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Abstract: A modified predictor-corrector algorithm is presented. This algorithm
obtains a pre-specified point on the primal-dual central-path. It is shown to be
suitable for a recently proposed class of receding horizon control laws which include
a recentred barrier in the cost function. The significance of these controllers is that
hard constraints are replaced by penalty type soft constraints, which has the effect of
backing-off the control action near the constraint boundary. The class of controllers
is parameterised by a positive scalar with an associated unconstrained minimisation
problem. The solution to this problem for a fixed parameter value is given by the
corresponding point on the primal-dual central-path.
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1. INTRODUCTION

Model predictive control (MPC) requires the so-
lution of an optimisation problem at each time
interval. This determines a sequence of control
moves that steer the system state to some de-
sired set-point. An MPC strategy is often chosen
for its constraint handling capabilities. Recently,
interior-point methods have been proposed for
solving the associated constrained optimisation
problem (Rao et al., 1998; Wright, 1997; Hansson,
2000).

Wills and Heath (2002) have proposed a class
of receding horizon control laws which are based
on quite traditional interior-point methods. In
particular a recentred barrier function is used to
regulate points to lie inside the constraint set.
The significance of these controllers is that hard
constraints are replaced by penalty type soft con-
straints using a recentred barrier function. This
has the effect of backing-off the control action near
the constraint boundary. The extent to which this
backing-off occurs is determined by a weighting
parameter η. For each value of η there is an associ-
ated convex unconstrained minimisation problem;

the basic approach is to fix η, to say ηp, and solve
the corresponding problem at each time step.

In the case where ηp is sufficiently large the op-
timisation problem may be solved using simple
Newton iterations. However, when ηp is chosen
to be small, this approach may have poor nu-
merical properties. This phenomenon is common
to barrier methods for small values of weighting
parameter where the Hessian matrix becomes ill-
conditioned (Wright, 1992).

In this paper we present a predictor-corrector
algorithm that is suitable for any choice of pa-
rameter value. The algorithm terminates when
the iterates become sufficiently close to a pre-
specified point on the primal-dual central-path.
It is intended for (but not restricted to) the above
mentioned class of receding horizon controllers.

The paper structure is as follows. In section 2
we provide some notation and definitions relevant
to the above mentioned class of controllers. In
section 3 we provide a brief overview of stan-
dard conic quadratic form. In order to take ad-
vantage of primal-dual interior-point methods, we
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reformulate the ‘limiting case’ minimisation prob-
lem into conic form (Nesterov and Nemirovskii,
1994). We consider the plant to be represented by
a linear time-invariant discrete-time state-space
model with both linear and convex quadratic con-
straints. Furthermore, we make the usual assump-
tion that the finite receding horizon cost function
can be expressed as a convex quadratic function of
future inputs for a given system state. In this case,
we may represent the ‘limiting case’ optimisation
problem in standard conic quadratic form. In sec-
tion 4 we provide an algorithm which is primarily
based on §7 of (Nesterov and Todd, 1998). In
particular, we are interested in stopping at the
point on the primal-dual central-path which cor-
responds to the parameter value ηp. The resulting
point may then be used to obtain a solution to
the original minimisation problem. In section 5
we confirm that the solution obtained in section 4
indeed corresponds to the original problem posed
by Wills and Heath (2002). In section 6 we provide
a simple example simulation to help illustrate
these ideas. Section 7 concludes the paper.

2. RECENTRED BARRIER MPC

When designing a receding horizon controller, it
is customary to represent physical and imposed
constraints as a closed convex subset of a finite
dimensional real vector space (Mayne et al., 2000).
We may regulate points to lie inside this feasible
domain by including a barrier function with a fixed
weighting parameter ηp > 0 (see e.g. Fiacco and
McCormick, 1968). In this section we provide a
summary of relevant definitions and notation for
this approach.

For a finite dimensional real vector space Z = Rn,
let G denote the constraint set defined as,

G := {z ∈ Z : fi(z) ≤ 0 for i = 1, . . . ,M}, (1)

where z typically represents a stacked vector of
future input signals and each fi(z) is a convex
quadratic function, i.e. fi(z) may be expressed
as fi(z) = zT Aiz + bT

i z + ci with Ai positive
semi-definite and symmetric for i = 1, . . . ,M .
Furthermore, let G0 denote the interior of G. It
is assumed throughout this paper that G0 6= ∅,
and G is bounded. Let L(z) be the standard
logarithmic barrier function,

L(z) =

−
M∑
i=1

ln(−fi(z)) if z ∈ G0

∞ otherwise.

(2)

For a point zd ∈ G0, let Lzd
(z) denote the

recentred barrier function defined as,

Lzd
(z) = L(z) + bT

zd
z, bzd

=
M∑
i=1

1
fi(zd)

∇fi(zd).

(3)
The class of receding horizon optimisation prob-
lems may be expressed as,

(RHη) : min
z∈Z

{f̃0(z) + ηLzd
(z)}, (4)

where f̃0(z) = zT Ã0z + b̃T
0 z + c̃0 represents the

receding horizon cost function and η ∈ (0,∞).
The approach is to fix the value of η, to say
η = ηp > 0, and solve the corresponding un-
constrained minimisation problem (RHηp

). The
associated receding horizon control law is then
constructed in the standard manner by selecting
the first control move. This process is repeated at
each time interval.

By construction, the minimum of the recentred
barrier occurs at zd ∈ G0. This is an essential
characteristic for the class of receding horizon
controllers which are constructed from (RHη). It
means precisely that if the closed-loop system is
stable and zd is the desired steady-state set-point,
then the system will indeed converge to zd. This
property is not guaranteed with a more general
barrier (for example the logarithmic barrier) -
even with integral action.

For a fixed weighting parameter η = ηp > 0 and
a point zd ∈ G0, we find it convenient to express
(RHηp) as an instance of the following class of
optimisation problems,

(RCµ) : min
z∈Z

{f0(z) + µL(z)}, (5)

where µ ∈ (0,∞) and f0(z) is given by f0(z) =
zT A0z + bT

0 z + c0, with b0 = b̃0 + ηpbzd
, A0 = Ã0

and c0 = c̃0. Clearly, (RCµ) and (RHηp) are
equivalent when µ = ηp.

It is well known that in the limit as µ → 0, the
solution to (RCµ) tends to the solution of the fol-
lowing problem (see e.g. Fiacco and McCormick,
1968),

(C) : min f0(z) s.t. z ∈ G (6)

In the sequel we may refer to (C) as the ‘limiting-
case’ optimisation problem.

3. CONIC FORM

In order to take advantage of recent developments
in interior-point machinery, it is first necessary
to translate (C) into standard conic quadratic
form. Nesterov and Nemirovskii (1994) defined the
primal conic form as,

(P) : min 〈c, x〉 s.t. Ax = b, x ∈ K (7)

where K is a pointed convex cone with non-empty
interior. In particular, for the case of a single
convex quadratic constraint, the cone is given by
the n-dimensional second order cone defined as

K2
n := {x ∈ Rn : ‖x2:n‖22 ≤ x2

1}, (8)

where x2:n refers to the (n− 1) vector whose i’th
element is xi+1 for i = 1, . . . , n− 1. Moreover, for
the case of a single linear inequality constraint,
the cone is given by the non-negative half-axis
denoted R+. In what follows we will consider a
combination of K2

n and R+ to construct K.

The following, which is broadly based on §6.2 of



(Nesterov and Nemirovskii, 1994), demonstrates
how to convert (C) into standard conic form. Let
V = Rn+1 and let v = [t, zT ]T ∈ V . It is well
known that the solution set of (C) coincides with
the solution set of the following problem,

(CT ) : min t s.t. v ∈ Gt (9)

where Gt := {v ∈ V : gi(v) ≤ 0, for i =
0, . . . ,M} and g0(v) = f0(z)− t and gi(v) = fi(z)
for i = 1, . . . ,M . Note that each gi(v) may be
expressed as gi(v) = vT Āiv + b̄T

i v + ci, where Āi

and b̄i are augmented versions of Ai and bi that
cater for the extra variable t.

In order to express (CT ) in standard conic form,
it is first necessary to construct an affine mapping
for each constraint; such a mapping will be de-
noted by Bi. Without loss of generality, we assume
that the first p constraints are convex quadratic
and the remaining q constraints are linear. Using
an appropriate decomposition, let Āi = DT

i Di,
where Di is an ri × (n + 1) matrix and ri is the
rank of Āi. Note that since Āi is non-negative
definite and symmetric, such a decomposition al-
ways exists. For the first p constraints, we have
the following relation,

gi(v) ≤ 0 ⇔ Bi(v) ∈ K2
ri+2, (10)

where the affine mapping Bi(v) is given by,

Bi : V → Rri+2,Bi(v) = Biv + di (11)

with

Bi :=

−b̄T
i

2Di

b̄T
i

 and di :=

[1− ci

0
1 + ci

]
(12)

This relationship may be demonstrated as follows.
From the definition of K2

ri+2 and Bi(v) we have
that Bi(v) ∈ K2

ri+2 if and only if,

4(vT DT
i Div) + (1 + b̄T

i v + ci)2 ≤ (1− b̄T
i v − ci)2.

(13)
Since

(1+ b̄T
i v+ci)2−(1− b̄T

i v−ci)2 = 4b̄T
i v+4ci, (14)

then (13) becomes

vT Āiv + b̄T
i v + ci ≤ 0. (15)

For the q remaining linear constraints, we can
define the corresponding Bi(v) as follows,

Bi : V → R,Bi(v) = −b̄T
i v − ci (16)

Clearly in this case, gi(v) ≤ 0 ⇔ Bi(v) ∈ R+. Let
ri = −1 for the case of linear constraints.

Let Ki denote the i’th cone for i = 0, . . . ,M . We
may define the cone K and vector space X as

K :=
M∏
i=0

Ki and X :=
M∏
i=0

Rri+2. (17)

Furthermore, with a slight abuse of notation we
can define the mapping B(v) as

B : V → X, B(v) = [BT
0 (v), . . . ,BT

M (v)]T . (18)

Let r =
∑M

i=0(ri + 2). We may write B(v) in a
more convenient form as B(v) = Bv + d, where

B is the r × (n + 1) matrix formed by stacking
the M + 1 matrices Bi (where Bi = −b̄T

i in the
linear case), and d is the vector formed by stacking
the M +1 vectors di (where di = −ci in the linear
case). Therefore, v ∈ Gt if and only if Bv+d ∈ K.

Since B is an affine mapping, we may represent
the image of B as an affine hyperplane in X. We
make the usual assumption that B has full row-
rank. For the case where A0 is positive definite and
symmetric (this is common to receding-horizon
control), we construct the affine hyperplane as
follows: form the Cholesky factorisation of A0,
i.e. let A0 = CT

0 C0, where C0 is an upper tri-
angular matrix. Let C̄0 := [0 C0] be the matrix
constructed by augmenting a vector of zeros with
C0. It follows from the definition of g0(v) that
Ā0 = C̄T

0 C̄0 and b̄0 = [−1, bT
0 ]T . We may partition

B as follows,

B =
[
U
B̃

]
, U =

[
b̄T
0

2C̄0

]
, B̃ =


−b̄T

0
B1

...
BM

 (19)

Note that U is a full-rank upper triangular matrix.
Let A be the matrix given by A = [B̃U−1 − I]
and let b = Ad. Then x lies in the image of B
if and only if Ax = b, which is exactly the form
required in (P). It remains to find c such that
〈c, x〉 = t, in which case (CT ) would be equivalent
to (P). Form the QR factorisation of B, i.e. let
B = QR where Q is an r × (n + 1) matrix with
orthonormal columns and R is an (n+1)×(n+1)
upper triangular matrix. Then c may be given by
c := QR−1c′, where c′ = [1, 0, . . . , 0]T .

4. ALGORITHM

In this section we present a primal-dual algorithm
which terminates when the iterates become suffi-
ciently close to a pre-specified point on the cen-
tral path of (P). In particular, we are interested
in the point that corresponds to the parameter
value ηp. In this case, we may use the solution
generated by the algorithm to obtain a solution
to (RHη) for the chosen parameter value ηp. The
algorithm is based on a primal-dual predictor-
corrector method for self-scaled cones introduced
by Nesterov and Todd (1998).

We define the dual optimisation problem in the
standard manner as,

(D) : max
y∈Y

〈b, y〉 s.t. AT y+s = c, s ∈ K∗ (20)

where Y = Rr−n+1 and K∗ is the cone dual to K,
which in this paper is K itself. We may define the
combined primal-dual minimisation problem as,

(PD) : min {〈c, x〉 − 〈b, y〉} (21)
s.t Ax = b

AT y + s = c

x ∈ K, s ∈ K∗



We may define a barrier for the cone K as follows:
let x(i) ∈ Rri+2 denote the i’th ‘block vector’ of
x ∈ X for i = 0, . . . ,M . Then F (x) is given by,

F (x) = −
p−1∑
i=0

ln
(
xT (i)Qix(i)

)
−

M∑
i=p

ln(x(i)),

(22)
where Qi := diag(1,−1, . . . ,−1). Let F∗(s) denote
the dual barrier defined as,

F∗(s) = F (s) + p ln(4)− ν (23)

where ν = 2p + q. For feasible (x, s, y) we have
that 〈s, x〉 = 〈c, x〉 − 〈b, y〉. Then we may define a
perturbed problem for (PD) as,

(PDρ) : min
{

1
ρ
〈s, x〉+ F (x) + F∗(s)

}
(24)

s.t Ax = b, AT y + s = c

Let (x(ρ), s(ρ), y(ρ)) denote the solution to (PDρ).
Then the collection of points {(x(ρ), s(ρ), y(ρ)) :
ρ ∈ (0,∞)} defines the primal-dual central path
for (PD). Furthermore, for any ρ > 0, the follow-
ing relation holds (Nesterov and Todd, 1998),

s(ρ) = −ρ F ′(x(ρ)). (25)

To measure the ‘closeness’ of a primal-dual pair
(x, s, y) to a point on the central-path, we use the
functional proximity measure defined in (Nesterov
and Todd, 1998), where the particular point on
the central-path corresponds to the parameter
value given by ρ(x, s) := 1

ν 〈s, x〉.

For the case of linear and convex quadratic con-
straints, the functional proximity measure may be
expressed as,

γF (x, s) := F (x) + F (s) + ν ln(ρ(x, s)) + p ln(4)
(26)

We have by definition that K is a self-scaled cone
(Nesterov and Todd, 1994), and F (x) is a self-
scaled barrier for K. A remarkable property as-
sociated with self-scaled barriers is the existence
of a unique scaling point ω ∈ intK (where intK
refers to the interior of K) such that F ′′(ω)x = s
for x ∈ intK and s ∈ intK∗. For the case of
linear and convex quadratic constraints, the point
ω may be easily computed, e.g. see (Andersen
et al., 2000).

Solving the following set of linear equations is
integral to many feasible-start interior-point al-
gorithms,

F ′′(ω)dx

Adx

+ ds

ds + A∗dy

=
=
=

ζs + ξF ′(x)
0
0

(27)

where ζ and ξ are variables that change according
to the particular algorithm (and possibly at dif-
ferent stages in the algorithm).

Let F(β) denote the set of all strictly feasible
primal-dual points (x, s, y) such that γF (x, s) ≤ β
(see figure 1), compute the following:

Algorithm: Choose ε1 > 0, ε2 > 0, ∆ > 0
and β such that 0 < β < 1 − ln 2. Given a
positive weighting parameter ηp and a strictly
feasible initial primal-dual pair (x0, s0, y0) such
that γF (x0, s0) < β, we have the following,

While |ρ+
k − ηp| ≥ ε1 and (xk+1, sk+1, yk+1) ∈

F(ε2) then iterate the following:

(1) Let ρk = ρ(xk, sk) and ek = ρk − ηp.
(a) If ek > ε1 then obtain (dxk

, dsk
, dyk

) by
solving (27) with ζ = 1 and ξ = 0. Let
α∗k = 1− ηp

ρk
.

(b) If ek < −ε1 then obtain (dxk
, dsk

, dyk
) by

solving (27) with ζ = −1 and ξ = 0. Let
α∗k = 1 + ηp

ρk
.

(2) Form the ‘predictor’ point,

x+
k (α) = xk − αdxk

,

s+
k (α) = sk − αdsk

,

y+
k (α) = yk − αdyk

.

If (x+
k (α∗k), s+

k (α∗k), y+
k (α∗k)) is strictly fea-

sible and γF (x+
k (α∗k), s+

k (α∗k)) ≤ β + ∆
then let αk = α∗k and proceed to step
(3). Otherwise, find αk ∈ (0, α∗k) such that
(x+

k (αk), s+
k (αk), y+

k (αk)) is strictly feasible
and γF (x+

k (αk), s+
k (αk)) = β + ∆.

(3) Compute the new point (xk+1, sk+1, yk+1) by
using the Newton method defined in §5.2
of Nesterov and Todd (1998) starting from
(x+

k (αk), s+
k (αk), y+

k (αk)). Note that the cen-
tring direction can be found by solving (27)
with ζ = 1 and ξ = ρ+

k , where ρ+
k =

ρ(x+
k (αk), s+

k (αk)). If |ρ+
k − ηp| > ε1 then

terminate as soon as a point in F(β) is found.
Otherwise, terminate as soon as a point in
F(ε2) is found.

end.

For the case of ek > ε1 (Zone 2 in figure 1), then
the above algorithm takes predictor-corrector
steps in the usual fashion until the iterates be-
come sufficiently close to the desired point on the
central-path.

(β)

ηp

Fig. 1. This figure shows a conceptual view of the central
path. Zone 1 and 2 represent the regions where ρk −
ηp < −ε1 and ρk − ηp > ε1 respectively. The dashed
line passing through the central path represents the
level set where 〈s, x〉 = νηp. Furthermore, the dot-
dashed lines running along-side the central-path rep-
resent the neighbourhood such that γF (x, s) ≤ β.



The mechanism for ensuring that ρ(xk+1, sk+1)
does not go beyond ηp comes from the identity
(see §5.1 of Nesterov and Todd, 1998),

〈s+
k (α), x+

k (α)〉 = (1− α)〈sk, xk〉. (28)

Since we are trying to find (xk+1, sk+1, yk+1) such
that ρ(xk+1, sk+1) = ηp, then we may set the right
hand side of (28) to νηp and solve for α (this is
equivalent to α∗k from step (1a)).

In the event that an initial point has e0 < −ε1
(Zone 1 in figure 1), then the algorithm takes neg-
ative predictor steps and normal corrector steps
until the iterates become sufficiently close to the
desired point on the central-path. In this case the
first equation of (27) becomes,

F ′′(ωk)dxk
+ dsk

= −sk, (29)

and since s = [F ′′(ω)]−1x then the following
relation holds,

〈sk, dxk
〉+ 〈dsk

, xk〉 = −〈sk, xk〉, (30)

and therefore, 〈s+
k (α), x+

k (α)〉 = (1 + α)〈sk, xk〉
(since 〈dsk

, dxk
〉 = 0). Moreover, for α∗k defined in

step (1b) we have that ρ(xk+1, sk+1) = ηp.

In both cases, we are trying to find a primal-dual
pair such that |ρ(xk+1, sk+1)−ηp| ≤ ε1. Once this
is achieved, the algorithm enters a final corrector
stage to ensure the resulting pair is close to the
central-path (as determined by ε2).

To initialise the algorithm we propose the fol-
lowing approach: obtain a strictly feasible primal
point (this is usually a trivial task for receding
horizon control since the constraints are com-
monly related to physical phenomenon). Use the
initialisation method described in §9 of (Nesterov
and Todd, 1994) with a fixed weighting parameter
τ > 0, where τ should be chosen large enough
that convergence is rapid. At each iteration of
the method, construct s via the following projec-
tion: let y = [AA∗]−1A(c + τF ′(x)) and then let
s = c − A∗y. We have from equation (25) that
s → −τF ′(x) as x → x(τ), and therefore a strictly
feasible primal-dual pair may be obtained in this
manner.

Remark 4.1. In the case where constraints are of
a static nature, i.e. do not change with time, then
it suffices to compute, off-line, a point close to
the analytic centre of G and use primal steps
and the above projection to find a strictly feasible
primal-dual pair. This is the approach taken for
the simulations presented in section 6.

Remark 4.2. When implementing an interior-point
algorithm for receding-horizon control, care should
be taken to exploit any matrix sparseness and
problem structure. For the algorithm presented
above, it is necessary to reformulate the prob-
lem into conic quadratic form at each time step.
For the case of a linear plant model and convex
quadratic objective function, it is often the case
that only b0 changes between time intervals. In
this case, we may update the QR factorisation of

B via a single Givens rotation, and therefore c
may be obtained ‘cheaply’ (as long as we store
Q and R). Furthermore, A can also be obtained
‘cheaply’ by updating the first row of U−1 (which
corresponds to b̄0) via forward substitution.

5. CENTRAL PATH EQUIVALENCE

In this section we demonstrate that the solution
to (RHη), for some fixed parameter η = ηp > 0,
coincides with the point on the central path of (P)
(and therefore (PD)) corresponding to the same
parameter value ηp.

Let (CT σ) denote a perturbed problem for (CT )
given by,

(CT σ) : min
v∈V

{t + σH(v)} (31)

where H(v) is the standard logarithmic barrier for
the constraint set Gt. Let v(σ) denote the solution
to (CT σ); then the set of points {v(σ) : σ ∈ (0,∞)
defines the central path for (CT ). First, we show
that the solutions to (RCµ) and (CT σ) coincide
when σ = µ (independent of the last variable t).
The optimality condition for (RCµ) with z ∈ G0

can be expressed as

∇f̃0(z) + µ
M∑
i=1

1
−fi(z)

∇fi(z) = 0 (32)

Similarly, the optimality condition for (CT σ) with
v ∈ G0

t is [
0
1

]
+ σ

M∑
i=0

1
−gi(v)

∇gi(v) = 0 (33)

Using the definition of v and gi(.), we may express
(33) asσ′∇f0(z) + σ

M∑
i=1

1
−fi(z)

∇fi(z)

−σ′ − 1

 = 0 (34)

where σ′ = σ
t−f0(v) . From the last equation of (34)

we have that t − f0(z) = σ, and therefore (33)
is equivalent to (32) when σ = µ (independent
of the last variable t). Furthermore, in the case
where σ = ηp, the solutions to (RHηp

) and (CT ηp
)

coincide (independent of the last variable t).

It remains to verify that v(ηp) coincides with the
point on the central path of (P) corresponding to
the same parameter value ηp. Let (Pγ) denote a
perturbed problem for (P) defined as,

(Pγ) : min
x∈X

{〈c, x〉+ γF (x)} s.t. Ax = b (35)

Let x(γ) denote the solution to (Pγ); then the set
of points {x(γ) : γ ∈ (0,∞)} defines the primal
central path for (P). Indeed, from the definitions
of v, gi(v), B(v), H(v) and F (x) we have that
x(ηp) = B(v(ηp)).



6. SIMULATION

In this section we provide a simple example that
simultaneously illustrates the effect of different
choices of weighting parameter ηp and verifies the
algorithm in section 4. We are using the recen-
tred barrier function receding horizon controller
as defined in (Wills and Heath, 2002), and the
algorithm described in section 4 to solve the asso-
ciated optimisation problem at each time interval.
The plant model is given by,

xk+1 =
[
−0.3 −0.8
0.5 0

]
xk +

[
1
0

]
uk, yk = [0.5 0]xk

(36)

The input signal is constrained to lie within simple
bounds given by −1 ≤ uk ≤ 0.4. For a prediction
horizon of N = 10, we applied a step-disturbance
to the system and the results are illustrated in
figures 2 and 3. Note that the results here are
equivalent to those found in (Wills and Heath,
2002) where Newton steps are used.
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Fig. 2. Comparison of output signals for different values
of ηp.
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Fig. 3. Comparison of input signals for different values
of ηp. For ηp small, the input signal may travel
very close to the constraint boundary. But as ηp in-
creases, the control system penalises points near the
constraint boundary more heavily, hence the cautious
control trajectory observed for large values of ηp.

7. CONCLUSION

We have presented a modified primal-dual predictor-
corrector algorithm for the case of convex quadratic
cost with linear and convex quadratic constraints.
The objective of this algorithm is to find a point
sufficiently close to a particular point on the
primal-dual central path. The point of interest
corresponds to the fixed weighting parameter ηp >
0 which characterises the receding horizon con-
troller instance. In the case where only linear
constraints are present, then a similarly modi-
fied predictor-corrector method for mixed linear
complementarity problems may be more appro-
priate. Furthermore, the above algorithm can be
extended naturally to include the cone of positive
semi-definite matrices.

Acknowledgements. The Authors would like
to acknowledge the helpful comments made by
Katrina Lau and Minyue Fu.

References

E. Andersen, C. Roos, and T. Terlaky. On imple-
menting a primal-dual interiorpoint method for
conic quadratic optimization. In preparation,
2000.

A. V. Fiacco and G. P. McCormick. Nonlinear
Programming: Sequential Unconstrained Mini-
mization Techniques. John Wiley & Sons, 1968.

A. Hansson. A primal-dual interior-point method
for robust optimal control of linear discrete-
time systems. IEEE Transactions on Automatic
Control, 45(9):1639 –1655, September 2000.

D. Q. Mayne, J. B. Rawlings, C. V. Rao, and
P. O. M. Scokaert. Constrained model predic-
tive control: Stability and optimality. Automat-
ica, 36:789–814, 2000.

Y. Nesterov and A. Nemirovskii. Interior-point
Polynomial Algorithms in Convex Program-
ming. SIAM Philidelphia, 1994.

Y. E. Nesterov and M. J. Todd. Self-scaled cones
and interior-point methods in nonlinear pro-
gramming. Technical report, Ithaca, NY 14853–
3801, USA, 1994.

Y. E. Nesterov and M. J. Todd. Primal–dual
interior–point methods for self–scaled cones.
SIAM Journal on Optimization, 8:324–364,
1998.

C. V. Rao, S. J. Wright, and J. B. Rawlings.
Application of interior point methods to model
predictive control. Journal of Optimization
Theory and Applications, 99(3):723–757, 1998.

A. G. Wills and W. P. Heath. A recentred barrier
for constrained receding horizon control. To be
presented at ACC, Alaska, 2002.

M. H. Wright. Interior methods for constrained
optimization. In A. Iserles, editor, Acta Numer-
ica 1992, pages 341–407. Cambridge University
Press, New York, USA, 1992.

S. J. Wright. Applying new optimization algo-
rithms to model predictive control. Chemi-
cal Process Control-V, CACHE, AIChE Sym-
posium Series, 93(316):147–155, 1997.


