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Abstract: The long term objective of our research is to use the knowledge from biological
studies on animal locomotion and establish a new paradigm for control design that realizes
robust, adaptive, and autonomous systems. As a very first step, this paper proposes a new
dynamical model of a single neuron, given by a specific class of the Lur’e systems, and show
that the model makes a good tradeoff between the simplicity and the accuracy when compared
with the existing models. The Lur'e neuron model is intended for adoption as a basic unit in
biologically inspired control systems.
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1. INTRODUCTION away from physiological evidencés For instance, a

class of popular neuron models is given by, Hunt et al.
Animal motions are controlled by neuronal circuits in (1992);

the central nervous system. In view of a wide variety
of functionalities and autonomy of animal motions, y = ¢(H(s)(w'u +0)) @

it is natural to ask how the knowledge from biology whereu(t) € IR™ andy(t) € IR are the input and
can be exploited to make a qualitative difference in the output of the neurony € IR" andd € R are

the performance achievable by feedback control. As isthe synaptic weight and the biaH,(s) is a transfer
well known, the use of neuronal basis for automatic function, andp is a static nonlinearity. Typicallyf (s)
control of physical systems has been investigatedis chosen to be a constant or a first orderla@l +7s),

in the literature related to artificial neural networks and ¢ is set to a sigmoid function. This model may
(ANNSs); Hunt et al. (1992); Narendra (1996); Naren- capture the most basic neuronal dynamics such as the
dra and Lewis (2001). Many of these approaches arethreshold and the processing delay, but the varigble
based on a fundamental result by Funahashi (1989);often stands for the “firing rate” and thus the model
Hornik (1989) that the ANN architecture is capable ignores the dynamical mechanism underlying the gen-
of approximating any continuous function with an ar- eration of spike trains which constitute the identity of
bitrarily high accuracy. This result, together with the a neuron from a physiological point of view. The ques-
parameter optimization techniques such as the backtion is: Does this simplification in neuronal modeling
propagation, constituted a new paradigm for general sacrifice desirable properties of real neuronal controls
nonlinear adaptive control. Thus, the ANN approach such as robustness and autonomy?

successfully generalized the biological knowledge on
neural networks into mathematical abstraction which
is useful for development of practical design method-
ologies.

The objective of this paper is to provide a basis for in-
vestigating such question. We propose a neuron model
that issimpleenough to allow for theoretical analysis
but alsoaccurateenough to reproduce a variety of
On the other hand, it is perhaps fair to say that the
generallty ofthe ANN approach has been gamed atthe, See the special issue of IEEE Control Systems Magazine; Ghosh

expense of oversimplified models for neuronal dynam- ang He (2001), and the proceedings of ACC 2001 e.g. Nenadic and
ics, and hence the approach may have strayed too fathosh (2001) for recent approaches from neuroscience view point.




neuronafunctionalities. Themodelcanbeconsidered
asasimplifiedversionof HodgkinandHuxley (1952)

model,andis given asa specialclassof the systems
consideredn Lur'e (1957),i.e. afeedbackconnection
of a linear time-invariantsystemand a static nonlin-

earity The Lur'e neuronmodelwe proposeis shovn

to possessvarious dynamic propertiesof a neuron,
suchasthreshold refractoryperiod, frequeny mod-

ulation(or ratecoding),andmodeswitching(or bista-

bility).

2. NEURONAL MODELING
2.1 Brief review of existingmodels

The input-output propertiesof neuronsare usually
modeledby an electricalcircuit consistingof paral-
lel connectionof the membranecapacitancendion

channelconductancesA relatively completemathe-
maticalmodelof anerne membranavasfirst obtained
by HodgkinandHuxley (1952)for asquidgiantaxon.
The Hodgkin-Huxley (HH) modelis capableof gen-
eratingvarioustypical propertiesof genericneurons,
andstill remainsafterahalf centuryto providethees-
sentialstructureof mostsophisticatecheuronmodels
availableto date.TheHH modelis of fourth orderand
is highly nonlinear Rigorousmathematicabnalysis
of the HH modelis extremely difficult and thusits

behaior hasbeenanalyzedeither by simulationsor

by simplifying the model.

Severalsimplermodelsof the secondbrderhave been
obtainedandtheir dynamicalbehaior analyzedin a
more precisemanner Nagumoet al. (1962) modeled
a nere axon by a negative resistancetunnel diode)
circuitto capturetheessentiatlynamicsof variousion

channelsFitzHugh(1969)shavedthatthis modelcan
be obtainedby modifying the van der Pol oscillator

Thus,it is calledtheFitzHugh-Nagumd@FHN) model.
Another model has beenintroducedby Morris and
Lecar(1981)in the context of electricalactiity of the
barnaclemusclefiber. The Morris-Lecar(ML) model
hasanincreaseccompleity in nonlineartermswhen
comparedwith the FHN model. An analysisof the
ML modelbasedon isocline methodsby Rinzel and
Ermentroui(1989)shovedthatthemodelhasdynam-
ics rich enoughto reproducevariousgenericneuronal
propertiesncludingthe frequeng modulation,which

the FHN modeldoesnot possess.

2.2 Lur'e model

We proposethe following modelobtainedby simpli-
fying theML model,extractingthe essentiatlynamics
in termsof theisoclineprofile:

V=11 (v) —w+u @)
W = p(ih2(v) — w)
wherev is the membranepotential,w representsly-
namicsof voltage gatedNa* and K+ channelsu
is the currentinput, p is the speedof K+ channels
opening(temperaturedependent)and ¢;(v) arethe

staticnonlinearitiessuchthat —y (v) is “ N—shaped”
andy, (v) is saturation-lile (seeFig. 1). Theshape®f
the functions; (v) are motivatedby the isoclinesof
theML model.

1.2

1
0.8 G,
0.6
0.4 W,
0.2

0 0.2 0.4 0.6 0.8 1
\

Fig. 1. Typical shape®f ¢ (v) ands (v)

Next we shav that an additionalstructure usefulfor

simplifying the analysis,can be embeddednto the
model.In particular both nonlinearitiesy; (v) canbe
generatedby shifting/scalinga singlebasicnonlinear

ity ¢(x). To this end, let ¢(x) be a monotonically
nondecreasingpoundedfunction. For instance ¢ ()

may be choseraseitherpieceviselinear

0 (zx<0)
p(z) =9z (0<z<1) ®)
1 (z>1)
or sigmoidal
1
¢(z) == 1te2 dz° (4)

Thenwe canrealizey;(v) as

P1(v) = cp(av) — bv + u,

P2(v) = P(d(v + v,))
wherea, b, ¢, d > 0 arethe parametershatdetermine
the shapeof 1;(v) and u, andwv, are vertical and
horizontalbiastermsto adjusttherelative positioning
of ¢ (v) and 2 (v). Thesefunctionsare plotted in
Fig. 2 for the caseof piecevise linear basisfunction
¢(zx). The curvesfor the sigmoidalbasisare similar
but smooth.

With thesechoicesof ¢; (v), we have
f[}'=c¢(av)—bv—w+uo+u )
W = p(¢(d(v +v,)) — w).

By pulling out the basic nonlinearity ¢(-), this can

be written asthe Lur'e systemin Fig. 3 whereg :=

[ uo v, ]" is the constantbiasinput vector ¢I :=
diag(¢, @) is therepeatedstaticnonlinearity and

G(s):=C(sI —A)~'B+ D, (6)
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Fig. 3. Lur'e system

with the statevector[ v w ]". Thus, the complexity
of our Lur'e neuronmodelis comparablgo the FHN
modeldiscussee@arlierin thatbothbelongto theclass
of systemsin Fig. 3 with a secondorder linear part
G(s). Theessentiatlifferencebetweerthis modeland
the FHN modelis the nonlinearityof ¢ (v). We will
shaw laterthatthe new modelcanperformfrequengy
modulationwhichthe FHN modelcannotdueto this
additionalnonlinearity

3. ANALYSIS OF NEURONAL DYNAMICS
3.1 Stabilityanalysis

In this section we shallanalyzestability propertiesof
the Lur'e neuronmodelin (2). Our first resultstates
bounded-inpubounded-outpustability of the Lur'e
system.

Propositionl. ConsidettheLur’e systemin (5). Sup-
posethe parameter$ andp arepositve, and¢(z) is
globally Lipschitzandbounded.Then,for ary piece-
wise continuous boundedinput » andfor ary initial
statesv(0) andw(0), thereexists a uniquebounded
solution(v, w) to (5).

Proof. The existenceand uniquenes®f the solution
follows from Lipschitz continuity of ¢ andpieceavise
continuity of u (seeKhalil (1996)).Now, recall that
thesystemcanbe expresseasthefeedbaclksystemn
Fig.3whereG(s) isgivenby (6). Sinceg is abounded
function, all the input signalsto G(s) are bounded.
Moreover, positvity of b and p meansstability of
the linear systemG(s). Hence,all the statesof ary
minimal realizationof G(s) mustbe bounded. [

We now considetthe Lur’e modelin (2) with constant
input « and examine stability of equilibrium points

via the Lyapuna’s indirect method. The result is
summarizedsfollows:

Proposition2. Let (ve,w.) be an equilibrium point
of (2) with a given constantinput u. Supposethe
linearizedsystemaroundthe equilibrium pointhasno
eigervalueson the imaginaryaxis. Thenthe equilib-
rium pointis

asaddlepoint & b, < 1}
anunstablenode/focuss ) > 1,
astablenode/focuse b > 1,

p< wg

p >y
wherey] (i = 1,2) arethederiativesof ¢; evaluated
atv = ve.

Proof. Thelinearizationof (2) aroundthe equilibrium
pointis givenby & = Az where

_ | v -1
4= [mbé —p] '
Thecorrespondingharacteristiequationis
N+ (p = 1A + p(yy — 91) = 0.
Theresultthenfollows immediatelyfrom the follow-
ing fact: Let therootsof equation
MNirar+8=0

with unknavn A be denotedby A; (i = 1,2). Then
underthe assumptiorRe();) # 0 fori = 1,2, we
have

A1 2<0<:>ﬂ<0
i=1,2) & >0,
1 =1,2) & 8> 0,

a<0
a>0 m

3.2 Functionalpropertiesof the Lur'e model

We now shav by simulationsthat the Lur'e model
capturesavariety of neuronalpropertiesWe consider
the sigmoid basis function (4) for ¢ and use the
following valuesof the parameteri (5):

U, =—0.2, v, =-035, p=0.3,
a=18, b=3, ¢=22, d=35,

Similarresultscanbeobtainedf we usethepiecavise
linear basisfunction (3) insteadof the sigmoidfunc-
tion.

Whenu = 0, theisoclinesaregivenby thelight curves
in Fig. 4 (above).Notethattherearethreeequilibrium
pointsX, Y, andZ. Fromtheearlierstabilityanalysis,
it canreadilybefoundthat X is stable)Y is asaddle,
andZ is anunstablenode/focusTherestingvaluesof
v andw (i.e.theuniquestableequilibriumpointwhen
u = 0) arefoundto be

Vrest = D.88 X 1072, Wyesy = 4.00 x 1074

andareusedastheinitial statedor all simulationghat
follow.

Threshold: Short pulse inputs of duration0.2 with
variousheightsare appliedto the Lur'e modelwhen
it is atrest.We seefrom Fig. 4 (below) thatanaction



potentialis generatedf andonly if the pulseheight
is largerthana thresholdvalue (=2 0.74). The under

lying mechanisnfor the thresholdphenomenorcan
be explainedasfollows. In Fig. 4 (above), the pulse
input makesthe state(v, w) jump (or rapidly move)

from the restingpoint X to the right by a distance
roughly equalto the productof the pulsedurationand
the height.If the jump is small, thenthe statesimply

goesbackto the restingpoint X. If the jump is big

enoughto go beyondthe separatorix , thenthe state
trajectorygoesaroundthe unstableequilibrium point

Z andeventuallycorvergesto X. Thus,thethreshold
is determinedby the horizontaldistancebetweenX

andthe separatorix.

0.3

)

-0.1
-0.2 0 0.2 0.4 0.6

0.6

1 0.744

0 10 20 30
Time

Fig. 4. Thresholdphenomenowf the Lur'e model

Frequency modulation: Fig. 5 shavs theresponsef
the Lur'e model when the following two-stagestep
inputis applied:

_ (0.03 (0< ¢ < 100)
)= { 0.08 (100 < )

The figure clearly shavs that the frequeny of the
spiky limit cycle changeswith the magnitudeof the
constaninput. RinzelandErmentrout(1989)shaved
by phaseplaneanalysighatthecauseof thefrequeny
modulationin the ML modelis the saddle-nodebi-
furcation.In the caseof our Lur'e model,exactly the
sameargumentcanbe madeto explain the frequeny
modulationphenomenonWe shall briefly repeatthe
analysisfor completenessisingFig. 5 (above). Note

2 A pair of statetrajectoriesthat corverge exactly to the saddle
point Y. In Fig. 4 (abore), it is roughly given by the part of the
verticalisoclinefrom Z to Y andits smoothextensionto the point
(0,—0.1).

thatthetwo statetrajectoriescomingout of the saddle
point Y along its unstableeigervectorsmust termi-

nate at the unique stable equilibrium point X, for

the boundednessf the trajectoriesareguaranteedy

Proposition1. One of theseheteroclinictrajectories
comingout of Y to theleft goesdirectly to X, while

the other one goesaround Z and corvergesto X.

Now, asthe input magnitudeincreasegrom zero,the
equilibriumpoints X andY comecloserto eachother

Whenthey meet,asaddle-nodéifurcationoccursand
the pair of heteroclinicorbits becomesa homoclinic
orbit which is a limit cycle with infinite period. If

the input magnitudeis a bit further increasedthen
Z becomesthe only equilibrium point. Since Z is

unstableand every trajectoryis boundedtheremust
exist a periodic orbit (Poincare—Bendixsotheorem,
Khalil (1996)). The frequeng of the periodic orbit

increasegrom zeroto somefinite valueasthe input

magnitudeincreasesexhibiting the frequengy modu-
lation. Finally, it shouldbe notedthatthe FHN model
can have only one equilibrium point for ary input

value and thus the saddle-nodéifurcation, which is

responsiblefor the frequeng modulation,can never

happen.
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Fig. 5. Frequenyg modulationof the Lur'e model

Mode switching: A constantinput 4 of magnitude
0.15 is appliedto the Lur'e modelatt = 0 whenthe
systemis at rest. Thenthe systementersa limit cycle
asshovnin Fig. 6 (above).If ashortpulseof duration
0.2 and height 0.5 is superimposen the constant
input at ¢ = 50, the periodic firing is “turned off”

andthe membrangpotentialv corvergesto aconstant
value.
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Fig. 6. Bistability of the Lur'e model

This mode switching phenomenoris explainedas a
result of bistability. As shavn before,for the value
of constantinput « just above the saddle-nodebi-
furcation, the equilibrium point Z is an unstablefo-
cus/nodeanda stablelimit cycle is generatedlf u is
furtherincreasedthe slopeof the verticalisocline,;
at Z eventuallybecomesmallerthan p. This means,
accordingto Proposition2, that Z becomesa stable
equilibrium point. At this point, the stablelimit cycle
andthe stableequilibrium point coexist, andthe sys-
temexhibits bistability. Thesetwo areseparatethy an
invisible unstabldimit cycle. If a shortpulseof input
malkes the statejump to the inside of this unstable
periodicorbit, thenthe stateis attractedto the stable
equilibriumpointasshavnin Fig. 6.

3.3 Furtherrefinemenof theLur'e model

The Lur'e modelwe have developedandanalyzedso
farcaptureshedynamicsof theaxon,aneuronatom-
ponentresponsibldor generatiorof actionpotentials.
The dynamicsand functions of other components,
suchasthedendriteandthe soma alsoplay animpor-
tantrole in emeging high functionality of networked
neuronaloscillators.Anothercrucialdynamicsis due
to the information transferbetweenneuronsvia the
synapticconnectionsThe objective of this sectionis
to addtherelevantdynamicsto completetheneuronal
modeling.

Adaptation: An important characteristiamissingin
the Lur'e modelis the adaptation In fact, all of the
HH, ML, andFHN modeldackthisproperty probably
becausehis propertyis dueto the dynamicsof the
somaand/orthe dendrite.lIt is characterizedy the
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Fig. 7. PIR phenomenownf N

following phenomenonwWhena stepcurrentinput of
sufficiently large amplitudeis appliedto a neuron,a
train of action potentialsis generatedFor the neu-
ron models,the actionpotentialspersistforever with
a fixed frequeng. For the actual neurons,however,
the frequeny graduallydecreaseandeventuallythe
neuronstopsfiring; FitzHugh(1969).

From a systemgpoint of view, the above obsenation
suggestghat the neuronaldynamicsseemto involve
a filter with a zeroat the origin, not to passthrough
the stepinput. Hencewe proposeo addthe following
linearfilter attheinput port of the Lur'e model:

ks

F(s) GG i) @)
wherek, p; andp, aresomepositive constantsThe
completedescriptionof our neuronmodel is given
by (2) andu = F(s)v wherev is the input to the
model. Let us denotethis modelby v = N'(v). The
input v hasthe physicalsignificanceof the electrical
currentinjectedinto the somaand/orthe dendrite.A
simulationof stepresponsashaovsthatspikesaregen-
eratedbut areterminatedwithin a finite time interval
with gradually decreasingrequeng, indicating the
adaptatiorphenomenon.

Post-inhibitory rebound (PIR): Another important
property missingin the original Lur'e model (2) is
the PIR; Friesenand Friesen(1994). It is obsened
in real neuronsthat action potentialsare generated
after an inhibitory (negative) currentinput is applied
for a while andthencut off. It turnsout thatthe PIR
propertycanbeincorporatednto our neuronrmodelby
exactly the saméfiltering mechanismasabove. Fig. 7
shaws the responseof our model - whena current
pulse

[ -1 (0<t<100)
v(t) = { 0 (t>100)
is applied.We seethat the currentinput » from the
somato the axon (light curve) bounceshackto take
on positive valuesafterthe endof theinhibitory input.
Becauseof this, a finite train of action potentialsare
generateddarkcurwe),indicatingthe PIR property

Synaptic fatigue: Let us considerthe effect of a
firing neuronNV,.. connectedthrougha synapseto



anotherneuronN,.s¢;. The membranepotentialvpe
of Nyre inducessomeionic currentflow throughthe
membraneof NV, atits dendritesThe direction of
theoverallcurrentflow vy, depend®ntheparticular
synapticconnection:if the inducedcurrentvps; is
negative (positive), the synaptic connectionis said
to beinhibitory (excitatory). Thus,we may view the
synapticconnectionas a dynamicalsystemwith the
input vpre and the output v,4e. Let us denotethis
systemas vpest = S(vpre). It IS @ commonpractice
Friesenand Friesen(1994); Koch and Segev (1989)
to modelthe systemsS in termsof varying electrical
conductancedgeadingto a fairly complex nonlinear
model.

In the sequel,we argue that the following simple
constangainmodelcanbe usedfor S for thepurpose
of devising networkedneuronalbscillators:

Vpost = :tU'Upre

whereo is a positive constantwhosevalueis a mea-
sureof thestrengthof thesynapticconnectionandthe
sign + reflectsthe excitatory or the inhibitory nature
of the synapseOf course,the inducedcurrentinput
to Mpost iS NOt at all proportionalto the presynaptic
potential vp.. However, if we look at the effect of
vpre ON the postsynaptigotentialvyest, the resulting
model

Vpost = N (£0Vpre) (8)

has the right property of our interest— synaptic
fatigue In particular with this model, a persistent
excitation by an infinite train of action potentialsin
vpre resultsin afinitetrain of actionpotentialsn vp st .-

In summarythe overallneuronmodelfrom the presy-
napticpotentialinputto the postsynaptipotentialout-
put is given by (8) with the linear filter F'(s) in (7)
and the nonlinearLur'e systemin (2). This model
capturesvariouspropertiesof real neuronsincluding
the adaptationpost-inhibitoryrebound,and synaptic
fatigue,in additionto the standardpropertiessumma-
rized in Section3.2. Theseadditionalpropertiesare
known to be particularly importantfor construction
of networkedneuronabscillators;FrieserandFriesen
(1994);Matsuoka(1985).

4. CONCLUSION

We have proposeda new modelfor a single neuron.
The modelis given as a specialclassof the Lur'e
systemdgor which substantiahmountof mathematical
analysistools are available. The compleity of the
Lur'e modelis shavn to be comparableo the FHN
model which is one of the simplestneuronmodels
capableof generatingpiketrains.Theaccuray of the
Lur'e modelis measuredy its ability to reproduce
typical neuronalresponseandis shavn qualitatively
comparabldo the morecomple< ML model.

REFERENCES

R. FitzHugh. Mathematicalmodels of excitation
andpropagatiorin nere. Biological Engineering
pagesl—85,1969.H. P. Schwan,Ed.,McGraw-Hill.

W. O. Friesenand J. A. Friesen. NeuoDynamix:
Computermodelsfor neuiophysiolgy. Oxford
UniversityPress1994.

K. Funahashi. On the approximaterealization of
continuousmappingsby neuralnetworks. Neural
Networks2:183-192,1989.

B. K. GhoshandJ. He. Dynamicsandcontrol prob-
lemsin biology: somenew challenges.|EEE Con-
trol System&lagazing 21(4):27,2001.

A. L HodgkinandA. F. Huxley. Currentscarriedby
sodiumand potassiunions throughthe membrane
of the giant axon of loligo. J. Physiol, 117:500—
544,1952.

K. Hornik. Multilayer feedforwardnetworks areuni-
versalapproximatorsNeural Networks2:359-366,
1989.

K. Hunt, D. SharbaroR. Zbikowski, andP. Gawthrop.
Neural networks for control systems— a surwey.
Automatica 28(6):1083-11121992.

H. K. Khalil. NonlinearSystemsPrenticeHall, 1996.

C.Kochandl. Sggev. Methodsn Neuonal Modeling:
From Synapseso Networks The MIT Press;1989.

A. I. Lur'e. SomeNonlinearProblemsin the Theory
of AutomaticControl. H. M. StationeryOff., 1957.

K. Matsuoka. Sustainedoscillations generatedby
mutually inhibiting neuronswith adaptation.Biol.
Cybern, 52:367-3761985.

C. Morris andH. Lecar Voltage oscillationsin the
barnaclegiant musclefiber. Biophys.J., 35:193—
213,1981.

J.Nagumo,S. Arimoto, andS. Yoshizava. An active
pulse transmissionline simulating a nerve axon.
Proc.IRE, 50:2061-20701962.

K. S. Narendra. Neural networks for control: theory
andpractice.Proc. |EEE, 84(10):1385-140861996.

K. S.NarendraandF. L. Lewis. Introductionto the
specialissueon neuralnetwork feedbackcontrol.
Automatica 37:1147-11482001.

Z. Nenadicand B. K. Ghosh. Computationwith
biological neurons. Proc. AmericanContr. Conf,
page257-2622001.

J. Rinzeland G. B. Ermentrout. Analysis of neural
excitability andoscillations. Methodsin Neuonal
Modeling C. Koch and|l. Sajev, eds, pagesl135—
169,1989.



