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Abstract:

In this paper, a globa variable structure relay control scheme with finite time

convergence is proposed for multi-link rigid robotic manipulator systems with uncertain dynamics.
For generd finite time variable structure controllers, the control signal may tend to infinity when the
initial states of the system are in some specified areas, causing the singularity problem. This paper
gives a design approach for finite time tracking control by using a relay control method so that the
boundedness of the control signal is guaranteed and the singularity phenomenon is avoided.

Keywords: Multi-link rigid robotic manipulator, Finite time convergence, Variable structure control.

LINTRODUCTION

Variable structure control approach has been widely
used to deal with uncertain dynamical systems and
successfully applied to the rigid robotic manipulator
systems (Utkin, 1992; Zinober, 1990;Yeung and
Chen, 1988; Slotine and Sastry,1983; Fu and Liao,
1990; Young, 1988). In generd, the design procedure
of variable dructure control is first to design a
switching plane in which the error dynamics
asymptotically converges to zero under the action of
the given control. Since the switching plane usually
is alinear one, the tracking error at most converges
to zero exponentialy. In practice, the finite time
tracking of the target is required for the rigid robotic
manipulators, i.e. the tracking error reaches zero in
given finite time. To get fast tracking error
convergence on the diding mode, a termina diding
mode control scheme has been proposed in (Wu et
al.,1998; Wu et al. 2001; Yu et a.1999; Man and Yu,
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1997) by employing a nonlinear switching surface,
and a solution of the finite time tracking problem is
derived. For multi-link rigid robotic manipulator
systems with uncertainties, a robust MIMO terminal
dliding mode control scheme has been developed in
(Man €t a., 1994) based on a nonlinear switching
surface and the finite time convergence is reached by
suitably designing the controller and the switching
plane variables, and the output tracking error can
then converge to zero in finite time on the termina
diding mode. However, the control signal given in
(Man et a., 1994) can only be guaranteed bounded
on the terminal diding mode surfaces. In transient
process to the nonlinear switching surfaces, the
singularity of the closed-loop systems may occur if
the initia states of the error systems are in some
specified areas, resulting in the unboundedness of
the control law.

In this paper, to avoid the singularity existed in the
finite time control problem, a relay control approach
is proposed for multi-link rigid robotic manipulator
systems with uncertainties by using a two-phase



control scheme inwhich adow linear switching

plane and a fast nonlinear switching surface are
introduced. The use of the dow linear switching
surface is to transfer the trgjectories of the error
dynamics to a specified open region constructed by
a series of manipulaions as given in (Wu et al.,
1998) so that the trgectories in the region
continuoudy move towards the fast nonlinear
switching surface without incurring the singularity.
Once the trgectory enters the region, the termina
sliding mode control is activated. We will show that
the globaly asymptotic stability of the closed-loop
system is guaranteed, and the output tracking error
can reach zero in finite time. The proposed finite
time controller is robust in the system uncertainties.

2.PROBLEM FORMULATION

The dynamic equation of an n-joint robotic
manipulator system can be described by the
following form

M (a)d+F(a,g)a+G(q) = u(t) 2.1
where q(t) is an n-order vector of joint angular
positions, u(t) is n-order vector of applied joint
torques, M(qg) is nxn symmetric positive
definite inertia matrix, F(q,q)q represents the
nx1lvector of coriolis and centrifugal torques, and
G(q) is the nx1 vector of gravitational torques.
Here u(t),q,q is measurable respectively. For
system (2.1), the following assumptions are made:
Al). There exists a known postive constant
a, >0 such that the minimum eigenvalue of
M (q) ‘satisfies A,;,[M(q)']1=a, >0.
A2). An upper bound a, >0 of | M(a)™ || is
known.
A3).|F(a,9)g+G(a)| <H(a,9),
continuous positive function.
According to the practicd robotic manipulators, the
assumptions Al1)-A3) are reasonable. In fact, much
stronger conditions are required in literature Singh
(1985), Grimm (1990), Leung et a. (1991). In
order to desgn the variable structure relay
controller to make the state g, g converge to the
ideal reference date, for system (2.1), let
x=[q",q"]". Then system (2.1) can be expressed
by the following dynamics

H (g, qg)is a known
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The reference model is chosen as

%mg—@ lQ%mD’f% O (OAAX, +B,r(t) (2.3

where matricesR,Q, B, are constant such that system
(2.3) isgtable. It is equivalent to the following

G = ROl + Q0 + Byr (1)
Here r(t),q,(t),q,,(t) are measurable vector signals.
Define atracking error as

£(t) = q(t) - an (H2e, (1), £(t) = q(t) - 4, (1) 2e, (1),
e(t) =[e)". e (2.4)

From (2.2) and (2.3), we can get
&t) = Ae(t) + BIM (q) "u() +9(a,6,1)]  (2.5)
where B=[0,1]",
9(a,4,r) =M (q) "[-F(q9,9)a-G(q)]
—Rg-Qq4-Byr(t) (2.6)

In (Man et al., 1994), afinite time termina diding
mode controller is proposed for a nonlinear
uncertain system with a structure similar to (2.5).
However, in the transient process to the nonlinear
switching surface, if accidentally the initial values
of the system state are in some specified region, the
control signal may be unbounded, causing the
system to be singular. In the following, we will give
a variable structure relay control scheme to avoid
the singular phenomenon. The scheme uses a two
phase control: one phase is a pre-termina dliding
mode control that transfers the trajectory to a given
open region in which the termina diding mode
control is not singular. Inside the region, the other
phase — the termina dliding mode control takes
place bringing the current state of the trajectory to
the origin in finite time.

For the above god, let us construct an augmented
linear system as

7= Az+Bv 2.7
where v(t) is to be determined in the sequel, and



z=[¢t)",¢(t)"]". From the definition of A B it
is known that (A, B) is completely controllable.
Define

n(t) =e(t) - z(t) =[(e) ~ ¢ ", O -¢W) 1" (2.9

(2.5) and (2.8) givesriseto

() = An(t) +BIM(q) u() +9(q.q.r) -v(t)] (2.9
Defineagain v(t) as

v(t) =BT Exp(—ATt)GgT (to.t ) exp(At,)z(t,)

—exp(—At,)z(t,), (2.10)

where G,(t,.t;) is the controllability grammian

matrix of linear system (2.7) with the form

t

Gulto,t,) = fexp(~ATIBD” exp(~A'T)dr
to

and z(t,),z(t,) aretheinitial state and fina Sate
respectively. The controllability means that the
matrix G, (t,,t;)is nonsingular for all t,. Based
on the knowledge of the linear system theory, under
the control law v(t) given by (2.10), z(t) starting
from arbitrary initia state vector z(t,) is
transferred to any preset find state z(t,) in finite
time t, . Let us consder (2.8) and (2.9). If the
controller u(t) is designed to drive n(t)to tend to
zero, i.e. thereexists t, suchthat when t>t,,
o)~ 2(t)| <20, Jelt;) -2t )| <&

where ¢, isasufficiently small, then e(t) entersa
open small region of z(t,). In what follows, the
first phase control to make the trajectory of (2.5)
from any initial state reach a neighborhood of
z(t,) is firstly proposed. For this goal, define a
slower switching plane as

s =d (& —¢)+eci(e —¢) (211)

where  ¢;,&,,¢ d ae components  of

¢(t), &(t) and positive constants respectively. Define
S, =[s,,S,,S,]", C=diag(c,,c,,....C,),
D =diag(d,,d,,...,d,)

then we have

$, =[C, DIn(t)ACn, +Dn,
In order to make et) reach zero in finite time
along a specified nonlinear surface so that the
completely tracking of the output is realized, let us
define afast nonlinear switching surface as

s =d/§ +cefe (2.12)
where ¢,,¢ d/ are components of &(t) and
positive constants, and p,gq are odd positive
integers satisfying p<q. Define

S, =[s,S,,.,S,]". D" =diag[d,,d,,...d;],
C’ =diag[c;,C;,..,C,] -
We now outline the main design steps of the
variable structure relay controller.

1). According to (2.9) and (2.11), design a variable
structure control such that the trgjectory of (2.5)
enters a neighborhood of z(t;) in a given finite
time , i.e. n(t) tends to a small neighborhood of
the origin.

2). Design the finite time variable structure control
such that the trgjectory of the system (2.5) starting
from a small neighborhood of z(t, ) firstly reaches
nonlinear switching surface s =0, then moves to

zero in finite time aong this surface.

Since any trgjectory of (2.5) moves under the first
variable structure control then continuoudy goes to
zero in finite time with the other control law, this
control scheme is caled the variable structure relay
control.

3. CONTROLLER DESIGN

Let us design the first phase controller for system
(2.9) by using the linear switching function (2.11),
which is given by

00 =22 o) ,u® =[0y,pu, T G
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p(t) =&,n ()] +3,[H (q,4) +|DRq|

3.2
+[|DQg| +|DB,r (t)]| +|[Dv(t)|+1 (32)

where ,9,,9, are positive numbers to be
determined. In what follows let us consider the
closed-loop (2.9) and (3.1). Choose a candidate
Lyapunov function as

v, :%sfsl (3.3)

The time derivative of V,aong (2.9) and (3.1) isas



V, = SIS, = S[C(¢ -¢)+D(-¢)] = S[C, DI
= ST[C, D][An(t) +B(M (q) *u(t)
+9(a,6,u,1) = ()]
= S/[(DR,C +DQ)n(t) + DM (o) u(t)
+Dg(q,4,t) = DV(1)]
<8,[S!ln@)] + S oM (@) *u(t)
+[s7[]om @7+ @ +[sifoRd]
+|DQa] +[PByr )]+ [PV (34)

where 3, =||(DR,C+DQ)| are chosen positive

constants. For sdmplicity, let wus select

D=dl,,,d>0. According to the control law (3.1)
it can be obtained that

- - 1
S DM (g) "u(t) = =S/ dM (a) " BS, Isl

<-dpa,[[S,[[o()

p(t)

=—dBay||S,|[3,[n (V)]
+0,(H(q,9) +|Rq]
+[Qe] +[Byr )] + v + 11,

[sT{llom @] @6+ s, lijoRd|

*+|ocd] + DB, )] + [Pty (3.5)

< 8, [Si[H (a. &) + | Ral|+ [Qal + [B.r )] + [vet)]
where d, >dmax[a,,]]. If B ischosento satisfy
dBa, >1,subgtituting (3.5) into (3.4), we have

V, <-dBa||s)| (3.6)

The Lyapunov function (3.3) together with
inequality (3.6) guaranteesthat S,(t) tendsto zero
in finite time and the trgjectories of the systems
(2.5), (2.7) and (2.9) are redtricted to move aong
S, =0. Therefore, on S, =0, from (2.11) we get

N, =£&(t)-¢(t) =-DC(e(t) - ¢(t)) =-D'Cn, (3.7)

By the definition of the matrix D,C, (3.7) implies
that e(t)—c¢(t) tends to zero exponentialy.
Meanwhile (3.7) shows that n,(t) as wdl as
n,(t) tends to zero exponentially under the
condition S, =0. This guarantees by (2.8) that
e(t) - z(t) enters a sufficiently small neighborhood
of zero, i.e. for any ¢, >0, there exist t; >0
such that t>t;, |e(t)-z(t)|<g,. For any other
solution g(t) of (2.5) with different initial state
from et), it can be obtained that [&(t) - z(t)|

tends to zero exponentially. Then for ¢, >0, there
exists £>0, when t>1, [(t) - z(t)| <&,. Without
lose of generdity, let t;>t , then
||é(tf)—z(tf)||<‘c:0 . From (Wu et a. 1998,
Lemmas 3,4,5), it has been proved that one can
always construct an open region Q such that the
control law u(t) and the trajectory maintains
bounded when the trgjectory continuoudy moves
outside this region and reaches the fast nonlinear
switching surfaceS, =0. Because for the system
(2.7), the first terminal z(t;) can be selected
arbitrarily, without loss of generaity, let z(t,)
belongs to Q. As a special case, one can let
Z(t;)O0{S, =0 n Q.. Since Q isan open set and
||e(tf)—z(tf)|| can be make sufficiently small,
e(t;) asobelongsto Q.

For any solution e(t) of (2.5), inthefirst phase

control with the controller (3.1), after finitetime T,
S =0 is reached. By finite time T, ,

et)(t=T,+T,) enters Q . Once et)0Q, the
second phase controller istaken, i.e. the control law
is switched to the termina dliding mode controller
with the form

u ) =-"—"-p"(t) (3.8)

where 8" is apositive number and p’ (t) isas

p ()=

c’ gdiag(si platys

+|D"diag(0, 1)[ Ae(t) ~Ra-Qa~Byr| (3.9)
+|D"diag(0,1)M (6) *|H (q, 6) +1

Let us analyze the closed-loop (2.5) and (3.8). The
Lyapunov function V, istaken as

Vv, = % S;S, (3.10)

then the time derivative of (3.10) aong (2.5) and
(3.8)isas



V, =SI$, =T & Pdiag(e, " )s + D
5 q u
=Tt Pdiag(e, )¢ + D" diag(0, 1)en
5 q u
-sT Epdiag(ei platyeDy STD diag(0, 1) Ae(t)
N u

+B(M () "u(t) +9(a,,r)]

<[s.|

c’ gdiag(si Platys

+[S,|[|D" diag(o, 1) Aet) - Ra-Qa - Byr |
+[s,[]|o" diag(0, 1M (&) *|H (a, ) = B"d" S} 0" (1)
< —ﬁ*d*"s; || (3.11)

here without loss of generality choosing, d; =d”,

i=12,..,n (3.10) and (3.11) implies that S, (t)
tends to zero in finite time, i.e.,, e(t) reaches the
fast nonlinear switching surface S, =0in finite
time. According to (2.12), on the surfaceS, =0, it
is obtained that

£(t)=—(D")C e (t) (3.12)

where £P'9(t) =[gf'?,e0'9,...,eP'9]". By means
of the selection of the matrices D',C", since
p<g, the solution &(t) of (3.12) attained zero in
finite time and continues to maintain zero forever.

Summarizing the above analysis, we know that the
trgectory of the system (2.5) experiences four
moving paths from the starting point to the origin:

1). Under the first phase variable structure control
law (3.1), the dynamics of (2.9) is driven to the
slower switching surface S, =0infinitetime T,.

2). On S, =0, et)-z(t)tends to zero, i.e, et)
enters a sufficiently small neighborhood Q, of
z(t;) beingincludedinside Q infinitetime T,.

3). Once et) enters Q,, the control law is
switched to variable structure controller (3.8) so that
gt) tendsto S, =0 infinitetime T,.

4). Under the action of the controller (3.8),
e(t) continuoudy moves adong S,=0 till
converging to e=0 in finite time T,. Therefore,
the finite time output tracking is realized.

Since £(t) as wdl as £(t) goes to zero aong
S, =0 infinitetime, e(t)by the definition of (2.4)
also tends to zero smultaneoudy in finite time.
These guarantee that q(t), g(t) are bounded so that
al signals in closed loop of the systems are
bounded. We summarize the above andysis in the
following theorem.

Theorem: For system (2.1) and the reference model
(2.3), if the augmented linear system (2.7) is
introduced, the first phase control law (3.1) and the
variable structure controller (3.8) are applied, then
the closed loop system is asymptotically stable, and
the tracking error e(t) reaches zero in finite time.

Remarks: For the definition of the specified region
Q, one can refer to the method given in Wu et d.
(1998). For simplicity, we may take z(t,)on the
surface of S,=0 such that et;) close to
S, =0. Therefore, when e(t) continues to move
towards S, =0 under the second control law (3.8),
the u(t) cannot goes to infinite so that the
singularity does not occur.

The total time from the initial instant to the final
timewhen et)=0is

T=T,+T,+T,+T, (3.13)
Now let us consider how to compute the finite time
T. Firdly, according to (3.3) and (3.6), one can
calculate T, which guarantees S, =0. Secondly,
since dynamics (3.7) is stable exponentiadly, T,
can be estimated to satisfy step (2). Asto T,,itis
determined by (3.10) and (3.11). Finally, T,can be
obtained by solving the equation (3.12). Therefore,
an upper bound of the finite time guaranteeing the
completely tracking has been estimated.

4.CONCLUSION

In this paper, a design scheme of a variable
structure relay controller guaranteeing the system
global stahility and finite time convergence has
been proposed for the n-link rigid robotic
manipulator systems with unknown parameters and
uncertain dynamics. By introducing a two-phase
control including a dow switching plane and a fast
nonlinear switching surface and the relay method,
singularity phenomenon usually associated with the



finite time convergence is avoided in the sense that
the control signal maintains bounded. The controller
with finite time convergence is akind of fast control
with short transient time and can guarantee
complete tracking. This is conformable to practical
control objective of output tracking of rigid robotic
manipulators, for instance, if it is asked that the
robotic manipulator tracks a motion object in finite
time, the performance with finite time convergence
is obvioudy superior to the one with asymptotically
stable.
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