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Abstract: The problem of H∞ output feedback for uncertain linear discrete-time systems 
with state-delay and parameter uncertainties is considered. The objective is to design a 
linear output feedback controller such that, for the unknown state time-delay and all 
admissible norm-bounded parameter uncertainties, the feedback system remains robustly 
stable and the transfer function from the exogenous disturbances to the state-error outputs 
meets the prescribed H∞ norm upper-bound constraint. The delay-independent output 
feedback does not depend on the uncertainties. The conditions for the existence of the 
robust H∞ output feedback controller and its analytical expression is then characterized in 
terms of Riccati-type equations. Copyright © 2002 IFAC 
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1. INTRODUCTION 
 
In recent years, much work has been put into the 
analysis and synthesis of controllers for state-delayed 
systems with norm-bounded parametric uncertainties 
(Choi and Chung, 1997; Jeung, et al., 1996; Li and 
De Souza, 1997; Song and Kim, 1998). This interest 
arises from the fact that delays and uncertainties are 
the two most important causes of instability. 
Furthermore, delays and uncertainties are typical in 
the process industry, which motivates the study of 
new stability conditions and the synthesis of high 
performance controllers. Most work has been 
directed towards the study of state feedback 
controller design (Fridman and Shaked, 1998; Ge, et 
al., 1996; Yaesh, et al., 1999), and state observer 

design (De Souza, et al., 1999; Trinh and Aldeen, 
1997; Wang, et al., 1999), as separate issues. Very 
little effort has so far been put into the design and 
analysis of systems using output feedback with time-
delays. In Yao, et al. (1997), both the observer and 
controller designs are treated as separate issues. The 
output feedback problem is however of the greatest 
practical relevance as usually the states of the system 
are not directly available to measurement. Also, the 
output feedback control case needs special attention 
when uncertainties are present, as for the general 
form of uncertainties, the separation principle does 
not hold and the observer design is no longer the dual 
of the control design. Most of the previous work 
involving output feedback is concerned with the 
continuous-time systems. Very little attention has 
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been giving to the discrete-time case. In Wang, et al. 
(1999), a discrete-time observer for state-delayed 
systems with parametric uncertainties has been 
developed. In this context, the contribution of this 
paper is the development of a robust H∞ output 
feedback controller which complements the observer 
design of Wang, et al. (1999), in a way to maintain 
robust stability of the combined system. 
Furthermore, uncertainty in the delayed state matrix 
is taken into account as an improvement over the 
observer design in Wang, et al. (1999). 
 
More specifically, the output feedback problem 
addressed in this paper aims at designing observer 
and controller gains such that, for all admissible 
parameter uncertainties, the output feedback system 
remains robustly stable and the transfer function 
from the exogenous disturbances to the state error 
output meets a prescribed H∞  -norm upper bound 
constraint, independently of the unknown time delay. 
The parameter uncertainties are allowed to be norm-
bounded and appear in the state and the output 
matrices, and may be time-varying. A simple 
algebraic parameterized approach is exploited, which 
enables to derive the existence conditions for the 
observer and controller gains, and to characterize the 
set of  robust H∞  output feedback controllers in 
terms of several free design parameters. These free 
parameters, that appear in the observer and controller 
gains, offer additional design freedom and can be 
utilized to account for supplementary performance 
constraints. 
 
The design formulation of the H∞  output feedback 
control problem requires the solution of two Riccati 
matrix equalities. As shown elsewhere, see (Haurani, 
et al., 2001), the numerical solutions to these Riccati-
type equations are easiest obtained by solving two 
auxiliary Riccati-type inequalities. 

 
 

2. PROBLEM STATEMENT 
 
Consider the following linear uncertain discrete-time 
state delayed system: 

( ) ( ) ( ) ( ) ( )1k k k d+ = + + + −d dx A ∆A x A ∆A x          

                 ( ) ( )k k+ + 1Bu D w                                 (1) 

with the measurement equation 

( ) ( ) ( ) ( )k k k= + + 2y C ∆C x D w                            (2) 

where ( ) nk R∈x  is the state, ( ) qk R∈u  is the input 

to the plant, ( ) rk R∈w  is the square-integrable 

exogenous disturbance, ( ) pk R∈y  is the system 

output. The matrices  ,  ,  ,  ,  d 1A A B D C  and 2D  are 

assumed to be known and constant and of 

appropriate dimensions. The positive integer variable 
d  denotes the unknown state delay. Here ,  b∆A ∆A  

and ∆C  are real-valued matrix functions 
representing the norm-bounded parameter 
uncertainties and are assumed to be of the following 
form:  

  
=   

   
1

1
2

M∆A
FN

M∆C
,           =d 1 2∆A M FN              (3) 

where i jR ×∈F  , which may be time-varying, is a 
real uncertain matrix with Lebesgue measurable 
elements and which meets the requirement that 

T ≤FF I . The matrices , ,  1 2 1M  M N  and 2N  are 

known, real and constant and characterize the way in 
which the uncertain parameters of F  enter the 
nominal matrices ,  dA A  and C .  

 
The following assumption is needed for the 
subsequent development: 
Assumption 1. The matrix 2D  or 2M  is of full rank. 

 
In the discrete-time case, the full order linear state 
observer, as proposed in Wang, et al. (1999), is of 
the form: 

( ) ( ) ( ) ( )ˆ ˆ ˆ1k k k d k+ = + − +d ox Gx A x K y    

                 ( )k+ Bu                                                 (4) 

The controller to be designed will be assumed linear, 
delay-free and of the form: 

( ) ( )ˆk k= cu K x                                                        (5)

where G  and oK  are the observer gains and cK  is 

the controller gain to be determined. 
Defining the state error ( ) ( ) ( )ˆk k k= −e x x , it then 

follows from (1), (2), (4) and (5) that 

( ) ( ) ( )( ) ( )1k k k+ = + + − + −oe Ge A ∆A K C ∆C G x

                 ( ) ( )k d k d+ − + −d dA e ∆A x                                                

                 ( ) ( )k+ −1 o 2D K D w                              (6) 

Let ( )kz  then be the state-error output, which is 

assumed to be given by: 

( ) ( )k k=z Le                                                          (7) 

where m nR ×∈L  is a given constant matrix. Defining 

( ) ( )
( )
k

k
k

 
=  
 

f

x
x

e
,                                                     (8)       

+ − 
=  − − 

c c
f

o

A BK BK
A

A K C G G
,

 
=  
 

d
df

d

A 0
A

0 A
  (9) 

 
=  − 

1
f

1 0 2

M
M

M K M
,        [ ]=f 1N N 0             (10) 

 
=  
 

1
df

1

M
M

M
,                   [ ]=df 2N N 0             (11) 



  

=f f f∆A M FN ,             =df df df∆A M FN            (12) 

 
=  − 

1
f

1 o 2

D
D

D K D
,           [ ]=fC 0 L               (13) 

and combining (1), (2), (3), (5) and (6), the following 
augmented system is easily obtained: 

( ) ( ) ( ) ( ) ( )1k k k d+ = + + + −f f f f df df fx A ∆A x A ∆A x

                  ( )k+ fD w                                            (14) 

( ) ( )k k= f fz C x                                                     (15) 

The transfer function from the disturbance ( )kw  to 

the state-error output ( )kz  is thus given by: 

( ) ( ) ( ) 1dz z z
−− = − + − + zw f f f df dfH C I A ∆A A ∆A                                                                                                    

                 × fD                                                       (16) 

The objective of this paper is to design the 
parameters G , oK  and cK , such that for all 

admissible parameters uncertainties ∆A , d∆A  and 

∆C , the augmented system (14) and (15) is 
asymptotically stable and the following upper-bound 
constraint on the H∞ norm of ( )zzwH  is 

simultaneously guaranteed: 

( )z γ
∞

≤zwH ,                                                     (17) 

for all positive integer time-delay values d R+∈ , 
and all uncertainties (3), where 

( ) [ ] ( )max0,2
jz Sup e θ

θ π σ∈∞
 =  zw zwH H  and  

[ ]maxσ H  denotes the largest singular value of [ ]H ,  

and 1γ <  is a given positive constant.  

 
 

3. MAIN RESULTS 
 
The following lemma will play a key role in 
designing the robust H∞  output feedback controller 
for the uncertain linear discrete-time state delayed 
system (1) and (2). 
Lemma 1. If there exist a positive-definite matrix P  
and positive scalars 1 0ε > , 2 0ε >  and 3 0ε >  such 

that the following inequalities, 
1 2

1 2
T T Tγ ε ε− −− − −f f df df f fP C C A A N N                                                         

                                          3 0Tε− >df dfN N            (18) 

( ) 11 2
1 2 3

T T T Tγ ε ε ε
−− −− − − −f f f df df f f df dfA P C C A A N N N N

        1 1
1 2

T T Tε ε− −× − + + +f f f f fA P D D I M M  

                                          1
3 0Tε −+ <df dfM M         (19) 

hold, then the augmented system (14) and (15) is 
asymptotically stable and meets the specified H∞ 

norm upper-bound constraint ( )z γ
∞

≤zwH , 

independent of the positive integer state time-delay 
d .  
Proof. It is easy to see that the system (14), (15) is 
asymptotically stable if and only if the following 
auxiliary system is asymptotically stable: 

( ) ( ) ( ) ( )1
T Tk k k d+ = + + −f f f f df fy A ∆A y A y                                          

                   ( )T k+ f 1C w                                         (20) 

( ) ( )Tk k=1 f fz D y                                                  (21) 

where the state ( ) 2nk R∈fy , the disturbance input 

( ) mk R∈1w , the system output ( ) rk R∈1z , and the 

transfer functions of the systems (14),(15) and (20)
,(21) have the same H∞ -norm values. Then, based on 
the auxiliary system (20),(21), the proof of this 
lemma is completely similar to that of Theorem 2 in 
Song and Kim (1998) and is thus omitted.          QED  
 
For the sake of simplicity, the following definitions  
are introduced prior to stating the main results of the 
paper : 

( ) 11
1 2 3

T T Tε ε ε
−− − − −1 1 d d 1 1 2 2Φ P A A N N N N          (22) 

( ) 1-1 2
1

T Tγ ε
−−− −2 2 d dΦ P L L A A                           (23) 

( ) 1−− +1 2 1 2Γ AΦ Φ Φ  

    ( ) ( )( )1-1 -1 1 1
2 3

T T Tε ε
− − −+ + + + +1 2 1 1 1 1A Φ Φ A D D M M      

    ( ) ( ) 1/ 2T− −× +c c 1 2E U Φ Φ                                  (24) 

where n nR ×∈cE  is an invertible matrix and 
n nR ×∈cU  is an arbitrary chosen orthogonal matrix 

( )T =c cU U I .                    

+ 1A A Γ                                                            (25) 

( ) 1−− +2 2 1 2Γ CΦ Φ Φ  

         ( )( )11 1 1
2

T T Tε
−− − −+ + + +1 2 2 1 2 1C Φ Φ A D D M M     

         ( ) ( ) 1/ 2T− −× +c c 1 2E U Φ Φ                             (26) 

+ 2C C Γ                                                             (27) 

1 2 3
T T Tε ε ε+ +1 d d 1 1 2 2Θ A A N N N N ,                                  

                        2
1

T Tγ ε− +2 d dΘ L L A A                  (28) 

+c 1 2R Φ Φ ,            T−c 1S Φ A                      (29)                               
1

2
T T T Tε −+ + +o 2 1 2 2 2 2 2 2R Γ Φ Γ CΦ C D D M M        (30) 

1
2

T T T Tε −+ + +o 2 1 1 2 2 1 2 1S Γ Φ Γ CΦ A D D M M        (31) 

( ) 11/ 2 1/ 2 1/ 2 1/ 2T T−
+ −1 1 1 1 1 1 1 1 1Ω AP A AP Θ I Θ P Θ Θ P A              

         ( )1 1
2 3

T Tε ε− −− + + +1 1 1 1 1P D D M M    

         1 1
1

T ε− −− +c c cS R S I                                           (32)       

( ) 11/ 2 1/ 2 1/ 2 1/ 2T T−
+ −2 2 2 2 1 2 2 2 2Ω AP A AP Θ I Θ P Θ Θ P A          



  

         ( )1 1
2 3

T T Tε ε− −− + + + +2 1 1 1 1 1 1 1P Γ Φ Γ D D M M    

         1 1
1

T ε− −− +o o oS R S I                                           (33) 

 
The following theorem provides the theoretical basis 
for achieving the desired design goal. 
 
Theorem 1. Let 1 0δ >  and 2 0δ >  be sufficiently 

small numbers, and let the matrices 1Φ , A , 1Θ , 

2Θ , 1Γ , cS , cR , oS  and oR be defined as in  (22)-

(31). Suppose there exist positive scalars 1ε , 2ε  and 

3ε , an invertible matrix n nR ×∈cE , and a matrix 
n pR ×∈oE  such that the following Riccati-type 

matrix equations 

( ) 11/ 2 1/ 2 1/ 2 1/ 2T T−
− + −1 1 1 1 1 1 1 1 1AP A P APΘ I Θ PΘ Θ P A  

            ( )1 1 1
2 3

T T Tε ε− − −+ + + −1 1 1 1 c c cD D M M S R S   

            ( )1
1 1

T ε δ−+ + + =c cE E I 0                            (34) 

( ) 11/ 2 1/ 2 1/ 2 1/ 2T T−
− + −2 2 2 2 1 2 2 2 2AP A P AP Θ I Θ P Θ Θ P A  

       ( )1 1 1
2 3

T T T Tε ε− − −+ + + + −1 1 1 1 1 1 1 o o oΓ Φ Γ D D M M S R S      

       ( )1
1 2

T ε δ−+ + + =ο οΕ Ε I 0                                (35) 

along side  with the corresponding  matrix inequality 
constraints 

1
1 2 3 0T T Tε ε ε− − − − >1 d d 1 1 2 2P A A N N N N                  (36) 

1 2
1 0T Tγ ε− −− − >2 d dP L L A A                                   (37) 

have symmetric positive-definite solutions 1P  and 2P  

respectively. 
Under these conditions, if G , oK  and cK  are gain 

matrices which for some chosen orthogonal matrices 
n nR ×∈cU ( T =c cU U I ) and p pR ×∈oU ( T =o oU U I ), 

satisfy:                             
1 1/ 2T − −= +c c c c c cBK S R E U R                                    (38) 

1 1/ 2T − −= +o o o o o oK S R E U R ,                                     (39) 

= − oG A K C                                                        (40) 

then the resulting output feedback system using G , 

oK  and cK  will  be such that, for all admissible 

parameter uncertainties ∆A , d∆A  and ∆C , and for 

all positive integer time-delay values d , 
(1) the augmented state-delayed system (14) 

and (15)  is asymptotically stable. 

(2) ( )z γ
∞

≤zwH . 

Proof. By virtue of Lemma 1, the validity of (18) and 
(19) needs to be shown. To this end, defining, 

0
 

> 
 

1

2

P 0
P

0 P
                                                 (41) 

and considering the definitions (9)-(13) and (22)-(31)
, it is easy to see that inequality (18) follows from 

inequalities (36) and (37). Also, for simplicity of 
notation, define the left-hand side of (19) by Σ , 
where 

 
 
 

11 12
T
12 22

Σ Σ
Σ

Σ Σ
                                                   (42) 

Substituting (41) yields:  

( ) ( ) ( )T T= + + +11 c 1 c c 2 cΣ A BK Φ A BK BK Φ BK  

         ( )1 1 1
1 2 3

T Tε ε ε− − −− + + + +1 1 1 1 1P D D I M M         (43) 

( ) ( )T T= + − − −12 c 1 o c 2Σ A BK Φ A K C G BK Φ G  

         ( ) ( )1
2

T Tε −+ − + −1 1 o 2 1 1 o 2D D K D M M K M            

         1
3

Tε −+ 1 1M M                                                   (44) 

( ) ( )T T= − − − − +22 o 1 o 2Σ A K C G Φ A K C G GΦ G
      

 

         ( )( )T− + − −2 1 o 2 1 o 2P D K D D K D  

         ( )( )1
2

Tε −+ − −1 o 2 1 o 2M K M M K M        

         1 1
3 1

Tε ε− −+ +1 1M M I                                         (45) 

It follows from the matrix inversion Lemma,            

( ) 11 −−− =11 12 22 21A A A A  

               ( ) 11 1 1 1−− − − −+ −11 11 12 22 21 11 12 21 11A A A A A A A A A  

and the definitions of 1Θ  and 2Θ  given in (28), that 

( ) 11/ 2 1/ 2 1/ 2 1/ 2
1

−
= + −1 1 1 1 1 1 1 1Φ P P Θ I Θ P Θ Θ P            (46) 

( ) 11/ 2 1/ 2 1/ 2 1/ 2−
= + −2 2 2 2 2 2 2 2 2Φ P P Θ I Θ P Θ Θ P            (47) 

Re-writing 11Σ  as,  

( )( ) ( )T T= + +11 c 1 2 c c 1Σ BK Φ Φ BK BK Φ A  

          ( )T T T+ + − +1 c 1 1 1 1AΦ BK AΦ A P D D  

          ( )1 1 1
1 2 3

Tε ε ε− − −+ + + 1 1I M M  

and using the definitions of cR  and cS  in (29), while 

noting that cR  is invertible because 1Φ  and 2Φ  are 

positive-definite (due to (36) and (37)), 

( )( )1/ 2 1/ 2 1/ 2 1/ 2 TT T− −= − −11 c c c c c c c cΣ BK R S R BK R S R   

         1T T T−− + − +c c c 1 1 1 1S R S AΦ A P D D  

         ( )1 1 1
1 2 3

Tε ε ε− − −+ + + 1 1I M M  

Using the definition of cBK  in (38), 

( )1 1 1
1 2 3

T T Tε ε ε− − −= − + + + +11 1 1 1 1 1 1Σ AΦ A P D D I M M  

          1T T−− +c c c c cS R S E E  

so that by (46), 

( ) 11/ 2 1/ 2 1/ 2 1/ 2T T−
= + −11 1 1 1 1 1 1 1 1Σ AP A APΘ I Θ PΘ Θ P A  

          ( )1 1 1
1 2 3

T Tε ε ε− − −− + + + +1 1 1 1 1P D D I M M  

          1T T−− +c c c c cS R S E E  

From (34), 1 0δ= − <11Σ I . 



  

Similarly, 22Σ  of (45) can be re-written as, 

( ) ( )T
= − − + − − +22 o o 1 o oΣ A K C A K C Φ A K C A K C

          ( ) ( )T
+ − −o 2 oA K C Φ A K C  

          ( )( )T+ − −1 o 2 1 o 2D K D D K D  

          ( )( )1 1
1 2

Tε ε− −− + + − −2 1 o 2 1 o 2P I M K M M K M   

          1
3

Tε −+ 1 1Μ Μ  

where G  has been replaced by its expression (40). 
Grouping the terms with respect to oK , 

1
2

T T T T Tε − = + + + 22 o 2 1 2 2 2 2 2 2 oΣ K Γ Φ Γ CΦ C D D M M K

         1
2

T T T Tε − − + + + o 2 1 1 2 2 1 2 1K Γ Φ Γ CΦ A D D M M  

        1
2

TT T T T Tε − − + + + 2 1 1 2 2 1 2 1 oΓ Φ Γ CΦ A D D M M K  

        T T T+ + − +1 1 1 2 2 1 1Γ Φ Γ AΦ A P D D  

        ( )1 1 1
2 3 1

Tε ε ε− − −+ + +1 1M M I  

From (30) and (31),  
T T T T T= − − + +22 o o o o o o o 1 1 1 2Σ K R K K S S K Γ Φ Γ AΦ A  

          ( )1 1 1
2 3 1

T Tε ε ε− − −− + + + +2 1 1 1 1P D D M M I  

Assumption 1 implies that the matrix oR  defined in 

(30) is positive-definite and hence invertible, thus  

( )( )1/ 2 1/ 2 1/ 2 1/ 2 TT T− −= − −22 o o o o o o o oΣ K R S R K R S R              

          1T T T T−− + + − +o o o 1 1 1 2 2 1 1S R S Γ Φ Γ AΦ A P D D  

          ( )1 1 1
2 3 1

Tε ε ε− − −+ + +1 1M M I  

From (39) for oK ,  
T T T= − + +22 2 2 1 1 1 1 1Σ AΦ A P Γ Φ Γ D D              

          ( )1 1 1 1
2 3 1

T T Tε ε ε− − − −+ + − + +1 1 o o o oM M S R S E E I        

and by (47), 

( ) 11/ 2 1/ 2 1/ 2 1/ 2T T−
= + −22 2 2 2 1 2 2 2 2Σ AP A AP Θ I Θ P Θ Θ P A              

        ( )1 1
2 3

T T Tε ε− −− + + + +2 1 1 1 1 1 1 1P Γ Φ Γ D D M M  

        1 1
1

T T ε− −− + +o o o oS R S E E I  

From (35), 2 0δ= − <22Σ I . 

Finally,  

( ) ( )T T= + − − −12 c 1 o c 2Σ A BK Φ A K C G BK Φ G  

         ( ) ( )1
2

T Tε −+ − + −1 1 o 2 1 1 o 2D D K D M M K M  

         1
3

Tε −+ 1 1M M  

Grouping the terms with respect to TG , 

( ) T= − + +12 1 c 1 c 2Σ AΦ BK Φ BK Φ G  

          ( ) ( )T T+ − + −1 o c 1 oAΦ A K C BK Φ A K C  

          ( ) ( )1
2

T Tε −+ − + −1 1 o 2 1 1 o 2D D K D M M K M  

          1
3

Tε −+ 1 1M M  

Replacing cBK  by it expression (38) and grouping 

the terms with respect to oK ,  

( )1/ 2 T= − +12 c c 1 2Σ E U Φ Φ G  

          ( ) 1 T T−+ + − 1 1 2 1 1AΦ Φ Φ Φ C AΦ C      

( ) 1/ 2 1
2

T T T Tε− − − + − − c c 1 2 1 1 2 1 2 oE U Φ Φ Φ C D D M M K  

          ( ) 1T T−+ − +1 1 1 2 1AΦ A AΦ Φ Φ Φ A    

          ( ) 1/ 2 T T−+ + +c c 1 2 1 1 1E U Φ Φ Φ A D D  

          ( )1 1
2 3

Tε ε− −+ + 1 1M M  

Noting that ( ) ( ) 11 1 1 1 1−− − − − −+ = +1 2 2 1 2 1Φ Φ Φ Φ Φ Φ  

( ) 11 1 1 1 1−− − − − −= − +1 1 1 2 1Φ Φ Φ Φ Φ , the following is 

obtained: 

( )1/ 2 T= − +12 c c 1 2Σ E U Φ Φ G  

    ( ) ( )1 1/ 21 1 T T− −− −− + + + 1 2 c c 1 2 1A Φ Φ C E U Φ Φ Φ C   

       1
2

T T Tε − + + 1 2 1 2 oD D M M K  

      ( ) ( )1 1/ 21 1 T T− −− −+ + + +1 2 c c 1 2 1A Φ Φ A E U Φ Φ Φ A  

      ( )1 1
2 3

T Tε ε− −+ + +1 1 1 1D D M M  

Replacing G , A  and C  by their expressions in (40)
, (25) and (27) respectively and subsequently 1Γ  and 

2Γ  by their expressions in (24) and (26) 

respectively, it then implies that =12Σ 0  and so, 

0
 

= < 
 

11

22

Σ 0
Σ

0 Σ
,                                             (48) 

as 0<11Σ  and 0<22Σ  as shown above. By virtue 

of Lemma 1, the output feedback system (14) and 
(15) is robustly asymptotically stable and 

( )z γ
∞

≤zwH  for all values of positive integer 

time-delay d , and all uncertainties (3).              QED 
 
Remark 1. It is important to point out that, as 
opposed to the observer design case procedure of 
Wang, et al. (1999), the output feedback design 
procedure proposed in this paper applies to systems 
which can be open loop unstable. For the observer 
design alone, i.e. when =cK 0 , the Riccati equation 

(34) is solvable in terms of a positive-definite matrix 

1P  only if A  is stable, see (Wang, et al., 1999) to 

confirm this restrictive assumption. However, in the 
output feedback case, when cK  is given by (38), 

equation (34) reads as,  

1δ+ =11Σ I 0                                                          (49) 

with 11Σ  as in (43) in which cK  is no longer a zero 

matrix. Again, for the existence of solutions to (34),  



  

only the stability of + cA BK  is needed, which does 

not necessitate a priori stability of A . Also, the 
invertibility of A  required in Wang, et al. (1999) is 
not necessary in this paper. 
 
Remark 2. the numerical solutions to (34) and (35) 
are easiest obtained by solving two auxiliary Riccati-
type inequalities as explained in Haurani, et al. 
(2001). 
 
Remark 3. The presented robust H∞  output feedback 
control design procedure still offers much additional 
design freedom. This freedom is reflected by the 
arbitrary choice of the  free gains parameters 

( ) n nR ×∈c cE E  and oE  ( )n pR ×∈oE , and the 

orthogonal matrices n nR ×∈cU  and p pR ×∈oU . 

Introducing additional performance constraints into 
the problem formulation (1) and (2) of Theorem 1, 
which would exploit this design freedom is currently 
under investigation. 
 
 

4. CONCLUSION 
 
This paper presents, in what is believed to be the first 
approach to robust, delay-independent, discrete-time 
H∞  output feedback control design procedure. 
Specifically, the conditions for solvability of the 
robust H∞  output feedback control problem is 
characterized in terms of the existence of solutions of 
two algebraic Riccati inequalities. The analytical 
expressions for the resulting observer and controller 
gains are given.  
 
Ongoing work is concerned with the incorporation of 
further performance constraints into the output 
feedback problem which can be accommodated by 
exploiting the additional freedom in the choice of 
design parameters. 
 
Future research will aim at the extension of the 
above presented results to the more general case in 
which a penalty on the control input is incorporated. 
 
 

ACKNOWLEDGEMENTS 
 
The work of the first author was supported by  
Nexfor Technology of Canada. 
 
 

REFERENCES 
 
Choi, H.H. and M.J. Chung (1997). An LMI 

approach to H∞  controller design for linear time-
delay  systems. Automatica, 33, 737-739. 

De Souza, C.E., R.M. Palhares and P.L.D. Peres 
(1999). Robust H∞  filtering for uncertain linear 
systems with multiple time varying state delays; 
an LMI approach. The 38th IEEE Conference on 
Decision and Control, 2, start page 2023. 

Fridman, E. and U. Shaked (1998). H∞- state-
feedback control of linear systems with small 
state delay. Systems&Control Letters, 33, start 
page 141. 

Ge, J., P.M. Frank and C.F. Lin (1996). Robust H∞  

state feedback control for linear systems with 
state delay and parameter uncertainty. 
Automatica,  32, 1183-1185. 

Haurani, A., H. Michalska and B. Boulet (2001). 
Discrete-time robust H∞ output feedback 
controller design of linear state delayed systems 
with parametric uncertainties. Report, McGill 
University.  

Jeung, E.T., D.C. Oh, J.H. Kim and H.B. Park 
(1996). Robust controller design for uncertain 
systems with time delays: an LMI approach. 
Automatica, 32, 1229-1231. 

Li, Xi and C.E. De Souza (1997). Delay-dependent 
robust stability and stabilization of uncertain 
linear delay systems: A linear matrix inequality 
approach. IEEE Transactions on Automatic 
Control, 42, start page 1144. 

Song, S.H. and J.K. Kim (1998). H∞  control of 
discrete-time linear systems with norm bounded 
uncertainties and time delay in state. 
Automatica,  34, 137-139. 

Trinh, H. and M. Aldeen (1997). A memoryless state 
observer for discrete time-delay systems. IEEE 
Trans. Automat. Control, 42, 1572-1577. 

Wang, Z., B. Huang and H. Unbehauen (1999). 
Robust  H∞  observer design of linear state 
delayed systems with parametric uncertainty: the 
discrete-time case. Automatica, 35, 1161-1167. 

Yaesh, I., A. Cohen and U. Shaked (1999). Delayed 
state-feedback H∞  control. Proceedings of IFAC 
Workshop on Linear Time Delay Systems, start 
page 51. 

Yao, Y.X., Y.M. Zhang and R. Kovacevic (1997). 
Functional observer and state feedback for input 
time-delay systems. International Journal of 
Control, 603-617. 


