 Rn�(m�m1 ) andB122 Rn�m1 .

The following result will characterize the limiting
behavior of the minimal positive definite stabilizing
solution to the Riccati equation(5) asη approaches
zero under the condition thatD1 does not have full
column rank.

Theorem 6.Consider Riccati equation(5) and sup-
pose thatD1 does not have full column rank. Then
there exists a unitary matrixT2 such thatD1 andB1
can be written as in(9). If B12 has full row rank, then
for any givenε 2 (0;∞), there exists a constantη0 > 0
such that there is the unique positive definite stabiliz-
ing solutionX(η ;ε) to Riccati equation(5) with G=
η I , η 2 (0;η0). Furthermore, limη!0+ X(η ;ε) = 0.

Conversely, letX(η ;ε) be the minimal positive def-
inite solution to the Riccati equation(5) with given
ε > 0 andG= η I whereη > 0. If limη!0+ X(η ;ε) =
0, thenB12 has full row rank.

PROOF. First, letD1 6= 0. HenceeD is a nonsingular
square matrix andeD1 has full column rankm�m1.
Substituting (9) into the Riccati equation (5), we get
the following Riccati equation for the givenε:

(A�B11(εη I + eD0 eD)�1eD0Ĉ1)
0X+X(A�B11(εη I

+eD0 eD)�1eD0Ĉ1)+ εXB2B
0
2X� εXB11(εη I + eD0 eD)�1

B011X�
1
η

XB12B
0
12X

+
1
ε

Ĉ01(I � eD(εη I + eD0 eD)�1eD0)Ĉ1+R= 0 (10)

whereĈ1 = T 011C1. SinceB12 has full row rank, there

exists aη1 > 0 such thatεB2B02� 1
η B12B

0
12 < 0 for

any η 2 (0;η1]. Hence for anyη 2 (0;η1], Riccati
equation (10) has a unique positive definite stabilizing
solution X(η ;ε) and X(η ;ε) is also the maximal
solution.

Now consider the Riccati equation with the givenε:

A0X+XA� 1
2η

XB12B
0
12X+

1
ε

Ĉ01Ĉ1+R= 0 (11)

For any η > 0, Riccati equation (11) has a unique
positive definite stabilizing solutionXη andXη is also
the maximal solution.

We use Corollary 9.16 (Lancaster and Rodman, 1995)
to compare the Riccati equations (10) and (11). Hence,
we consider the matrix

M1 =

2
41

ε
Ĉ01(I � eD(εη I + eD0 eD)�1eD0)Ĉ1+R

A�B11(εη I + eD0 eD)�1eD0Ĉ1

(A�B11(εη I + eD0 eD)�1eD0Ĉ1)
0

εB2B02� εB11(εη I + eD0 eD)�1B011�
1
η

B12B
0
12

3
5

associated with the Riccati equation (10) and the ma-
trix

M2 =

2
64

1
ε

Ĉ01Ĉ1+R A0

A � 1
2η

B12B
0
12

3
75

associated with the Riccati equation (11). After some
straightforward manipulations, we have

M2�M1 =

2
4 1p

ε
Ĉ01eDp

εB11

3
5 (εη I + eD0 eD)�1

�
1p
ε
eD0Ĉ1

p
εB011

�
+

2
40 0

0
1

2η
B12B

0
12� εB2B02

3
5 :

Using Corollary 9.16 (Lancaster and Rodman, 1995),

this implies for anyη 2 (0;
η1
2 ],

Xη � X(η ;ε)

Since (A; 1p
2
B12;(

1
ε Ĉ01Ĉ1 + R)

1
2 ) is minimal phase,

from Theorem 3 (Scherzinger and Davison, 1985),
limη!0+ Xη = 0. That is, given any constantζ >

0, there exists anη2 > 0 such that if 0< η < η2

thenkXηk < ζ . Hence, choosingη0 = min(
η1
2 ;η2),

if 0 < η < η0 then kX(η ;ε)k < ζ . This implies
limη!0+ X(η ;ε) = 0. Similar arguments can be ap-
plied to prove the first part of this theorem asD1 = 0.
This completes the proof of the first part of this theo-
rem.



The second part is proved as follows. First letD1 6= 0.
HenceeD is a nonsingular square matrix. Using(9), the
control law in(6) is given by

u(t) = [u1(t)
0 u2(t)

0]0 =�T 02Kx(t)

=�T 02

2
4(εη I + eD0 eD)�1(εB011X(η ;ε)+ eD0Ĉ1)

1
η

B012X(η ;ε)

3
5x(t):

Directly following the proof of Theorem 2 (Scherzinger
and Davison, 1985), when limη!0+ X(η ;ε) = 0, the

limiting controlu1(t) =�eD�1Ĉ1x(t) yields an equiv-
alent system in the following form:

ẋ(t) = (A�B11
eD�1Ĉ1)x(t)+B12u2(t) (12)

associated with the cost functional

J =

Z ∞

0
fx(t)0Rx(t) + ηx(t)Ĉ01(eDeD0)�1Ĉ1x(t)

+ ηu02(t)u2(t)gdt (13)

Using Observation 5.2.2 (Petersenet al., 2000) and the
fact thatX(η ;ε) is a positive definite solution to the
Riccati equation(5), we haveJ� x00X(η ;ε)x0. Hence
limη!0+ x00X(η ;ε)x0 = 0 implies limη!0+ J= 0. Now
write the cost functionalJ = J1+J2, where

J1 =

Z ∞

0
ηx(t)Ĉ01(eDeD0)�1Ĉ1x(t)dt (14)

and

J2 =

Z ∞

0
fx(t)0Rx(t)+ηu02(t)u2(t)gdt (15)

From Theorem 3 (Scherzinger and Davison, 1985), the
cost functionalJ2 approaches zero asη ! 0+ only if
B12 has full row rank.

Secondly, letD1 = 0, whileB1 =B12. Riccati equation
(5) can be rewritten as

A0X+XA+ εXB2B02X� 1
η

XB1B01X

+
1
ε

C01C1+R= 0: (16)

Since Riccati equation (16) has a minimal positive def-
inite solutionX(η ;ε), the following Riccati equation
has a positive definite solutionY(η ;ε) = X(η ;ε)�1:

YA0+AY+ εB2B02�
1
η

B1B01

+Y(
1
ε

C01C1+R)Y = 0: (17)

Consider the Riccati equation

ȲA0+AȲ� 1
η

B1B01+Ȳ(
1
ε

C01C1+R)Ȳ = 0: (18)

We consider the matrix

M1 =

2
64�[εB2B02�

1
η

B1B01] �A

�A0 �[
1
ε

C01C1+R]

3
75

associated with the Riccati equation (17) and the ma-
trix

M2 =

2
64

1
η

B1B01 �A

�A0 �[
1
ε

C01C1+R]

3
75

associated with the Riccati equation (18). We have

M2�M1 =

�
εB2B02 0

0 0

�
� 0:

From Corollary 9.16 (Lancaster and Rodman, 1995),
Riccati equation (18) has a maximal solutionȲ(ε) �
Y(η ;ε)> 0. Then, the following Riccati equation has
a minimal positive definite solutionXη(ε)� X(η ;ε):

A0X+XA� 1
η

XB1B01X+
1
ε

C01C1+R= 0 (19)

Let ε1 < ε. From Theorem 5.2.4 and its proof
(Petersenet al., 2000), Riccati equation (19) has a
minimal positive definite stabilizing solutionX+

η (ε1)>

0 which satisfies the inequalityX+
η (ε1) � ε

ε1
Xη(ε).

Hence,X+
η (ε1) � ε

ε1
X(η ;ε) and limη!0+ X+

η (ε1) =

0. It follows Theorem 3 (Scherzinger and Davison,
1985),B1 has full row rank. This completes the proof
of this theorem.

The following corollary concerning perfect regulation
for the uncertain system(1) can be obtained directly
from Lemma 2 and Theorem 6.

Corollary 7. Consider the uncertain system(1) and
(2) with the cost functional(3) and suppose thatD1
does not have full column rank. Hence there exists a
unitary matrixT2 such thatD1 andB1 are transformed
as in (9). If B12 has full row rank, then there exist
two constantsε;η > 0 such that there is a unique
minimal positive definite stabilizing solutionX(η ;ε)
to the Riccati equation(5) with G = η I . Also with
the corresponding control lawu(t) in (6), J ! 0 as
η ! 0+.

3. INTEGRAL QUADRATIC CONSTRAINT
UNCERTAINTY

Consider the following uncertain system

ẋ(t) = Ax(t)+B1u(t)+B2ξ (t) (20)

z(t) =C1x(t)+D1u(t) (21)

wherex(t) 2 Rn is the state,u(t) 2 Rm is the control
input, andz(t) 2 Rl is the uncertainty output,ξ (t) 2



R
r is the uncertain input. The cost functional for this

system is defined as in (3). That is,

J =

Z ∞

0
fx(t)0Rx(t)+u0(t)Gu(t)gdt (22)

whereR;G> 0:

The uncertainty in the above system is described by an
equation of the form:

ξ (t) = φ(t;x(�);u(�)) (23)

satisfying the following integral quadratic constraint

Z ∞

0
(kz(t)k2�kξ (t)k2)dt ��x00Dsx0 (24)

whereDs > 0 andk �k denotes the standard Euclidean
norm.

We will consider a problem of optimizing of the worst
case of the cost functional(22) via a linear state
feedback controller of the form

ẋc = Acxc(t)+Bcxc(t); xc(0) = 0;

u(t) =Ccxc(t)+Dcx(t) (25)

whereAc;Bc;Cc and Dc are given matrices. The di-
mension of the state vectorxc may be arbitrary. When
a controller form(25) is applied to the uncertain sys-
tem(20) and(21), the closed loop uncertain system is
described by the state equation:

ḣ= Âh(t)+ B̂2ξ (t);z(t) = Ĉh(t);

u(t) = K̂h(t) (26)

where

Â=

�
A+B1Dc B1Cc

Bc Ac

�
; B̂2 =

�
B2
0

�
;h(t) =

�
x(t)
xc(t)

�
Ĉ=

�
C1+D1Dc D1Cc

�
; K̂ =

�
Dc Cc

�
: (27)

The uncertainty for this closed loop uncertain sys-
tem will be described by an equation of the form
ξ (t) = φ(t;h(�)), where the integral quadratic con-
straint given above is satisfied with the substitution
u(t) = K̂h(t).

Definition 8. (Petersenet al., 2000) The controller
(25) is said to be a guaranteed cost controller for the
uncertain system(20) and (21) with cost functional
(22) and an initial conditionx(0) = x0 if the following
conditions hold:

(i) The matrixÂ defined in(27) is stable.
(ii) There exists a constantc0 > 0 such that the fol-

lowing conditions hold: For all admissible uncer-
tainties, the solution to the closed loop system
(26) and(24) corresponding to the initial condi-
tion h(0) = [x00;0]

0 satisfies

[x(�);u(�);ξ (�)] 2 L2[0;∞):

Also, the corresponding value of the cost func-
tional (22) satisfies the boundJ� c0.

An uncertain system(20) and (21) with the cost
functional(22) which admits a guaranteed controller
(25) with an initial conditionx(0) = x0 is said to be
guaranteed cost stabilizable with this initial condition.

Let Ξ be the set of all admissible uncertainties for the
uncertain system(20), (21) and (24). Let Θ denote
the set of all linear time-invariant dynamic state feed-
back guaranteed cost controllers of the form(25) for
the uncertain system with the given initial condition.
Consider the Riccati equation (5) and define a setΓ as
follows:

Γ := fε > 0 such that Riccati equation (5) has a

positive definite solutionXεg: (28)

HereΓ is an open interval inR. That is,Γ = (0;ε).
For anyε 2 Γ, the Riccati equation(5) has a positive
definite solutionXε . It should be noted that although
we only consider the case of unstructured uncertainty
with a single integral quadratic constraint, the main
result of this section can be extended to the multi-
block uncertainty case (Millikenet al., 1999).

Lemma 9.(Petersenet al., 2000) Consider the uncer-
tain system(20), (21) with the cost functional(22)
and Integral Quadratic Constraint(24). Suppose that
B2 6= 0 and the setΓ is not empty. Then, for any initial
conditionx0 6= 0, the uncertain systems(20) and(21)
will be guaranteed cost stabilizable and

J�
4
= inf

u(�)2Θ
sup

ξ (�)2Ξ
J = inf

ε2Γ

�
x00Xεx0+

1
ε

x00Dsx0

�
whereXε is the minimal positive definite solution to
Riccati equation(5).

Next, let G = η I whereη > 0. Using the results of
Section 2, we will give the main result of this section
concerning perfect regulation with cheap control for
the uncertain system(20), (21).

Proposition 10. J� is monotonically non-increasing
and converges to someJ0 asη ! 0.

PROOF. Since x00Xεx0 +
1
ε x00Dsx0 > 0 has zero as

a lower bound,J� is finite. Let η1 and η2 satisfy
0< η2 < η1. For anyε 2 Γ(η1), from Proposition 3,
Riccati equation (5) withε andη2 has a positive defi-
nite solution. Henceε 2 Γ(η2). FurthermoreΓ(η1)�
Γ(η2) and 0� J�(η2) � J�(η1), which implies that
J�(η) is monotonically non-increasing and converges
to someJ0 asη ! 0.

Theorem 11.Consider the uncertain system(20), (21)
with the cost functional(22) and Integral Quadratic



Constraint(24). Suppose thatB2 6= 0, the initial state
x0 is known andx0 6= 0, andD1 does not have full
column rank. Hence there exists a unitary matrixT2
such thatD1 andB1 are transformed as in(9). Then,
if B12 has full row rank,

lim
η!0+

inf
u(�)2Θ

sup
ξ (�)2Ξ

J = 0:

PROOF. Given any constantζ > 0, then there exists

an ε > 0 such that1ε x00Dsx0 <
ζ
2 . From Theorem 6,

for this ε, there exists anη1 > 0 such that the Riccati
equation(5) with thisε andG=η I where 0<η <η1,
has a minimal positive definite stabilizing solution
X(η ;ε). This implies that thisε is an interior point
of the setΓ for the Riccati equation(5) with this ε
and G = η I where 0< η < η1. Furthermore, since
limη!0+ x00X(η ;ε)x0 = 0, we can choose a suitableη2

whereη1 > η2 > 0 such thatx00X(η ;ε)x0 <
ζ
2 when-

ever 0< η � η2. Letting η = η2, we havex00Xεx0+
1
ε x00Dsx0 < ζ . That is,J�(η2) < x00Xεx0+

1
ε x00Dsx0 <

ζ , whereXε = X(η2;ε). From Proposition 10, since
J�(η) is monotonically non-increasing with decreas-
ing η , we have for 0< η < η2, J�(η) < ζ . Note that
sinceζ > 0 is arbitrary, it follows that for any given
ζ > 0, there exists anη0 > 0 such thatJ�(η) < ζ
whenever 0< η < η0. This implies limη!0+ J�(η) =
0.

Example 12.Consider the uncertain system described
by the state equation

ẋ(t) =

�
1+∆(t) �2+∆(t)

16 8

�
x(t)+

�
1 0
0 2

�
u(t)

where x(0)=[1 0]’ and∆(t) is a scalar subject to the
bound∆0(t)∆(t) � I . Associated with this system is
the cost functional

J =
Z ∞

0
fx2

1(t)+x2
2(t)+η(u2

1(t)+u2
2(t))gdt:

The corresponding matrices for the above uncertain
system are given below

A=

�
1 �2
16 8

�
; B1 =

�
1 0
0 2

�
; B2 =

�
1
0

�
; C1 =

�
1 1

�
;

D1 =
�
0 0

�
; R=

�
1 0
0 1

�
; G=

�
η 0
0 η

�
:

Let ε = 0:33. A plot of cost functional and cost
boundx00X(η ;0:33)x0 versusη and time-invariant∆2
[�1; 1] is shown in Figure 1. SinceB1 has full row
rank, the maximal achievable performance for this un-
certain system is zero. The cost boundx00X(η ;0:33)x0
is 0:1684�10�4 asη = 10�10.
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Fig. 1. Cost functional and cost bound versusη and
time-invariant∆.

4. CONCLUSION

We have derived the cheap control performance limit
for the uncertain systems with both norm-bounded un-
certainty and integral quadratic constraint uncertainty.
Also the condition under which perfect regulation can
be achieved has been given. This has been done by
investigating the monotonicity properties and limiting
behavior of the minimal positive definite solutions to
the corresponding Riccati equations. It is noted that
the uncertain systems under consideration require a
special structure to achieve perfect regulation. The
reason for this is that the quadratic guaranteed cost
control approach adopted in this paper requires that
the weighting matrix on the state in the cost functional
must be a positive definite; i.e.,R> 0. Hence, con-
ditions for perfect regulation are not given in terms
of minimal phase and right-invertible assumptions but
rather in terms of certain rank assumptions.
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