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Abstract: In this paper, the robust linear quadratic regulation problem with cheap control
is studied for uncertain systems with norm-bounded uncertainty and integral quadratic
constraint uncertainty, respectively. A Riccati equation approach is employed as a tool to
investigate the limiting case in which a scalar weighting coefficient on the control input in the
guadratic cost functional approaches zero. The corresponding performance limit is derived.
Some results about monotonicity properties and the limiting behavior of the minimal positive
definite solution to the Riccati equation are given. Using the limiting behavior of the minimal
positive definite stabilizing solution to the Riccati equation, we find that perfect regulation
with cheap control can be achieved if the uncertain system has a particular structure.
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1. INTRODUCTION performance limitations are sparse to our knowledge.
This paper is concerned with the problem of per-
One of the most important problems in control sys- fect regulation with cheap control for linear uncer-
tem design is concerned with the maximally achiev- tain systems. The motivation for studying this prob-
able performance and fundamental performance limi- lem comes from a desire to extend classical results
tations. For linear systems, the so-called cheap controlfor linear systems to linear uncertain systems. This is
problem has attracted much attention since the 1970’shecause many systems are inherently uncertain and a
(Francis, 1979; Scherzinger and Davison, 1985). Thisgood understanding of the maximal achievable per-
problem consists of an optimal linear regulator prob- formance has a profound significance in the trade-
lem with a quadratic cost functional which is the off between system performance and control input.
weighted sum of the integral squared output and thewe hope it will be helpful to understand the rela-
integral squared input and such that a scalar weightingtionship between the maximal achievable performance
coefficient on the control input in the quadratic cost and the description of the plant to be controlled in-
functional tends to zero. If the integral squared output cluding a characterization of the uncertainty. We will
approaches zero as the weighting on the control inputemploy a Riccati equation approach to quadratic guar-
tends to zero, cheap control is said to provide perfectanteed cost control to investigate the limiting case
regulation for the control system. of a quadratic cost functional with cheap control for

Recently, the problem of performance limitations in linear uncertain systems. Some results concerning the

feedback design has received a great deal of interesfnonotoniCity properties and limiting behavior of the
from many researchers. For uncertain linear systems minimal positive definite solution to Riccati equations

the results on maximally achievable performance and@r€ givenin Sect|o_n. 2. US'_”9 the Ilm_ltl_ng behay|or
of the minimal positive definite stabilizing solution

to the Riccati equation, the performance limit for the
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uncertain systems with norm-bounded uncertaintyand  y(t) = — (G + D}D;) "} (eByX 4+ DiC))x(t) (6)
integral quadratic constraint uncertainty, respectively,
is derived. We find that perfect regulation with cheap Then given any > 0, there exists a matriX such

control can be achieved if the uncertain system has athatX < X < X + &1 and (6) is a quadratic guaranteed
particular special structure. cost control for the uncertain system (1) with cost

matrix X, and thus) < XOXXO Conversely, given any
quadratic guaranteed cost control with cost maXtix

there exists a constafit> 0 such that Riccati equation
2. NORM-BOUNDED UNCERTAINTY (5) has a stabilizing solutioX* > 0 whereX* < X.

The class of uncertain systems under consideration is
described by the following state equation The following propositions give monotonicity results
about the Riccati equatiofb) as some matrices are

varied. To prove these propositions, some results
X(t) = [A+BA)CX(t) + [B; + BA(L)D,JutX1)  (Lancaster and Rodman, 1995; Petersen, 1988; Pe-
X(0) =X, tersenet al, 2000) about some Riccati equations will
be needed. Due to space limitations, the proofs have
wherex(t) € R" is the statep(t) € R™ is the control  been omitted.
input, A(t) is a time-varying matrix of uncertain pa-
rameters. Alsd\(t) € = is the set of all admissible un-  Proposition 3.Let £ = & > 0 be fixed. Suppose that
certainties for the uncertain system (1) and is definedfor G = G > 0, the Riccati equatior5) has a sym-

as follows: metric solutionX > 0. Then with any 0< G < G,
the Riccati equatiori5) will have a minimal positive
== {A(t),NOA®L) <1} ) definite solutionX > 0, andX is non-increasing with
decreasin@s. Moreover, for each & G < G, X is the
Associated with this system is the cost functional unique strong solution t¢b).

® , , Proposition 4. Suppose that foe = £ > 0 andG =
J= /0 {X(O)'Rx(t) + U ()Gu(t) }dt () G> o0, the Riccati equatiotb) has a positive definite
solutionX (G, £). Then for any fixed € (0,) and any
0 < G < G, the Riccati equatiofs) will have a min-
imal positive definite stabilizing solutiod(G, €) and
X(G,¢) is non-increasing with decreasirg More-
over,X(G,¢) is the unigue stabilizing solution to the
Riccati equatior{5) with these values of andG.

whereR,G > 0. All matrices are real and have com-
patible dimensions.

Definition 1. A control law u(t) = Kx(t) is said to
define a quadratic guaranteed cost control with asso-
ciated cost matrixX > 0 for the system (1) and cost
functional (2) if
Next, letG = nl wheren > 0. Suppose that there exist
/ / n > 0 ande = € > 0 such that the Riccati equati
X[R+K'GK]x+2¢X[A + ByA(C; +D,K) has a positive definite solutiof. @
+B,K]x< 0 4)

N _ Proposition 5. Suppose thaD, has full column rank.

for all non-zerox € R" and for allA € =. Then with G = nl and for any fixede € (0,%), the
unique minimal positive definite stabilizing solution to

From Theorem 5.2.1 (Petersen al, 2000), if the  the Riccati equatiols), X(n,€) tends to the minimal
control lawu(t) = Kx(t) is a quadratic guaranteed cost positive definite stabilizing solution of the Riccati
control with cost matrixX > 0, then the corresponding  €quation:
value of the cost functional3) satisfies the bound
J < xpXx, for all admissible uncertaintie§(t). (A—B,(D}D,)™'D}C,)'X + X(A—B,(D}D,)*

’ AV / —1p/
Lemma 2.(Peterseret al, 2000) Suppose that there 1Cy) +EXB;ByX — £XB, (D1D,)"B1 X

exists a constarg > 0 such that the Riccati equation + %C/l“ _ Dl(DiDl)_lDll)Cl 1R=0 @)
(A—B,(eG+D\D,)"D}C,)'X asn — 0.
+ X(A—B,(eG+D}D,)D}C,) + eXB,B5X
— eXB,(6G+ D}D,) 1B X PROOF. For afixede € (0, ), it follows from Propo-
sition 4 that "”),_>o+ X(n,€) exists and is positive

1
+ =Ci(I —D,(eG+D\D;) 'D})C,+R=0 (5)  semidefinite. Sinc®, has full column rank, the ma-
€ trix D} D, is nonsingular. AlsoX(n, ) is a continuous
has a solutiorX > 0 and consider the control law function of n; see Theorem 11.2.1 (Lancaster and



Rodman, 1995). Hence Iiﬁgmx(r],s) = X(0,¢).

Since the eigenvalues of a matrix are a continuousgyists an, > 0 such thatB,B, —

function of its elementsX(0, ) is a strong solution
to the Riccati equation (7). Note that the conclusion
in Proposition 4 is still valid forG = nl = 0 when
D}D, is nonsingular. Since the strong solution to (7)
is unique forR > 0, it follows from Proposition 4 that
X(0,¢) is the minimal positive definite and unique
stabilizing solution to the Riccati equation (7).

From Proposition 5, we see that whén has full
column rank, for a giverz € (0,£), taking the limit

n — 0" does not ensure perfect regulation for the
uncertain systengl). To achieve perfect regulation,
we will assume thaD}D; is singular. Hence, there
exist two unitary matrice$; andT, such that we have
singular value decomposition Bf;:

DO
Dlle[O O]Tz.

LettingT, = [T;; T;,|, we have the following equalities

(8)

D, = [Tnﬁ 0] = [51 0] T,
Bszl = [Bll Blﬂ

whereB,, € R™(™M) andB,, € R™ M.

)

The following result will characterize the limiting
behavior of the minimal positive definite stabilizing
solution to the Riccati equatiofb) asn approaches
zero under the condition th&, does not have full
column rank.

Theorem 6.Consider Riccati equatiofb) and sup-
pose thatD; does not have full column rank. Then
there exists a unitary matri, such thatD, andB,;
can be written as i69). If B;, has full row rank, then
for any givene € (0,), there exists a constang > 0
such that there is the unique positive definite stabiliz-
ing solutionX(n, €) to Riccati equatior5) with G =

nl, n € (0,n,). Furthermore, Iirgﬁmx(n,s) =0.

Conversely, letX(n,€) be the minimal positive def-
inite solution to the Riccati equatiofb) with given
€ > 0andG = nl wheren > 0. If Iimn%mx(n,e) =
0, thenB,, has full row rank.

PROOF. First, letD, # 0. HenceD is a nonsingular

square matrix and, has full column rankm—m,.
Substituting (9) into the Riccati equation (5), we get
the following Riccati equation for the given

(A—Byy(enl +D'D)"ID'C,)'X + X(A—Byy(enl
+D'D) 1D'C,) + eXB,B,X — XBy4(enl +D'D) ?
1
?le - EX BlZBllz)<

+%C’l(l —D(enl +D'D) D), +R=0 (10)

whereC, = T/,C,. SinceB,, has full row rank, there
%BHB’12 < 0 for
any n € (0,n,]. Hence for anyn € (0,n,], Riccati
equation (10) has a unique positive definite stabilizing
solution X(n,&) and X(n,¢) is also the maximal
solution.

Now consider the Riccati equation with the given

1 14 A
AX+XA- 5x1312|3’12x + EC’lc1 +R=0 (11)

For anyn > 0, Riccati equation (11) has a unique
positive definite stabilizing solutio, andX;, is also
the maximal solution.

We use Corollary 9.16 (Lancaster and Rodman, 1995)
to compare the Riccati equations (10) and (11). Hence,
we consider the matrix

1. _ e A~ A
Ec’l(l —D(enl +D'D)'D')C, +R

Ml: N -1R/A
A-B,,(enl +D'D)'D'C,

(A= By,(enl +D'D)'D'C,)’
e 1
€B,B, — €Byy(enl +D'D) 'By; — 58125112

associated with the Riccati equation (10) and the ma-
trix

A
1

T

1A ~
EC’lclJrR

MZ
A BlZBél.Z

associated with the Riccati equation (11). After some

straightforward manipulations, we have

1o
M, — M, = ﬁClD (en! +D'D)?
VeBy;
1 N/~ \/— / 0 0
—D'C, veByq| + 1 .
L/E ! 11] [O 55125112—55234

Using Corollary 9.16 (Lancaster and Rodman, 1995),
this implies for anyn € (0, ﬂzl],

Xp > X(n,¢)

Since (A,%Blz,(%é’lélth)%) is minimal phase,
from Theorem 3 (Scherzinger and Davison, 1985),
Iim,HO+ X, = 0. That is, given any constart >

0, there exists am, > 0 such that if 0< n < n,
then||X;|| < . Hence, choosing, = min(ﬂzl,nz),

if 0 < n < ny then|[|X(n,¢e)|| < . This implies
Iimn_)0+x(n,e) = 0. Similar arguments can be ap-
plied to prove the first part of this theoremig = 0.
This completes the proof of the first part of this theo-
rem.



The second part is proved as follows. Firstgt£ 0. , 1,
= . . . —[eB,B, — —B,B] —A
HenceD is a nonsingular square matrix. Usi(®), the M. — n
control law in(6) is given by ! _A —[%Cicl +R]
u(t) = [ug(t) uy(t)] = —ToKx(t) associated with the Riccati equation (17) and the ma-
(enl +D'D) "} (eByX(n,€) + 5’@1)] trix
=-T, 1., X(t).
—B1,X(n, &
[ o1 (n,¢€) J %51511 A
Directly following the proof of Theorem 2 (Scherzinger M, = 1

_ ! = /
and Davison, 1985), when lim,o. X(n,&) =0, the A EEGHR

limiting controlu, (t) = —D~*C,x(t) yields an equiv-  associated with the Riccati equation (18). We have
alent system in the following form: ,
£B,B) 0

X(t) = (A= B, D ICX(t) + By () (12) e [ 0 o>
X(t) = (A— X(t) +By,u
_ _ 1 ! _ 1272 From Corollary 9.16 (Lancaster and Rodman, 1995),
associated with the cost functional Riccati equation (18) has a maximal solutiéte) >
- Y(n,&) > 0. Then, the following Riccati equation has
J= / {X(t)RX(t) + nx(t)é’l(ﬁﬁ’)‘lélx(t) a minimal positive definite solutioX;, (¢) < X(n,€):
0

+nua(t)u,(t) Hdt (13)
Using Observation 5.2.2 (Peterstral,, 2000) and the
fact thatX(n, €) is a positive definite solution to the | o g, < £ From Theorem 5.2.4 and its proof
Riccatl ecauat|or(5), we have) <xpX(n,€)%- Hence  (peterseret al, 2000), Riccati equation (19) has a
im,, ot XX(1, E)Xo_ =0implieslim, . J=0.Now  inimal positive definite stabilizing solutiogy (g;) >
write the cost functional = J, +J, where 0 which satisfies the inequalité+ (g;) < silxn(s).

1 1
AX+XA- X B,BIX + ZCiC; +R=0 (19)

Hence X! (g,) < silx(n,e) and lim, o, X1 (&) =
0. It follows Theorem 3 (Scherzinger and Davison,

1985),B, has full row rank. This completes the proof
of this theorem.

3= /O “x®E DD Extydt  (14)

and

J:/th’Rt+u’tutdt 15
27 Jo (X RO + Nt ()} (15) The following corollary concerning perfect regulation
From Theorem 3 (Scherzinger and Davison, 1985), thefor the uncertain systerfil) can be obtained directly

cost functionall, approaches zero ag— 0™ only if from Lemma 2 and Theorem 6.

B,, has full row rank. i .
Corollary 7. Consider the uncertain systett) and

Secondly, leD, =0, whileB, = B,,. Riccati equation  (2) with the cost functiona(3) and suppose thdd,

(5) can be rewritten as does not have full column rank. Hence there exists a
unitary matrixT, such thaD, andB, are transformed
A'X 4+ XA+ eXB,BX — EXBIBQX as in(9). If By, has full row rank, then there exist

two constantse,nn > 0 such that there is a unique
minimal positive definite stabilizing solutiod(n, €)
to the Riccati equatiorf5) with G = nl. Also with

¢. the corresponding control law(t) in (6), J — 0 as

1
+ ZCIC, +R=0. (16)

Since Riccati equation (16) has a minimal positive de

inite solutionX(n, ), the following Riccati equation n—0".
has a positive definite solutiof(n, &) = X(n,&)
. L1 . 3. INTEGRAL QUADRATIC CONSTRAINT
YA +AY +eByB; — EBlBl UNCERTAINTY
1
+ Y(EC’1C1 +R)Y=0. a7) Consider the following uncertain system

Consider the Riccati equation .

d X(t) = AX(t) + Byu(t) + B,& (1) (20)

zZ(t) =Cyx(t) + Dyu(t) (21)

— - 1 -1 —

YA +AY - =B;B} +Y(=C{C, +R)Y =0. (18)
n € wherex(t) € R" is the statey(t) € R™ is the control

We consider the matrix input, andz(t) € R' is the uncertainty outpu€(t) €



R" is the uncertain input. The cost functional for this
system is defined as in (3). That s,

J= /0 " XO'RM) +UOGUD) . (22)

whereR,G > 0.

Also, the corresponding value of the cost func-
tional (22) satisfies the bound < c,.

An uncertain system(20) and (21) with the cost
functional (22) which admits a guaranteed controller
(25) with an initial conditionx(0) = X, is said to be
guaranteed cost stabilizable with this initial condition.

The uncertainty in the above system is described by an

equation of the form:

&(t) = o(t,x(-),u(-))

satisfying the following integral quadratic constraint

(23)

U0l [E ORIk > Do, (24)

whereDs > 0 and|| - || denotes the standard Euclidean
norm.

We will consider a problem of optimizing of the worst
case of the cost functiondR?2) via a linear state
feedback controller of the form

Xe = AcXc(t) + Bexce(t);  %c(0) =0;

(t) = Coxe(t) + Dex(t)

whereA¢,B,Cc and D; are given matrices. The di-
mension of the state vectgg may be arbitrary. When
a controller form(25) is applied to the uncertain sys-
tem(20) and(21), the closed loop uncertain system is
described by the state equation:

(25)

h= Ah(t) + B,& (t); z(t) = Ch(t);
u(t) = Kh(t) (26)
where
~ [A+B,D:BC] 5 [B X
AR ] e o] o= [0)
C = [C,+D,D¢ D,Cc],K = [D¢ Cc] . (27)

The uncertainty for this closed loop uncertain sys-
tem will be described by an equation of the form
&(t) = @(t,h(-)), where the integral quadratic con-
straint given above is satisfied with the substitution
u(t) = Kh(t).

Definition 8. (Petersenet al., 2000) The controller

(25) is said to be a guaranteed cost controller for the

uncertain systenf20) and (21) with cost functional
(22) and an initial conditiox(0) = X, if the following
conditions hold:

(i) The matrixA defined in(27) is stable.

(il) There exists a constagg > 0 such that the fol-
lowing conditions hold: For all admissible uncer-
tainties, the solution to the closed loop system
(26) and(24) corresponding to the initial condi-
tion h(0) = [x;,0]" satisfies

[X('), U('), E()] € LZ[O,OO)'

Let = be the set of all admissible uncertainties for the
uncertain systenf20), (21) and (24). Let © denote
the set of all linear time-invariant dynamic state feed-
back guaranteed cost controllers of the fai28) for
the uncertain system with the given initial condition.
Consider the Riccati equation (5) and define d'sas
follows:

I :={e >0 such that Riccati equation (5) has a

positive definite solutioX; }. (28)

Hererl is an open interval iR. That is,I = (0, ¢).

For anye € I, the Riccati equatiof5) has a positive
definite solutionX,. It should be noted that although
we only consider the case of unstructured uncertainty
with a single integral quadratic constraint, the main
result of this section can be extended to the multi-
block uncertainty case (Millikest al., 1999).

Lemma 9.(Peterseret al,, 2000) Consider the uncer-
tain system(20), (21) with the cost functiona(22)
and Integral Quadratic Constraiff4). Suppose that
B, # 0 and the sefl is not empty. Then, for any initial
conditionx, # 0, the uncertain systeni&0) and(21)
will be guaranteed cost stabilizable and

JE inf sup J=

1
inf |xoX, “xpD
U(')EGE(~)EE SIQI' [X6 eXo EXO SXO]

whereX, is the minimal positive definite solution to
Riccati equatior(5).

Next, letG = nl wheren > 0. Using the results of
Section 2, we will give the main result of this section
concerning perfect regulation with cheap control for
the uncertain systerf20), (21).

Proposition 10. J is monotonically non-increasing
and converges to sondg asn — 0.

PROOF. Since xgXeX, + %Xé)DSXO > 0 has zero as
a lower boundJ* is finite. Let n; and n, satisfy

0 < n, < n,. For anye € ['(n,), from Proposition 3,
Riccati equation (5) witlz andn, has a positive defi-
nite solution. Hence € I'(n,). Furthermord (n;) C
r(n,) and 0< J*(n,) < J*(ny), which implies that
J*(n) is monotonically non-increasing and converges
to somel, asn — 0.

Theorem 11.Consider the uncertain systég0), (21)
with the cost functiona(22) and Integral Quadratic



Constraint(24). Suppose thaB, # 0, the initial state
X is known andx, # 0, andD, does not have full
column rank. Hence there exists a unitary mafijx
such thatD, andB; are transformed as if9). Then,
if B;, has full row rank,

lim inf supJ=0.
n—0tu(-)€O¢ (. e=

PROOF. Given any constanf > 0, then there exists

ang > 0 such that%ng% < % From Theorem 6,
for this €, there exists am, > 0 such that the Riccati
equation(5) with thise andG = nl where 0< n < n,
has a minimal positive definite stabilizing solution
X(n,€). This implies that thiss is an interior point
of the setl" for the Riccati equatiorf5) with this &
andG = nl where 0< n < n,. Furthermore, since
lim, o XoX(n, €)% =0, we can choose a suitabjg

wheren; > n, > 0 such thak,X(n, €)%, < % when-

ever 0< n < n,. Lettingn = n,, we havexyXgX, +
LxDsx, < 2. Thatis,3*(1,) < XpXeXg + £X6De¥, <

¢, whereX; = X(n,,&). From Proposition 10, since
J*(n) is monotonically non-increasing with decreas-
ing n, we have for < n < n,, J*(n) < {. Note that
since{ > O is arbitrary, it follows that for any given
¢ > 0, there exists am, > 0 such thatJ*(n) < ¢
whenever 0< 1) < . This implies Iin}]_)0+ J*(n)
0.

Fig. 1. Cost functional and cost bound versusind
time-invariantA.

4. CONCLUSION

We have derived the cheap control performance limit
for the uncertain systems with both norm-bounded un-
certainty and integral quadratic constraint uncertainty.
Also the condition under which perfect regulation can
be achieved has been given. This has been done by
investigating the monotonicity properties and limiting
behavior of the minimal positive definite solutions to
the corresponding Riccati equations. It is noted that
the uncertain systems under consideration require a
special structure to achieve perfect regulation. The
reason for this is that the quadratic guaranteed cost
control approach adopted in this paper requires that

Example 12.Consider the uncertain system described the weighting matrix on the state in the cost functional

by the state equation
X(t) = [“1%“) ‘ZEA“)] X(t) + [é g] u(t)

where x(0)=[1 0]’ andA(t) is a scalar subject to the
boundA'(t)A(t) < I. Associated with this system is
the cost functional

3= [040 080+ n0FO +B0)ydt

The corresponding matrices for the above uncertain

system are given below

A= [116_82]’81: {(1) g}’BZZ H’Cl:[l 1,
Dlz[OO],R:[écl)],G:{g rﬂ

Let € = 0.33. A plot of cost functional and cost
boundxyX(n,0.33)x, versus) and time-invarianA €
[—1, 1] is shown in Figure 1. SincB, has full row

rank, the maximal achievable performance for this un-

certain system is zero. The cost bougi (17,0.33)x,
is 0.1684x 10~ %asn = 10719,

must be a positive definite; i.eR > 0. Hence, con-
ditions for perfect regulation are not given in terms
of minimal phase and right-invertible assumptions but
rather in terms of certain rank assumptions.
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