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Abstract: The long term objective of our research is to use the knowledge from biological
studies on animal locomotion and establish a new paradigm for control design that realizes
robust, adaptive, and autonomous systems. As a very first step, this paper proposes a new
dynamical model of a single neuron, given by a specific class of the Lur’e systems, and show
that the model makes a good tradeoff between the simplicity and the accuracy when compared
with the existing models. The Lur’e neuron model is intended for adoption as a basic unit in
biologically inspired control systems.
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1. INTRODUCTION

Animal motions are controlled by neuronal circuits in
the central nervous system. In view of a wide variety
of functionalities and autonomy of animal motions,
it is natural to ask how the knowledge from biology
can be exploited to make a qualitative difference in
the performance achievable by feedback control. As is
well known, the use of neuronal basis for automatic
control of physical systems has been investigated
in the literature related to artificial neural networks
(ANNs); Hunt et al. (1992); Narendra (1996); Naren-
dra and Lewis (2001). Many of these approaches are
based on a fundamental result by Funahashi (1989);
Hornik (1989) that the ANN architecture is capable
of approximating any continuous function with an ar-
bitrarily high accuracy. This result, together with the
parameter optimization techniques such as the back
propagation, constituted a new paradigm for general
nonlinear adaptive control. Thus, the ANN approach
successfully generalized the biological knowledge on
neural networks into mathematical abstraction which
is useful for development of practical design method-
ologies.

On the other hand, it is perhaps fair to say that the
generality of the ANN approach has been gained at the
expense of oversimplified models for neuronal dynam-
ics, and hence the approach may have strayed too far

away from physiological evidences
�

. For instance, a
class of popular neuron models is given by, Hunt et al.
(1992);�������
	��
������ T ����� � (1)

where � �������� ��� and � ����!��� � are the input and
the output of the neuron,�"�#� � � and � ��� � are
the synaptic weight and the bias,	$�
�� is a transfer
function, and� is a static nonlinearity. Typically,	$�
��
is chosen to be a constant or a first order lag%'& � % �)( �� ,
and � is set to a sigmoid function. This model may
capture the most basic neuronal dynamics such as the
threshold and the processing delay, but the variable�
often stands for the “firing rate” and thus the model
ignores the dynamical mechanism underlying the gen-
eration of spike trains which constitute the identity of
a neuron from a physiological point of view. The ques-
tion is: Does this simplification in neuronal modeling
sacrifice desirable properties of real neuronal controls
such as robustness and autonomy?

The objective of this paper is to provide a basis for in-
vestigating such question. We propose a neuron model
that issimpleenough to allow for theoretical analysis
but alsoaccurateenough to reproduce a variety of*

See the special issue of IEEE Control Systems Magazine; Ghosh
and He (2001), and the proceedings of ACC 2001 e.g. Nenadic and
Ghosh (2001) for recent approaches from neuroscience view point.
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neuronalfunctionalities.Themodelcanbeconsidered
asa simplifiedversionof HodgkinandHuxley (1952)
model,and is given asa specialclassof the systems
consideredin Lur’e (1957),i.e.a feedbackconnection
of a linear time-invariantsystemanda staticnonlin-
earity. TheLur’e neuronmodelwe proposeis shown
to possessvarious dynamic propertiesof a neuron,
suchasthreshold,refractoryperiod,frequency mod-
ulation(or ratecoding),andmodeswitching(or bista-
bility).

2. NEURONAL MODELING

2.1 Brief review of existingmodels

The input-output propertiesof neuronsare usually
modeledby an electricalcircuit consistingof paral-
lel connectionsof the membranecapacitanceandion
channelconductances.A relatively completemathe-
maticalmodelof anervemembranewasfirst obtained
by HodgkinandHuxley (1952)for asquidgiantaxon.
The Hodgkin-Huxley (HH) model is capableof gen-
eratingvarioustypical propertiesof genericneurons,
andstill remains,afterahalf century, to providethees-
sentialstructureof mostsophisticatedneuronmodels
availableto date.TheHH modelis of fourthorderand
is highly nonlinear. Rigorousmathematicalanalysis
of the HH model is extremely difficult and thus its
behavior hasbeenanalyzedeitherby simulationsor
by simplifying themodel.

Severalsimplermodelsof thesecondorderhavebeen
obtainedand their dynamicalbehavior analyzedin a
moreprecisemanner. Nagumoet al. (1962)modeled
a nerve axonby a negative resistance(tunneldiode)
circuit to capturetheessentialdynamicsof variousion
channels.FitzHugh(1969)showedthatthismodelcan
be obtainedby modifying the van der Pol oscillator.
Thus,it is calledtheFitzHugh-Nagumo(FHN) model.
Another model has beenintroducedby Morris and
Lecar(1981)in thecontext of electricalactivity of the
barnaclemusclefiber. TheMorris-Lecar(ML) model
hasan increasedcomplexity in nonlineartermswhen
comparedwith the FHN model. An analysisof the
ML modelbasedon isoclinemethodsby Rinzel and
Ermentrout(1989)showedthatthemodelhasdynam-
ics rich enoughto reproducevariousgenericneuronal
propertiesincludingthefrequency modulation,which
theFHN modeldoesnot possess.

2.2 Lur’e model

We proposethe following modelobtainedby simpli-
fying theML model,extractingtheessentialdynamics
in termsof theisoclineprofile:+,��.- � �/,021�� �$�+���.34�/-256�/,0718�) (2)

where , is the membranepotential, � representsdy-
namicsof voltage gated 9;:=< and > < channels,�
is the current input, 3 is the speedof > < channels
opening(temperaturedependent),and -2?@��,A are the

staticnonlinearitiessuchthat 1B- � ��,A is “ C –shaped”
and -25D�/,0 is saturation-like(seeFig.1).Theshapesof
the functions -2?@��,A aremotivatedby the isoclinesof
theML model.
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Fig. 1. Typical shapesof - � ��,A and -75E��,A
Next we show that an additionalstructure,usefulfor
simplifying the analysis,can be embeddedinto the
model.In particular, bothnonlinearities- ? ��,A canbe
generatedby shifting/scalinga singlebasicnonlinear-
ity ���/F4 . To this end, let �G��F4 be a monotonically
nondecreasingboundedfunction. For instance,�G��F4
maybechosenaseitherpiecewiselinear���/F4�HI� JK L;M ��FON M FP� MRQ F Q % % ��FOS %  (3)

or sigmoidal���/F4�HI� %% ��T 5�UWVYX[Z (4)

Thenwe canrealize- ? �/,0 as- � �/,0\�P]��G�/^E,A71�_Y, �$�a`- 5 �/,0\���G�/b4��, � , ` �
where ^WcY_�c�]=c�bdS M aretheparametersthatdetermine
the shapeof -7?@��,A and � ` and , ` are vertical and
horizontalbiastermsto adjusttherelativepositioning
of - � ��,A and -25D�/,0 . Thesefunctionsare plotted in
Fig. 2 for the caseof piecewise linear basisfunction���/F4 . The curvesfor the sigmoidalbasisaresimilar
but smooth.

With thesechoicesof -2?@��,A , we have+,R�P]��G�/^E,A71e_f,g18� ��� ` ���+���h3a�
�G�
bW�/, � , ` �718�) Z (5)

By pulling out the basic nonlinearity �G��i  , this can
be written asthe Lur’e systemin Fig. 3 where j HI�k � ` , `ml T is the constantbias input vector, �4n#HI�oAp :Dq �r�scY�a is therepeatedstaticnonlinearity, andt �
��uHv�Pw��r�xng18yz U �f{ �$| c (6)} y {w |P~ Hv��������

1;_d1 % ] M %O% MM 1B3 M 3 MOM�M^ M M�MOMOM�Mb M M�MOMOM b% M M�MOMOM�M
�������



Fig. 2. Piecewiselinearrealizationof -2?@��,A
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Fig. 3. Lur’e system

with the statevector
k ,�� l T. Thus,the complexity

of our Lur’e neuronmodelis comparableto theFHN
modeldiscussedearlierin thatbothbelongto theclass
of systemsin Fig. 3 with a secondorder linear partt �
�� . Theessentialdifferencebetweenthismodeland
the FHN modelis the nonlinearityof -25D�/,0 . We will
show later that thenew modelcanperformfrequency
modulation,which theFHN modelcannot,dueto this
additionalnonlinearity.

3. ANALYSISOF NEURONAL DYNAMICS

3.1 Stabilityanalysis

In this section,weshallanalyzestability propertiesof
the Lur’e neuronmodel in (2). Our first resultstates
bounded-inputbounded-outputstability of the Lur’e
system.

Proposition1. ConsidertheLur’e systemin (5). Sup-
posethe parameters_ and 3 arepositive, and �G��Fa is
globally Lipschitzandbounded.Then,for any piece-
wise continuous,boundedinput � andfor any initial
states,a� M  and �g� M  , thereexists a uniquebounded
solution ��,4c��) to (5).

Proof. The existenceand uniquenessof the solution
follows from Lipschitzcontinuityof � andpiecewise
continuity of � (seeKhalil (1996)).Now, recall that
thesystemcanbeexpressedasthefeedbacksystemin
Fig.3where

t �
�� is givenby (6).Since� is abounded
function, all the input signalsto

t �
�� are bounded.
Moreover, positivity of _ and 3 meansstability of
the linear system

t �r�� . Hence,all the statesof any
minimal realizationof

t �
�� mustbebounded.

Wenow considertheLur’e modelin (2) with constant
input � and examinestability of equilibrium points

via the Lyapunov’s indirect method. The result is
summarizedasfollows:

Proposition2. Let �/,D��c����� be an equilibrium point
of (2) with a given constantinput � . Supposethe
linearizedsystemaroundtheequilibriumpointhasno
eigenvalueson the imaginaryaxis. Thenthe equilib-
rium point is

a saddlepoint � -��5 N�-���
anunstablenode/focus� -��5 S�-��� c 3�N�-���

astablenode/focus� - �5 S�- �� c 3�S�- ��
where- �? ( � � % c@� ) arethederivativesof - ? evaluated
at ,R��, � .
Proof. Thelinearizationof (2) aroundtheequilibrium
point is givenby

+F���y�F wherey�HI� } - �� 1 %3E-��5 1B3 ~ Z
Thecorrespondingcharacteristicequationis� 5 � ��3m1�-���  � � 3a��-��5 18-��� [� M Z
Theresultthenfollows immediatelyfrom thefollow-
ing fact:Let therootsof equation� 5 �$� � � j � M
with unknown

�
be denotedby

� ? ( � � % c@� ). Then
underthe assumption�B�6� � ? $�� M for � � % c@� , we
have � � � 5 N M ��j N M�B�E� � ? �S M c � � � % cY�D ��j S M c � N M�B�E� � ? �N M c � � � % cY�D ��j S M c � S M
3.2 Functionalpropertiesof theLur’e model

We now show by simulationsthat the Lur’e model
capturesa varietyof neuronalproperties.We consider
the sigmoid basis function (4) for � and use the
following valuesof theparametersin (5):�a` ��1 M Z �Ac�, ` ��1 M Z  6¡ c�3�� M Z   c^R� % Z ¢ c _B�   c ]��P� Z �£c bm� ¡ c
Similarresultscanbeobtainedif weusethepiecewise
linear basisfunction (3) insteadof the sigmoidfunc-
tion.

When� � M , theisoclinesaregivenby thelight curves
in Fig. 4 (above).Notethattherearethreeequilibrium
points ¤ , ¥ , and ¦ . Fromtheearlierstabilityanalysis,
it canreadilybefoundthat ¤ is stable,¥ is a saddle,
and ¦ is anunstablenode/focus.Therestingvaluesof, and � (i.e. theuniquestableequilibriumpointwhen� � M ) arefoundto be,'§�¨ª©¬«\� ¡£Z ¢6¢m % M U45 c �u§�¨ª©¬«\�.® Z M6M  % M UWV
andareusedastheinitial statesfor all simulationsthat
follow.

Threshold: Short pulse inputs of duration M Z � with
variousheightsareappliedto the Lur’e modelwhen
it is at rest.We seefrom Fig. 4 (below) thatanaction



potential¯ is generatedif andonly if the pulseheight
is larger thana thresholdvalue( °� M ZI± ® ). The under-
lying mechanismfor the thresholdphenomenoncan
be explainedas follows. In Fig. 4 (above), the pulse
input makesthe state �/,Wc��) jump (or rapidly move)
from the restingpoint ¤ to the right by a distance
roughlyequalto theproductof thepulsedurationand
the height.If the jump is small, thenthe statesimply
goesback to the restingpoint ¤ . If the jump is big
enoughto go beyondthe separatorix

5
, thenthe state

trajectorygoesaroundthe unstableequilibriumpoint¦ andeventuallyconvergesto ¤ . Thus,thethreshold
is determinedby the horizontaldistancebetween¤
andtheseparatorix.
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Fig. 4. Thresholdphenomenonof theLur’e model

Frequency modulation: Fig. 5 shows theresponseof
the Lur’e model when the following two-stagestep
input is applied:� ����[�³² M Z M   � M�Q ��N % MDM M Z M ¢ � % M6MRQ ��
The figure clearly shows that the frequency of the
spiky limit cycle changeswith the magnitudeof the
constantinput.RinzelandErmentrout(1989)showed
by phaseplaneanalysisthatthecauseof thefrequency
modulationin the ML model is the saddle-nodebi-
furcation.In thecaseof our Lur’e model,exactly the
sameargumentcanbemadeto explain thefrequency
modulationphenomenon.We shall briefly repeatthe
analysisfor completenessusingFig. 5 (above). Note´

A pair of statetrajectoriesthat converge exactly to the saddle
point µ . In Fig. 4 (above), it is roughly given by the part of the
vertical isoclinefrom ¶ to µ andits smoothextensionto thepoint·¹¸»º�¼s¸»½I¾�¿

.

thatthetwo statetrajectoriescomingoutof thesaddle
point ¥ along its unstableeigenvectorsmust termi-
nate at the unique stable equilibrium point ¤ , for
theboundednessof the trajectoriesareguaranteedby
Proposition1. One of theseheteroclinictrajectories
comingout of ¥ to the left goesdirectly to ¤ , while
the other one goesaround ¦ and converges to ¤ .
Now, asthe input magnitudeincreasesfrom zero,the
equilibriumpoints ¤ and ¥ comecloserto eachother.
Whenthey meet,asaddle-nodebifurcationoccursand
the pair of heteroclinicorbits becomesa homoclinic
orbit which is a limit cycle with infinite period. If
the input magnitudeis a bit further increased,then¦ becomesthe only equilibrium point. Since ¦ is
unstableandevery trajectoryis bounded,theremust
exist a periodic orbit (Poincare–Bendixsontheorem,
Khalil (1996)). The frequency of the periodic orbit
increasesfrom zeroto somefinite valueasthe input
magnitudeincreases,exhibiting the frequency modu-
lation.Finally, it shouldbenotedthattheFHN model
can have only one equilibrium point for any input
valueand thus the saddle-nodebifurcation,which is
responsiblefor the frequency modulation,can never
happen.
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Fig. 5. Frequency modulationof theLur’e model

Mode switching: A constantinput � of magnitudeM Z % ¡ is appliedto theLur’e modelat �)� M whenthe
systemis at rest.Thenthesystementersa limit cycle
asshown in Fig. 6 (above).If ashortpulseof durationM Z � and height M ZI¡ is superimposedon the constant
input at ��� ¡ M , the periodic firing is “turned off ”
andthemembranepotential, convergesto a constant
value.



0 0.2 0.4 0.6
−0.1

0

0.1

0.2

0.3

0.4

0.5

v

w

pulse 

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

Time

v

Fig. 6. Bistability of theLur’e model

This modeswitching phenomenonis explainedas a
result of bistability. As shown before,for the value
of constantinput � just above the saddle-nodebi-
furcation, the equilibrium point ¦ is an unstablefo-
cus/nodeanda stablelimit cycle is generated.If � is
further increased,theslopeof thevertical isocline - ��
at ¦ eventuallybecomessmallerthan 3 . This means,
accordingto Proposition2, that ¦ becomesa stable
equilibriumpoint. At this point, thestablelimit cycle
andthe stableequilibrium point coexist, andthe sys-
temexhibitsbistability. Thesetwo areseparatedby an
invisible unstablelimit cycle. If a shortpulseof input
makes the statejump to the inside of this unstable
periodicorbit, thenthe stateis attractedto the stable
equilibriumpoint asshown in Fig. 6.

3.3 Further refinementof theLur’e model

TheLur’e modelwe have developedandanalyzedso
farcapturesthedynamicsof theaxon,aneuronalcom-
ponentresponsiblefor generationof actionpotentials.
The dynamicsand functions of other components,
suchasthedendriteandthesoma,alsoplayanimpor-
tant role in emerging high functionalityof networked
neuronaloscillators.Anothercrucialdynamicsis due
to the information transferbetweenneuronsvia the
synapticconnections.The objective of this sectionis
to addtherelevantdynamicsto completetheneuronal
modeling.

Adaptation: An important characteristicmissing in
the Lur’e model is the adaptation. In fact, all of the
HH, ML, andFHNmodelslackthisproperty,probably
becausethis property is due to the dynamicsof the
somaand/or the dendrite.It is characterizedby the
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Fig. 7. PIR phenomenonof À
following phenomenon.Whena stepcurrentinput of
sufficiently large amplitudeis appliedto a neuron,a
train of action potentialsis generated.For the neu-
ron models,the actionpotentialspersistforever with
a fixed frequency. For the actualneurons,however,
the frequency graduallydecreasesandeventuallythe
neuronstopsfiring; FitzHugh(1969).

From a systemspoint of view, the above observation
suggeststhat the neuronaldynamicsseemto involve
a filter with a zeroat the origin, not to passthrough
thestepinput.Henceweproposeto addthefollowing
linearfilter at theinput portof theLur’e model:Á �
��\� Â ��r� ��Ã � ��r� ��Ã 5» (7)

where Â , Ã � and Ã 5 aresomepositive constants.The
completedescriptionof our neuronmodel is given
by (2) and � � Á �
���Ä where Ä is the input to the
model.Let us denotethis modelby ,$� À �rÄ£ . The
input Ä hasthe physicalsignificanceof the electrical
currentinjectedinto the somaand/orthe dendrite.A
simulationof stepresponseshowsthatspikesaregen-
eratedbut areterminatedwithin a finite time interval
with gradually decreasingfrequency, indicating the
adaptationphenomenon.

Post-inhibitory rebound (PIR): Another important
propertymissing in the original Lur’e model (2) is
the PIR; Friesenand Friesen(1994). It is observed
in real neuronsthat action potentialsare generated
after an inhibitory (negative) currentinput is applied
for a while andthencut off. It turnsout that the PIR
propertycanbeincorporatedintoourneuronmodelby
exactly thesamefiltering mechanismasabove.Fig. 7
shows the responseof our model À whena current
pulseÄ ����\�³² 1 % � M�Q ��N % MDM M ����Å % MDM 
is applied.We seethat the current input � from the
somato the axon (light curve) bouncesback to take
onpositivevaluesaftertheendof theinhibitory input.
Becauseof this, a finite train of actionpotentialsare
generated(darkcurve), indicatingthePIR property.

Synaptic fatigue: Let us consider the effect of a
firing neuron ÀdÆ §�¨ connectedthrough a synapseto



anotherneuronÀdÆ�Ç ©¬« . The membranepotential , Æ §�¨
of ÀdÆ §/¨ inducessomeionic currentflow throughthe
membraneof À Æ�Ç ©¬« at its dendrites.The directionof
theoverallcurrentflow Ä Æ»Ç ©¬« dependsontheparticular
synapticconnection:if the inducedcurrent Ä Æ�Ç ©¬« is
negative (positive), the synaptic connectionis said
to be inhibitory (excitatory).Thus,we may view the
synapticconnectionasa dynamicalsystemwith the
input , Æ §�¨ and the output Ä Æ�Ç ©¬« . Let us denotethis
systemas Ä Æ�Ç ©¬«È��É)��, Æ §�¨� . It is a commonpractice
Friesenand Friesen(1994); Koch and Segev (1989)
to model the systemÉ in termsof varying electrical
conductances,leadingto a fairly complex nonlinear
model.

In the sequel,we argue that the following simple
constantgainmodelcanbeusedfor É for thepurpose
of devisingnetworkedneuronaloscillators:Ä Æ�Ç ©¬«[�ËÊzÌa, Æ §/¨
where Ì is a positive constantwhosevalueis a mea-
sureof thestrengthof thesynapticconnection,andthe
sign Ê reflectsthe excitatory or the inhibitory nature
of the synapse.Of course,the inducedcurrentinput
to ÀÈÆ�Ç ©¬« is not at all proportionalto the presynaptic
potential , Æ §/¨ . However, if we look at the effect of, Æ §/¨ on the postsynapticpotential , Æ�Ç ©�« , the resulting
model, Æ�Ç ©�«\� À �rÊzÌa, Æ §�¨� (8)

has the right property of our interest — synaptic
fatigue. In particular, with this model, a persistent
excitation by an infinite train of action potentialsin, Æ §/¨ resultsin afinite trainof actionpotentialsin , Æ�Ç ©¬« .
In summary, theoverallneuronmodelfrom thepresy-
napticpotentialinputto thepostsynapticpotentialout-
put is given by (8) with the linear filter

Á �r�» in (7)
and the nonlinearLur’e systemin (2). This model
capturesvariouspropertiesof real neuronsincluding
the adaptation,post-inhibitoryrebound,andsynaptic
fatigue,in additionto thestandardpropertiessumma-
rized in Section3.2. Theseadditionalpropertiesare
known to be particularly important for construction
of networkedneuronaloscillators;FriesenandFriesen
(1994);Matsuoka(1985).

4. CONCLUSION

We have proposeda new model for a singleneuron.
The model is given as a specialclassof the Lur’e
systemsfor whichsubstantialamountof mathematical
analysistools are available. The complexity of the
Lur’e model is shown to be comparableto the FHN
model which is one of the simplestneuronmodels
capableof generatingspiketrains.Theaccuracy of the
Lur’e model is measuredby its ability to reproduce
typical neuronalresponsesandis shown qualitatively
comparableto themorecomplex ML model.
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