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Abstract:  In this paper, a global variable structure relay control scheme with finite time 
convergence is proposed for multi-link rigid robotic manipulator systems with uncertain dynamics. 
For general finite time variable structure controllers, the control signal may tend to infinity when the 
initial states of the system are in some specified areas, causing the singularity problem. This paper 
gives a design approach for finite time tracking control by using a relay control method so that the 
boundedness of the control signal is guaranteed and the singularity phenomenon is avoided.  
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1.INTRODUCTION 
 

Variable structure control approach has been widely 
used to deal with uncertain dynamical systems and  
successfully applied to the rigid robotic manipulator 
systems (Utkin, 1992; Zinober, 1990;Yeung and 
Chen, 1988; Slotine and Sastry,1983; Fu and Liao, 
1990; Young, 1988). In general, the design procedure 
of variable structure control is first to design a 
switching plane in which the error dynamics 
asymptotically converges to zero under the action of 
the given control. Since the switching plane usually 
is a linear one, the tracking error at most converges 
to zero exponentially. In practice, the finite time 
tracking of the target is required for the rigid robotic 
manipulators, i.e. the tracking error reaches zero in 
given finite time. To get fast tracking error 
convergence on the sliding mode, a terminal sliding 
mode control scheme has been proposed in (Wu et 
al.,1998; Wu et al. 2001; Yu et al.1999; Man and Yu,  
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1997) by employing a nonlinear switching surface, 
and a solution of the finite time tracking problem is 
derived. For multi-link rigid robotic manipulator 
systems with uncertainties, a robust MIMO terminal 
sliding mode control scheme has been developed in 
(Man et al., 1994) based on a nonlinear switching 
surface and the finite time convergence is reached by 
suitably designing the controller and the switching 
plane variables, and the output tracking error can 
then converge to zero in finite time on the terminal 
sliding mode. However, the control signal given in 
(Man et al., 1994) can only be guaranteed bounded 
on the terminal sliding mode surfaces. In transient 
process to the nonlinear switching surfaces, the 
singularity of the closed-loop systems may occur if 
the initial states of the error systems are in some 
specified areas, resulting in the unboundedness of 
the control law.  
 
In this paper, to avoid the singularity existed in the 
finite time control problem, a relay control approach 
is proposed for multi-link rigid robotic manipulator 
systems with uncertainties by using a two-phase 
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control scheme  in which a slow linear switching  
plane and a fast nonlinear switching surface are  
introduced. The use of the slow linear switching 
surface is to transfer the trajectories of the error 
dynamics to a specified open region constructed by 
a series of  manipulations as given in (Wu et al., 
1998) so that the trajectories in the region 
continuously move towards the fast nonlinear 
switching surface without incurring the singularity. 
Once the trajectory enters the region, the terminal 
sliding mode control is activated. We will show that 
the globally asymptotic stability of the closed-loop 
system is guaranteed, and the output tracking error 
can reach zero in finite time. The proposed finite 
time controller is robust in the system uncertainties. 
 

2.PROBLEM FORMULATION 
 

The dynamic equation of an n-joint robotic 
manipulator system can be described by the 
following form 

)()(),()( tuqGqqqFqqM =++ ���� � �����

where )(tq  is an n-order vector of joint angular 
positions, )(tu LV n-order vector of applied joint 
torques, )(qM LV nn×  symmetric positive 
definite inertia matrix, qqqF ��),( represents the 

1×n vector of coriolis and centrifugal torques, and 
)(qG LV WKH 1×n  vector of gravitational torques. 

Here qqtu �,),( is measurable respectively.  For 
system (2.1), the following assumptions are made: 
A1). There exists a known positive constant 

01 >a such that the minimum eigenvalue of 
1)( −qM satisfies 0])([ 1

1
min >≥− aqMλ . 

A2). An upper bound 02 >a  of 1)( −qM  is 
known.  
A3). ),,()(),( qqHqGqqqF ��� <+  ),( qqH � is a known 
continuous positive function. 
According to the practical robotic manipulators, the 
assumptions A1)-A3) are reasonable. In fact, much 
stronger conditions are required in literature Singh 
(1985), Grimm (1990), Leung et al. (1991)�  In 
order to design the variable structure relay 
controller to make the state qq �,  converge to the 
ideal reference state, for system (2.1), let 

.],[ TTT qqx �=  Then system (2.1) can be expressed 
by the following dynamics
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The reference model is chosen as 
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where matrices 1,, BQR are constant such that system 
(2.3) is stable. It is equivalent to the following 

).(1 trBqQRqq mmm ++= ���  
Here )(),(),( tqtqtr mm � are measurable vector signals. 
Define a tracking error as 
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From (2.2) and (2.3), we can get  
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In (Man et al., 1994), a finite time terminal sliding 
mode controller is proposed for a nonlinear 
uncertain system with a structure similar to (2.5). 
However, in the transient process to the nonlinear 
switching surface, if accidentally the initial values 
of the system state are in some specified region, the 
control signal may be unbounded, causing the 
system to be singular. In the following, we will give 
a variable structure relay control scheme to avoid 
the singular phenomenon. The scheme uses a two 
phase control: one phase is a pre-terminal sliding 
mode control that transfers the trajectory to a given 
open region in which the terminal sliding mode 
control is not singular. Inside the region, the other 
phase — the terminal sliding mode control takes 
place bringing the current state of the trajectory to 
the origin in finite time. 
 
For the above goal, let us construct an augmented 
linear system as

BvAzz +=� �����

where )(tv is to be determined in the sequel, and 



  

TTT ttz ])(,)([ ςς �= . From the definition of BA,  it 
is known that ),( BA  is completely controllable. 
Define 

)8.2(  ]))()((,))()([()()()( TTT tttttztet ςεςεη �� −−=−=

(2.5) and (2.8) gives rise to  

(2.9)      )](),,()()([)()( 1 tvrqqgtuqMBtAt −++= −
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Define again )(tv DV
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where ),( 0 fc ttG is the controllability grammian 

matrix of linear system (2.7) with the form 
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and )(),( 0 ftztz  are the initial state and final state 
respectively. The controllability means that the 
matrix ),( 0 fc ttG is nonsingular for all ft . Based 
on the knowledge of the linear system theory, under 
the control law )(tv given by (2.10), z(t) starting 
from arbitrary initial state vector )( 0tz is 
transferred to any preset final state )( ftz  in finite 
time ft . Let us consider (2.8) and (2.9). If the 
controller )(tu is designed to drive )(tη to tend to 
zero, i.e. there exists ft such that when ftt ≥ , 

0)()( ε<− tzte , 0)()( ε<− ff tzte        
where 0ε  is a sufficiently small, then )(te enters a 
open small region of )( ftz . In what follows, the 
first phase control to make the trajectory of (2.5) 
from any initial state reach a neighborhood of 

)( ftz  is firstly proposed. For this goal, define a 
slower switching plane as

(2.11)                     )()( iiiiiii cds ςεςε −+−= ��

where iiii dc,,ες  are components of 
)(tς , )(tε and positive constants respectively. Define 

T
nsssS ],...,,[ 211 = � ),,...,,( 21 ncccdiagC =

),...,,( 21 nddddiagD =
then we have 
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In order to make )(te  reach zero in finite time 
along a specified nonlinear surface so that the 
completely tracking of the output is realized, let us 
define a fast nonlinear switching surface as

qp
iiiii cds /*** εε += � ������

where **, iii dcε are components of )(tε  and 
positive constants, and qp,  are odd positive 
integers satisfying qp < .  Define 
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We now outline the main design steps of the 
variable structure relay controller.  

������ According to (2.9) and (2.11), design a variable 
structure control such that the trajectory of (2.5) 
enters a neighborhood of )( ftz  in a given finite 
time , i.e. )(tη  tends to a small neighborhood of 
the origin.  
 
2)� Design the finite time variable structure control 
such that the trajectory of the system (2.5) starting 
from a small neighborhood of )( ftz firstly reaches 
nonlinear switching surface ,0=is then moves to 
zero in finite time along this surface.  
 
Since any trajectory of (2.5) moves under the first 
variable structure control then continuously goes to 
zero in finite time with the other control law, this 
control scheme is called the variable structure relay 
control. 
 

3. CONTROLLER DESIGN 
 
Let us design the first phase controller for system 
(2.9) by using the linear switching function (2.11), 
which is given by 
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where 21 ,, δδβ are positive numbers to be 
determined. In what follows let us consider the 
closed-loop (2.9) and (3.1). Choose a candidate 
Lyapunov function as
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The time derivative of 1V along (2.9) and (3.1) is as 
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where ),(1 DQCDR +≥δ are chosen positive 

constants. For simplicity, let us select 
.0, >= × ddID nn  According to the control law (3.1) 

it can be obtained that 
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where ]1,max[ 22 ad>δ . If β  is chosen to satisfy 

11 >βαd ,substituting (3.5) into (3.4), we have 

111 SadV β−<� �3.6)

The Lyapunov function (3.3) together with 
inequality (3.6) guarantees that )(1 tS  tends to zero 
in finite time and the trajectories of the systems 
(2.5), (2.7) and (2.9) are restricted to move along 

01 =S . Therefore, on 01 =S , from (2.11)  we get 

)7.3())()(()()( 1
11
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By the definition of the matrix CD, , (3.7) implies 
that )()( tt ςε − tends to zero exponentially. 
Meanwhile (3.7) shows that )(1 tη  as well as 

)(2 tη  tends to zero exponentially under the 
condition 01 =S . This guarantees by (2.8) that 

)()( tzte −  enters a sufficiently small neighborhood 
of zero, i.e. for any 00 >ε , there exist 0>ft  
such that ftt > , 0)()( ε<− tzte . For any other 
solution )(te of (2.5) with different initial state 
from )(te , it can be obtained that )()( tzte −  

tends to zero exponentially. Then for 00 >ε , there 
exists ,0>t  when ,tt > 0)()( ε<− tzte . Without 
lose of generality, let tt f > , then 

0)()( ε<− ff tzte . From (Wu et al., 1998, 
Lemmas 3,4,5), it has been proved that one can 
always construct an open region Ω  such that  the 
control law )(tu and the trajectory maintains 
bounded when the trajectory continuously moves 
outside this region and reaches the fast nonlinear 
switching surface 02 =S . Because for the system 
(2.7), the first terminal )( ftz  can be selected 
arbitrarily, without loss of generality, let )( ftz  
belongs to Ω . As a special case, one can let 

.}0{)( 2 Ω∩=∈ Stz f . Since Ω  is an open set and 
)()( ff tzte −  can be make sufficiently small, 

)( fte  also belongs to Ω . 

For any solution )(te  of  (2.5), in the first phase   
control with the controller (3.1), after finite time 1T , 

01 =S is reached� By finite time 2T �

)()( 21 TTtte +≥ enters Ω . Once ,)( Ω∈te  the 
second phase controller is taken, i.e. the control law 
is switched to the terminal sliding mode controller 
with the form
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Let us analyze the closed-loop (2.5) and (3.8). The 
Lyapunov function 2V is taken as 

222 2

1
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then the time derivative of (3.10) along (2.5) and 
(3.8) is as 
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here without loss of generality choosing, ** ddi = , 

ni ,...,2,1=  (3.10) and (3.11) implies that )(2 tS  

tends to zero in finite time, i.e., )(te  reaches the 

fast nonlinear switching surface 02 =S in finite 

time. According to (2.12), on the surface 02 =S , it 

is obtained that 

)()()( /*1* tCDt qpεε −−=�            (3.12) 

where .],...,,[)( //
2

/
1

/ Tqp
n

qpqpqp t εεεε =  By means 
of the selection of the matrices ** , CD , since 

,qp <  the solution )(tε of (3.12) attained zero in 
finite time and continues to maintain zero forever. 
 
Summarizing the above analysis, we know that the 
trajectory of the system (2.5) experiences four 
moving paths from the starting point to the origin:  
 
1). Under the first phase variable structure control 
law (3.1), the dynamics of (2.9) is driven to the 
slower switching surface 01 =S in finite time 1T . 
 
2). On 01 =S , )()( tzte − tends to zero, i.e., )(te  
enters a sufficiently small neighborhood 0Ω of 

)( ftz  being included inside Ω  in finite time 2T . 
 
3). Once )(te  enters 0Ω , the control law is 
switched to variable structure controller (3.8) so that 

)(te  tends to 02 =S  in finite time 3T . 
 
4). Under the action of the controller (3.8), 

)(te continuously moves along 02 =S till 
converging to 0=e  in finite time 4T . Therefore, 
the finite time output tracking is realized. 

 
Since )(tε as well as )(tε�  goes to zero along 

02 =S  in finite time, )(te by the definition of (2.4) 
also tends to zero simultaneously in finite time. 
These guarantee that )(),( tqtq � are bounded so that 
all signals in closed loop of the systems are 
bounded. We summarize the above analysis in the 
following theorem. 
 
Theorem: For system (2.1) and the reference model 
(2.3), if the augmented linear system (2.7) is 
introduced, the first phase control law (3.1) and the 
variable structure controller (3.8) are applied, then 
the closed loop system is asymptotically stable, and 
the tracking error )(te reaches zero in finite time.   
 
Remarks: For the definition of the specified region 
Ω , one can refer to the method given in Wu et al. 
(1998). For simplicity, we may take )( ftz on the 
surface of 02 =S  such that )( fte  close to 

02 =S . Therefore, when )(te  continues to move 
towards 02 =S  under the second control law (3.8), 
the )(tu cannot goes to infinite so that the 
singularity does not occur.

  
The total time from the initial instant to the final 
time when 0)( =te is  

        4321 TTTTT +++=            (3.13) 

Now let us consider how to compute the finite time 
T . Firstly, according to (3.3) and (3.6), one can 
calculate 1T  which guarantees .01 =S  Secondly, 
since dynamics (3.7) is stable exponentially, 2T  
can be estimated to satisfy step (2).  As to 3T , it is 
determined by (3.10) and (3.11). Finally, 4T can be 
obtained by solving the equation (3.12). Therefore, 
an upper bound of the finite time guaranteeing the 
completely tracking has been estimated. 
 

����CONCLUSION 

 
In this paper, a design scheme of a variable 
structure relay controller guaranteeing the system 
global stability and finite time convergence has 
been proposed for the n-link rigid robotic 
manipulator systems with unknown parameters and 
uncertain dynamics. By introducing a two-phase 
control including a slow switching plane and a fast 
nonlinear switching surface and the relay method, 
singularity phenomenon usually associated with the 



  

finite time convergence is avoided in the sense that 
the control signal maintains bounded. The controller 
with finite time convergence is a kind of fast control 
with short transient time and can guarantee 
complete tracking. This is conformable to practical 
control objective of output tracking of rigid robotic 
manipulators, for instance, if it is asked that the 
robotic manipulator tracks a motion object in finite 
time, the performance with finite time convergence 
is obviously superior to the one with asymptotically 
stable. 
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