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Abstract: This paper presents an industrial case study of the performance evaluation
of a multivariate MPC-based controller as implemented on a 6-output, 6-input
industrial process with 6 measured disturbance variables that are used for feed forward
control. The industrial unit is a Para-Xylene (PX) production process at Mitsuibishi’s
petrochemical complex in Mizushima, Japan. A generalized predictive controller-
based MPC algorithm has been implemented on the PX process. Data from the PX
unit before and after the MPC implementation is analyzed to obtain and compare
several different measures of multivariate controller performance.

1. INTRODUCTION

The last decade has witnessed a growing interest
by practitioners and academics alike in the field of
controller performance monitoring (Harris, Harris
and co-workers 1989-1999, Huang and Shah 1996-
1999, Kozub 1996) . The basic idea in performance
monitoring is to obtain a measure of ‘performance’
of a closed loop system from routine closed-loop
output and input data. In short, the role of
performance evaluation is to see if the controller
is doing its job satisfactorily and if not, further
analyze closed loop data with process information
to diagnose the causes of poor performance.

Routine monitoring of controller performance en-
sures optimal operation of the regulatory control
layers and the higher level advanced process con-
trol (APC) applications. Model predictive control
(MPC) is currently the main vehicle for imple-
menting the higher level APC layer. The APC
algorithms include a class of model based con-
trollers which compute future control actions by
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minimizing a performance objective function over
a finite prediction horizon. This family of con-
trollers is truly multivariate in nature and has the
ability to run the process close to its limits. It is
for the above reasons that MPC has been widely
accepted by the process industry. Various com-
mercial versions of MPC have become the norm
in industry for processes where interactions are of
foremost importance and constraints have to be
taken into account. Most commercial MPC con-
trollers also include a linear programming stage
that deals with steady-state optimization and con-
straint management.

Several authors have proposed approaches for
evaluation of the performance of multivariate con-
trollers (see Harris et al., Huang and Shah 1996-
1999, Shah et al., Ko and Edgar). This paper is
concerned with the application of some of these
methods towards performance evaluation of an
industrial MPC controller. In this paper we adopt
a graphical measure of multivariate controller per-
formance. This is a generalization of the univari-
ate impulse response (between the process output
and the whitened disturbance variable) plot to the
multivariate case, and defined as the ‘Normalized
Multivariate Impulse Response’ plot. A particular
form of this plot, that does not require knowledge
of the process time-delay matrix, is used here.
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Such a plot provides a graphical measure of the
multivariate controller performance in terms of
settling time, decay rates etc. This graphical mea-
sure is compared with the multivariate minimum
variance benchmark in which the interactor or
the time delay matrix is first computed from the
step-response model required for the design of
the MPC controller. Another measure of multi-
variate performance is also explored in detail in
this study: the use of the design performance as a
benchmark. The design objective function based
approach can be applied to constrained MPC type
controllers and is therefore a practical measure.
However, it does not tell you how close the perfor-
mance is relative to the lowest achievable limits. In
this respect the minimum variance-benchmarking
index complements the objective function mea-
sure very well.

2. PROCESS DESCRIPTION

In order to achieve operational efficiency in terms
of production costs, stable and reduced variance
product composition and automated versus man-
ual process operation, a multivariable model pre-
dictive controller was designed and implemented
on the PX distillation unit at Mitsubishi Chem-
ical Corporation’s, Mizushima plant in Japan.
The distillation unit of the PX plant consists of
three columns where raw Xylene is separated into
the main product, OX, and other byproducts. A
schmatic of the process flow sheet is shown in
Figure 1. Xylene feed and recycled Xylene from
the isomerization section are mixed and fed to
the light end column. In the light end column, the
light components (C1-C5, toluene and benzene)
are separated and the bottom products, composed
of Xylene and ’heavies’, (more than C9), are fed
to the OX column. In the OX column, the OX
and heavy components show up as the bottom
products whereas mixed PX and Meta-Xylene are
distillated to the overhead. The mixed Xylenes in
the overhead are fed to the crystallization section.
The OX and heavy components are fed to the OX
purification column where the heavy components
end up at the bottom and the pure OX, as a
product, is distillated to the overhead. The heat
furnace is used as a reboiler for the OX column,
because high temperatures and significantly large
heat duties are necessary for OX distillation. The
separated light and heavy components are used as
fuel to the heat furnace.

In the conventional operation of this unit, reboiler
steam at the light end column, heat furnace fuel
and the OX column were all operated manually to
keep the reflux ratio and column operational. Am-
bient temperature and fuel composition changes
are the main disturbances to this unit. These dis-
turbances forced manual operation of the column,

Fig. 1. Process flow sheet of the Para-Xylene
distillation unit

one of the consequences of which and resulted in
high reflux ratio to keep product specification.

3. MULTIVARIABLE MODEL PREDICTIVE
CONTROLLER STRATEGY

A Multivariable model predictive controller soft-
ware package based on the ‘Hitachi PS21 IMPACT’
controller was implemented on the PX unit.
ARX models were identified from the plant in-
put/output data and control adjustments are cal-
culated based on the generalized predictive con-
trol algorithm to minimize the following cost func-
tion:

J = κ

N2X
j=N1

(ŷ(t+ j)− w(t+ j))2 + λ
NuX
k=0

∆u(t+ k)2(1)

where ŷ(t + j) is j-step ahead prediction of the
system output on data up to time t, N1 and N2

are the minimum and maximum costing horizons,
Nu is the control horizon, κ and λ are the weights
and w(t) is the future reference.

A list of controlled, manipulated and disturbance
variables and the corresponding weights(κ,λ)
with the prediction horizons are given in Table.1.
Note that in this table, CV1 and MV1 are iden-
tical. This is frequently done under MPC either
to square the system or alternately to maximize
the feed here, as is the case, and yet also be able
to manipulate it, should circumstances dictate
so, e.g., to prevent flooding. The implementation
results of this GPC-based MPC control algorithm
are shown in right hand column in Figure.2. The



Table 1. Controller design parameters
for the MPC-based multivariate objec-

tive function

No.CV Tag Weight Horizon

CV1 Xylene feed 5.0 20

CV2 Tray #5 temperature 2.5 100

CV3 Internal reflux ratio 0.05 100

CV4 OX Hold up 6.0 100

CV5 OX reflux drum level 0.3 100

CV6 OX reflux ratio 1.4 50

No.MV Tag Weight Horizon

MV1 Xylene feed 35 3

MV2 Reboiler steam 200 3

MV3 Internal reflux 15 3

MV4 OX reflux 20 3

MV5 OX distillate 100 3

MV6 Fuel heat calorie 25 3

Table 2. Disturbance Variables

No.FF Tag

FF1 Isomerization feed

FF2 OX column feed

FF3 Heat furnace fuel heat calorie residual

FF4 OX purification column feed

FF5 Cooling water temperature

FF6 Ambient temperature

Fig. 2. The result of MPC application for distilla-
tion unit of para-xylene plant

left column shows the control results before the
MPC was installed. The scales for the same CVs
are the same.

4. MPC PERFORMANCE MONITORING, AN
INDUSTRIAL APPLICATION

The procedure for multivariate performance mon-
itoring in terms of the minimum variance bench-
mark can be summarized as follows:

• Given an open loop model, calculate the
unitary interactor matrix for the multivariate
process.

• Given routine closed loop operating data,
compute the performance index by time se-
ries analysis via the MFCOR algorithm.

4.1 Calculation of the unitary interactor matrix
based on open loop model

In order to calculate the unitary interactor matrix,
we need to know the open loop process model
(or at least the first few Markov matrices of
the multivariate system) as apriori knowledge.
The current open loop process model for PX
MPC(IMPACT)(with two MVs and one CV out
of service this time) is:

z−1 0 0 0 0 0
s21 s22 s23 0 s25 0
s31 s32 s33 0 s35 0
0 0 0 0 s45 0
s51 s52 0 s54 s55 s56

0 0 0 0.2z−1 −0.1679z−1 0


where

s21 =
−0.06809z−1 − 0.1408z−2

1− 0.2845z−1 − 0.6746z−2
;

s22 =
−0.06038z−1 + 0.2498z−2

1− 1.69z−1 + 0.6978z−2
;

s23 =
−0.02414z−1 − 0.266z−2

1− 0.8188z−1 − 0.153z−2
;

s25 =
−0.1297z−1 + 0.4256z−2

1− 1.301z−1 + 0.3159z−2
;

s31 =
−0.02498z−1 + 0.03939z−2

1− 1.868z−1 + 0.8764z−2
;

s32 =
0.1092z−1 − 0.1551z−2

1− 1.873z−1 + 0.8796z−2
;

s33 =
0.01148z−1 + 0.01025z−2

1− 1.876z−1 + 0.8823z−2
;

s35 =
−0.0408z−1 − 0.008103z−2

1− 1.814z−1 + 0.8235z−2
;

s45 =
−0.1968z−1

1− 0.99z−1
; s51 =

−0.1464z−2

1− 0.99z−1
;

s52 =
0.34z−2

1− 0.99z−1
; s54 =

−1.399z−2

1− 0.99z−1
;

s55 =
−0.4911z−2

1− 0.99z−1
; s56 =

3.766z−2

1− 0.99z−1
;

Then a unitary interactor matrix is factorized out
as (Huang and Shah, 1999):
0.05925z 0.7234z 0.4z −0.5596z 0 0
0.006454z 0.4251z −0.9003z −0.0934z 0 0
−0.02356z −0.3103z −0.09755z −0.4734z 0 0.8183z
−0.03354z −0.4417z −0.1389z −0.6739z 0 −0.5748z
−0.9974z 0.06791z 0.02491z 0 0 0

0 0 0 0 z2 0



4.2 Time series analysis of closed loop data via
the MFCOR algorithm

Prior to time series analysis of the data, it is
necessary to perform certain treatment of closed
loop data such as outlier removal, mean centering
and auto scaling.

The closed loop data used for performance mon-
itoring corresponding to PX MPC(IMPACT) on
and off was available at 1 min sample rate with
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Fig. 3. Multivariate performance assessment of
MCC over 30 days(each bar indicates perfor-
mance measure for 1 day)

a length of 43200(30 days). It is assumed that
the two data sets with and without IMPACT
corresponded to similar periods of operation. To
evaluate the daily performance, we used a moving
window of 1440 data points without overlapping
corresponding to each day to calculate the daily
multivariate performance index (see Figure.3 ) as
well as individual performance indices at differ-
ent channels or for different outputs. The defin-
ition of multi-variate performance index and de-
tailed MFCOR alogrithm with interactor matrix
filtering can be refered to the book by (Huang
and Shah 1999). Bar charts corresponding to the
‘on’ and ‘off’ status of the IMPACT controller
were generated. It is clearly seen that a signifi-
cant improvement in performance resulted after
the IMPACT controller was implemented. In Fig-
ure.4, the overall performance index and individ-
ual performance indices over a 30-day period are
displayed. A significant improvement in overall
performance(>300%) is clear from this figure. It
is noticed as well that the performance of a few
controlled variables improved significantly while
the performance of others degraded as a result of
different controller weightings. It is to be expected
that performance in some loops would improve
at the expense of reduced performance in other
loops.

4.3 Performance evaluation via alternative methods

To make sure that the IMPACT MPC controller
has been able to achieve overall control objectives,
the objective function based evaluation method
(Patwardhan,1998; Shah et al., 2001) was applied
in this industrial application.
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Fig. 4. Overall as well as individual loop perfor-
mance assessment of MCC over 30 days
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Fig. 5. Objective function comparison (based the
moving horizons and weights of CV and MV
data)

4.3.1. Multivariate Objective function comparison
The objective of this MPC controller is to mini-

mize the quadratic objective function, as specified
in Equation 1 and Table.1. In order to demon-
strate that the current MPC controller is working
effectively towards this objective, we calculated
the value of this objective function corresponding
to the state when MPC was ‘on’ and ‘off’. As
shown in Figure 5, the objective function corre-
sponding to MPC-on shows a significant decrease
in the quadratic cost function compared with
that corresponding to MPC-off. If we computed
contributions by different controlled variables as
shown in Figure 6, large decreases in channels
corresponding to CV1, CV4 and CV6 are obvious
as a result of higher weighting for these variables
as indicated in Table 1.

4.3.2. Spectral analysis Another objective of
MPC is to reduce the interaction between dif-
ferent loops. Cross-spectrum/coherency analysis
is a useful tool to assess the interaction behavior
between different control loops. In this industrial
application, the coherency of six control variables
during the IMPACT-ON versus IMPACT-OFF
periods were computed and compared with each
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Fig. 6. Objective functions contributed by different
outputs
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Fig. 7. Coherency analysis of control variables

other using the “cohere” function in MATLAB
Signal Processing Toolbox. Figure 7 shows this
plot where off-diagonal terms represent the co-
herency between the corresponding control vari-
ables. As shown in Figure 7, all off-diagonal terms
in the frequency domain are far below 1 which
indicates that interactions between different loops
are small. In particular, the magnitudes of some
off-diagonal terms (see coherency plot of “CV3
versus CV6” and “CV4 versus CV5” ) decrease
significantly as a result of MPC application, which
indicates that the MPC controller is effective in
interaction reduction.

4.3.3. Normalized multivariate impulse response
An impulse response curve represents the dynamic
relationship between the whitened disturbance
and the process output. In the univariate case, the
first “d” impulse response coefficients are feedback

control invariant, where “d” is the process time
delay. Therefore, if the loop is under minimum
variance control, the impulse response coefficients
should be zero after “d-1” lags. The Normalized
Multivariate Impulse Response (NMIR) curve re-
flects this idea for a multivariate controlled sys-
tem. The first “d” NMIR coefficients are feedback
controller invariant, where “d” is the order of the
interactor matrix. If the loop is under multivariate
minimum variance control, then the NMIR coef-
ficients should delay to zero after “d-1” lags. The
sum of squares under NMIR curve is equivalent to
the sum of the trace of the covariance matrix of
the data. If output variance is

Yt = E0at + E1at−1 + . . .+
Ed−1at−d+1 + Edat−d + . . .

(2)

and the filtered output variance is:

Ỹt = q−dD(F0at + F1at−1 + . . .+
Fd−1at−d+1 + Fdat−d + . . .)

(3)

we have:

E(Y T
t Yt) = E(Ỹ

T
t Ỹt) =

trace(F0

X
a

FT
0 ) + trace(F1

X
a

FT
1 ) + . . . ,

(4)

where the first NMIR coefficient is given byq
trace(F0

P
0 F

T
0 ) and the second NMIR coef-

ficient is given by
q
trace(F1

P
a F

T
1 ), and so on.

The multivariate performance index is then equal
to the ratio of the sum of the squares of the first
“d” NMIR coefficients to the sum of all NMIR
coefficients.

The NMIR outlined above requires apriori knowl-
edge of the interactor matrix. In this specific ap-
plication, we compute the NMIR of the interactor
filtered output from knowledge of the computed
interactor matrix. As a complement, a similar nor-
malized multivariate impulse curve without inter-
actor filtering is also computed to serve a similar
purpose. In this calculation, the NMIRwof coeffi-
cients are given by the E-matrices(E0, E1, . . .) in-
stead of the F-matrices(F0, F1, . . .). The rationale
for using the NMIRwof is that the two calculations
are asymptotically equal (see Shah et al. 2001 for
further details):

lim
t→∞(trace(E0

X
a

ET
0 ) + trace(E1

X
a

ET
1 ) + . . .) =

(trace(F0

X
a

FT
0 ) + trace(F1

X
a

FT
1 ) + . . .)

The result is clearly shown in Figure 8, which com-
plies with the theoretical derivation for this spe-
cific industrial application. The NMIRwof curve
corresponding to the MPC “on” case decays
quickly, which again leads to the conclusion that
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the MPC controller improves the performance of
multivariate controlled system significantly.

5. CONCLUDING REMARKS

In this application, automatic control was achieved
and operator intervention were reduced by 87%.
The OX column operation was stabilized and
reflux ratio was reduced. The latter improve-
ment resulted in significant reduction of fuel con-
sumption. Finally stable operation of OX prod-
uct composition was achieved. Several measures
of multivariate controller performance monitor-
ing have been introduced and applied to perfor-
mance evaluation of the Hitachi IMPACT con-
troller on the PX Distillation Process at Mit-
subishi’s Mizushima Petrochemical Complex. It
is shown that routine monitoring of MPC appli-
cation can ensure that corrective measures will
be taken when control degrades and finally en-
sure a good and optimal control. Results by dif-
ferent measures indicate significant improvement
from the implementation of the IMPACT MPC
controller. We hope this application of the new
multivariate performance assessment technology
will advocate more extensive and intelligent use
of performance assessment technology and even-
tually lead to automated monitoring of the design,
tuning and upgrading of the control loops.
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