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Abstract: This paper considers the problem of robust stability for linear systems with a
constant time-delay in the state and subject to real convex polytopic uncertainty. First of
all, for robust stability problem, new matrix inequalities characterization of delay-dependent
robust stability results are exploited, which demonstrat that it allows the use of parameter-
dependent Lyapunov functions in comparison to the classical one, whose drawback stands
in the use of a single Lyapunov function to assess the stability over the whole uncertainty
domain. Next, as for delay dependent case, the problem of determining the maximum time-
delay under which the system will remain stable is cast into a generalized eigenvalue problem
and thus solved by LMI techniques. Finally, an illustrative example is given to demonstrate
the effectiveness of the proposed method.
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1. INTRODUCTION

Time-delay occurs in many dynamical systems such
as biological systems, chemical systems, metallurgical
processing systems, nuclear reactor, long transmission
lines in pneumatic, hydraulic systems and electrical
networks. Frequently, it is a source of the generation
of oscillation, instability and poor performance. There
has been a large amount of literature during the last
couple decades dedicated to systems called Smith
predictor theories (Smith, 1959; Matausek and Micic,
2000; Furutani and Araki, 1998), in which the time
delay is known. For a system with unknown delays,
however, the concepts of robust control theories have
been recently introduced. If an unknown delay term
is constant but unlimited, researchers have provided
several delay-independent stability criteria (Lee et al.,
1994; Chen and Lathchman, 1994; Chen et al., 1995).
If an unknown delay term is constant but bounded,
delay-dependent stability criteria in (Niculesu et al.,
1995; Kolmanovskii and Niculescu, 1999; de Souza

and Li, 1999; Huang and Zhou, and references therein,
2000; Zhang et al., 2001) improve stability margins
compared to delay-independent criteria.

Recently, much effort has been devoted to develop-
ing frequency-domain and time-domain based tech-
niques which may be extendable to the problems of
robust stability of uncertain linear time-delay systems
with delay-dependent Lyapunov functions. The results
obtained in the frequency-domain give less conser-
vative stability criteria (Huang and Zhou, and ref-
erences therein, 2000; Zhang et al., 2001), Unfortu-
nately, these methods can not be applied to deal with
the delayed systems with ploytopic uncertainty. In
the time-domain Lyapunov-Krasovskii or Lyapunov-
Razumikhin-based functionals are used as Lyapunov
function candidate for quadratical stabilization. One
of the main drawbacks of the quadratic approach
comes from the fact that it make use of a single
constant Lyapunov matrix to simultaneously test the
stability over the whole uncertain domain. Recently in
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the study of linear systems with polytopic uncertainty,
a few attempts have been made to reduce the con-
servatism of the approach by defining and using pa-
rameter dependent Lyapunov functions for continuous
linear uncertain systems (Tuan et al., 2000; Apkarian
et al., 2000; Shaked, 2001), and discrete uncertain
systems (Bachelier et al., 1999; Geromel et al., 1999).
In these papers, a new stabilization condition for linear
uncertain systems has been derived. Besides being
quite simple LMI obtained expanding the Lyapunov
relation by introducing a new matrix variable, it en-
able to obtain parameter dependent Lyapunov function
which, of course, is a step ahead the quadratic ap-
proach. Moreover, in this new condition, the Lyapunov
matrix is not involved in any product term with the
dynamic matrix. With this property, the determination
of the Lyapunov matrix are, in some sense, indepen-
dent, unlike in the quadratic approach. However, few
results have been reported to deal with uncertain time-
delay systems using parameter-dependent Lyapunov
function methods.

In this paper, the problem of robust stability for linear
systems with a delayed state and subject to polytopic
uncertainty in the state-space model is addressed. The
case of a single, constant time delay is considered.
Delay-dependent results are investigated through a
new parameter-dependent Lyapunov function. When
time-delay is constant but unknown, the problem of
determining the maximum time-delay under which the
system will remain stable in spite of polytopic uncer-
tainty is cast into a generalized eigenvalue problem
and thus solved by LMI techniques.

2. PROBLEM FORMULATION

Consider the following linear uncertain system with
time-delay

����� � ����� ������ � ���
���� � ����� �� � ���� ��

(1)

where ���� � �� is is the state, � � � is a given con-
stant. The state-space data are subject to uncertainties
and obey the real convex polytopic model
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Definition 1. The system (1) is said to be robustly
stable if the equilibrium solution ���� � � of the
functional differential equation associated to system
(1) is globally uniformly asymptotically stable for all�
� ��

�
� 	.

The goal of this paper is to address the following
problems:

� How to judge whether a given uncertain system
with time-delay is stable or not.

� When the time delay is unknown, for a given
system with time-delay to be stable how long can
the time delay be?

The following Lemmas are needed to derive main
results of this paper.

Lemma 1. (Reciprocal Projection Lemma, see, ( Ap-
karian et al., 2000)). Let � be any given positive defi-
nite matrix. The following statements are equivalent:
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 � �  � � � �
 (3)

���� 
 the LMI problem�
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 �� ��
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is feasible with respect to �


Lemma 2. The following statements are equivalent.

I. There exist positive definite matrices � � ����,
� � ��� and � � ���� such that

�� � ����
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� � � � (5)

II. There exist positive matrices � � ����, � �
���� and general matrix ���� such that�
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Proof. � � �� . Assuming (5) is satisfied, using Shur
complement formula, it is equivalent to�

�� ����
��
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� � (7)

Let � � ���, and multiplying the latter inequality,
from both sides, by diag�� ��� �� yields�
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Let � � �������, � � �� � �, yields (6).

�� � � . Assuming (6) is satisfied. Since the matrix�
� ��

�
has full rank, (6) implies that
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which is

�� ������
� � � (10)

Let � � �� ��� � ��� and multiply (10), from
both sides, by � , yields (5).

Lemma 3. Gien a scalar � � �. The following matrix
inequality conditions �� � ���, with positive definite



matrix variables � , � , �, and general matrix variable
� , are equivalent.
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where 	� � � � � � , 	� � ��� �� , 	� � �� �
���

��

Proof. (11)� (12). From (11), using Lemma 1 with
� 
� ��� � ���� �� � ���

� � ��,  � �� and
any given positive definite matrix � yields�
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where 	� � ��������
��������

� � ���� �
�� �� � �.

By Shur complement operation with respect to the
term � and the congruence transformation
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the inequality above in turn becomes�
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where 	� � �� � �� � ����
���� � ���

�� �
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By Shur complement operation with respect to the
terms � ����

����
� � and � ��� , the above in-

equality becomes
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The above inequality implies (6) with � 
� ���.

(12)� (11). If (12) holds, using Lemma 1 and Shur
complement formula, we can get that (11) hold with
� 
� ��� and � 
� ���. The proof is completed.

3. MAIN RESULTS

In this section, New alternative characterizations of
an important stability theorem for linear systems with

time-delay are introduced. The result below consti-
tutes the core of the development in the subsequent
sections. It introduces a new transformation on the
Lypunov variables which helps reduce the degree of
conservatism in some delicate problems. This will ap-
pear more light for robust synthesis problems.

Theorem 1. Consider the system (1), given a scalar
� � �. If there exist positive definite matrices � �
����, � � ����, � � ����, matrices � �
���� � ���� and � � ���� such that the
following LMIs hold for all
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Then, the uncertain system (1) is robustly stable for
any constant time delay � satisfying � 
 � 
 � .

Proof. First, the system (1) is rewritten in the form:

���� � ���� �

��
���

��������

����� � ����������

(18)

Next, consider the Lyapunov-Krasovskii functional:
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where � and � are positive definite matrices. Then,
differentiating the functional along the solutions of
(18) yields:
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Recalling that for any vectors �, � and any matrix
� � � of appropriate dimensions
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Hence, it follows that
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The matrix in (21) is negative definite if the following
inequality:
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In order to turn (22) into LMI expression, it is trans-
formed into
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where � is a positive definite matrix which satisfy
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Thus, (22) is negative definite if (24) and the following
inequality is satisfied for any constant time delay �

satisfying � 
 � 
 �
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By using Lemma 2 and 3, (24) and (25) are equivalent
to (16) and the following inequality for some positive
definite matrices � � ����, � � ����, � �
����, matrices � � ���� � ���� and � � ����,
respectively
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From the equality
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it can be shown that
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Hence, (26) will hold if the following inequality is
satisfied for some positive definite matrices � , � , �
and matrix � satisfying
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then (16) and (17) will imply that (25) and (27) hold
for any constant time delay � satisfying � 
 � 
 � ,
respectively. Thus, the LMIs (16-17) will guarantees
the negativeness of �� ��� for any non-zero ���� � ��,
which immediately implies the robust stability of the
system (1). The proof is completed.

Remark 1. It is clear that for considered problem a
natural assumption is the asymptotical stability of the
uncertain system free of delay � � �:

����� � ����������
 (28)

This yields to a � � �� Hurwitz stable matrix for
���� as defined in (2).

It is interesting to observe that the new LMI condi-
tions: (16) and (17) do not exhibit the product �� �
���� and �� � ���

�����
����

� � �� � ���. In
this sense a new degree of freedom has been created,
which may be explored to provided a new robust sta-
bility. The following theorem generalizes the concept
of quadratic stability of uncertain systems with time-
delay(Boyd et al., 1994).

Theorem 2. Consider the system (1). Then given a
scalar � � �, the uncertain system (1) is robustly sta-
ble for any constant time delay � satisfying � 
 � 
 �

if there exist positive definite matrices �������
���
�,
�������
���
�, �������
���
�, matrices � and � such
that �
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where 	�� � ��������� ����	�� � ��������� .

Proof. By virtue of the properties of convex combina-
tion, and using the characterization (16) and (17), it is
easy to prove the uncertain system (1) is stable under
the conditions (31) and (30).

Based on the assumption that the time delay � is
constant but unknown, Theorem 3 establishes an LMI-
based stability condition for system (1). Now, we
come to consider the problem of determining the
upper bound for the time-delay � . Obviously, when
� is constant but unknown, (31) is nonlinear in � . Let
� � �

�
. Then, (31) can be rewritten as follows:
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Note that when using gevp of LMI toolbox to solve
the generalized eigenvalue problem (GEVP)
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the matrix ���� must be positive-definite. Thus, to
cast the problem of maximizing the time-delay � , i.e.,
minimizing �, into the framework of GEVP, let us
introduce some auxiliary matrices ��� � �, ��� � �
and rewrite (31) as follows:
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The optimization problem that determines the upper
bound of the delay can be formulated as:
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s.t. ����� ����� ����

Remark 2. The above optimization problem consists
of minimizing a generalized eigenvalue problem which
is a quasi-convex optimization problem. It is important
to notice that this algorithm can be numerically solved
with very efficient methods (Boyd et al., 1994).

The importance of the Theorem 2 is apparent. First it
generalizes the concept quadratic stability of uncertain
systems where a single couple of Lyapunov matrices
� and � are used, for example, the Lyapunov func-
tional
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However, as indicated in the proof of Theorem 1,
the stability of family of matrices
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��� 	���� ���� is
tested by the parameter dependent Lyapunov function
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where ���� � ���� �
� �
���

��������. In other words
our new stability condition includes as a particular
case the quadratic stability condition.

4. EXAMPLES

In this section, we shall illustrate the results by using
one example.

Example. Consider uncertain time-delay system (1)
with
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Note that the third vertex of the above uncertain sys-
tem has been considered in (de Souza and Li, 1999)
which is not asymptotically stable independent of the
size of the delay, i.e. the stability is delay-dependent.
Applying the method of (de Souza and Li, 1999), the
above uncertain system is robustly stable for any �

satisfying � 
 � 
 �
���. Based on our result, we
obtain that the uncertain system is robustly stable for
any � satisfying � 
 � 
 �
����. Hence , for this
example, the robust stability criterion of this paper
gives a less conservative result than that obtained by
the methods of (de Souza and Li, 1999).

5. CONCLUSION

In this paper, different techniques and tools for ro-
bust stability and control problems have been de-
veloped. A new robust stability criterion is provided
with parameter- as well as delay-dependent Lya-
punov functions when convex polytopic uncertainty is
present on the dynamic matrices. This work is based
on new robust stability condition which presents a
kind of separation between the Lypunov matrix and
the matrices of the dynamic model. When the time-
delay is assumed to be constant but unknown, the
robust delay-dependent stability problem are cast into
the framework of generalized eigenvalue problem and
thus the delay bound is provided by using the LMI
technique.
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