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Abstract:
This paper proposes a novel scheme for the generation of primary residual vector
(PRV) for sensor or actuator fault detection and isolation (FDI) in multivariate
dynamic systems. The PRV, which is used for fault detection purpose, is designed to
be insensitive to process uncertainties, including model–plant mismatch (MPM) and
process disturbances. To generate the PRV, we do not need a precise system model.
Instead, all we need is an estimate of the system model, which may be biased from the
true model. Under the condition that the number of process uncertainties is less than
the number of outputs, the generated PRV can be made perfectly insensitive to process
uncertainties. Even when this condition does not hold, the most important elements in
the process uncertainties can still be decorrelated from the PRV. A numerical example
to demonstrate the theory is given. The newly proposed approach is compared with
existing robust FDI schemes, e.g., the Chow–Willsky scheme. Copyright c©2002 IFAC
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1. INTRODUCTION

Since the 1970s, tremendous research efforts have
been invested into model–based sensor or actu-
ator fault detection and isolation (FDI). Survey
papers in this area have been published byWillsky
(1976), Gertler (1988), Frank (1990), and Patton
et al. (2000). More recent advances have been
reviewed by Qin and Li (2001), and Li and Shah
(2002).

Most model–based FDI approaches assume that
an accurate plant model of the system under
consideration is available, and at the same time,
they also assume the process disturbances to
be zero-mean Gaussian noise. Since model–plant
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mismatch (MPM) is inevitable and process dis-
turbances can be any functions of time. Their
presnece will affect the residuals generated for
fault detection. The need for robust FDI schemes
which enable the decoupling of MPM and process
disturbances from the residuals has been identi-
fied. So far there have been very few published
studies with respect to robust FDI. Patton and
Chen (1992) have developed an observer–based
approach toward the removal of process distur-
bances from the residuals, but the approach does
not consider the issue of MPM. Gertler and Kun-
wer (1995) have proposed a modelling error de-
coupling method, which decouples the modelling
error at each time instant. This method is com-
putationally intensive and not practical. Qin and
Li (2001) and Li and Shah (2002) have proposed
the subspace identification–based approaches for

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain



the residual generation in terms of the Chow–
Willsky Scheme (1984). They do not identify the
individual system matrices. Instead, the residual
models are identified directly from training data,
thus avoiding the errors in identifying the system
matrices. However, the identified residual model
is only asymptotically consistent with the true
residual model. In practice, the model is always
trained from finite data samples, therefore mod-
elling errors will inevitably be introduced into the
residuals. Assuming that a finite set of different
values of the system matrices are available, Lou
et al. (1986) have proposed a robust scheme of
generating residuals based on the average value
of the system matrices. Nevertheless, the effect of
MPM can not be completely removed from the
residuals using this method.

This paper proposes a robust FDI scheme by ex-
tending the original Chow–Willsky scheme (Chow
and Willsky, 1984) for sensor or actuator fault de-
tection and isolation, the PRV is made insensitive
to process uncertainties, including the MPM and
the process disturbances of the system. Using this
method, we do not need a precise system model
before hand. Instead, only a rough estimation of
the system model, which could be biased from
the true model, is required. Under the condition
that the number of process uncertainties is less
than the number of outputs, the robust PRV can
be made completely insensitive to the process
uncertainties. Even when this condition does not
hold, partial decoupling can be carried out, which
means that the dominant factors in the process
uncertainties can be decorrelated from the PRV.

2. PROBLEM FORMULATION

2.1 System description

Assume that the normal behavior of a multivari-
ate dynamic process is represented by the follow-
ing discrete-time state space model:

{

xk+1 = Axk +Bu
∗
k +Edk

y∗k = Cxk + ok
(1)

where u∗k ∈ <
l and y∗k ∈ <

m are fault–free process
inputs and outputs with dimension l and m re-
spectively; xk ∈ <

n is the process state vector;
ok ∈ <m is the measurement noise; dk ∈ <q

with 1 ≤ q ≤ n is the process disturbances,
which can be any unknown function of time,
not necessary to be zero–mean; E ∈ <n×q con-
sists of q columns of the n × n identity matrix
In; {A, B, C} are unknown time–invariant pro-
cess matrices with appropriate dimensions. ok is
assumed to be zero–mean Gaussian–distributed
white noise vector with covariance matrix Ro and
to be independent of the initial states x0 and dk.

Further, the process is assumed to be controllable
and observable, which holds in most of the cases.

With the presence of sensor or actuator faults, the
observed inputs and outputs can be represented
by:

{

uk = u∗k + f
u
k

yk = y∗k + f
y
k

(2)

where fuk ∈ <l and fyk ∈ <m are input and
output sensor faults respectively. In the fault–
free case, fuk and fyk are null vectors. If some
sensors in inputs and/or outputs are faulty, the
corresponding elements in fuk and fyk will be non–
zero, while the other elements remain zero.

2.2 Process Uncertainties

Since the true value of the system matrices
{A, B} are never known, we have:

A = A◦ + δA, B = B◦ + δB (3)

where {A◦, B◦} are estimates of {A, B} from
training data, and {δA, δB} are discrepancies be-
tween {A, B} and their estimates, i.e., they repre-
sent the model–plant mismatch (MPM). However,
we assume that C is exactly known, i.e. C = C◦,
because it is the sensor gain matrix.

The combination of Eqns. 1, 2 and 3 results in

xk+1 = (A◦ + δA)xk + (B◦ + δB)u∗k +Edk

=A◦xk +B◦u
∗
k + [δA δB]

[

xk
u∗k

]

+Edk

=A◦xk +B◦uk + ek −B◦f
u
k (4)

yk =C◦xk + ok + f
y
k

where ek ≡ [δA δB]

[

xk
u∗k

]

+ Edk ∈ <
n is the

process uncertainty vector due to ne (1 ≤ ne ≤ n)
independent sources.

2.3 Problems of Robust Residual Generation

After the establishment of Eqn. 4, the problem of
robust residual generation can be stated briefly as
follows:

(1) From a set of training data, obtain the esti-
mates {A◦, B◦, C◦};

(2) In terms of the estimated system matrices,
generate a sequence of PRV, which under
certain condition is completely independent
of the process uncertainty vector ek. Use
this generated PRV for the detection and
isolation of input and output sensor faults.



3. GENERATION OF ROBUST PRIMARY
RESIDUAL VECTOR

3.1 Decoupling Process Uncertainties from the

PRV

After performing algebraic manipulation on Eqn.
4, the following stacked equation (Chow and Will-
sky, 1984) can be obtained

ys,k =Γ
◦
sxk−s +H

◦
sus,k + f

y
s,k −H

◦
sf
u
s,k

+G◦
ses,k + os,k (5)

where

Γ◦s =











C

CA◦

...
CAs◦











∈ <ms×n

is the extended observability matrix, with s being
the order of parity space;

H◦
s =











0 0 · · · 0
CB◦ 0 · · · 0
...

...
. . .

...

CAs−1
◦ B◦ CA

s−2
◦ B◦ · · · 0











∈ <ms×ls

G◦
s =











0 0 · · · 0
C 0 · · · 0
...

...
. . .

...

CAs−1
◦ CAs−2

◦ · · · 0











∈ <ms×ns

are two lower triangular block Toeplitz matrices,
withms = m(s+1), ls = l(s+1) and ns = n(s+1);

ys,k =
[

yTk−s · · · y
T
k

]T
∈ <ms is the stacked

output vector; us,k ∈ <
ls , fys,k ∈ <

ms , fus,k ∈ <
ls ,

es,k ∈ <
ns and os,k ∈ <

ms are similarly stacked
as ys,k.

Note that the optimal determination of s is be-
yond the scope of this paper. For the sake of
simplicity, we select s = n.

From Eqn. 5, we have

ys,k −H
◦
sus,k (6)

= [Γ◦s G
◦
s]

[

xk−s
es,k

]

+ [Ims
−H◦

s]

[

f
y
s,k

fus,k

]

+ os,k

By selecting a transformation matrix W◦ from
the null space of Ψ◦

s = [Γ◦s G
◦
s], i.e., W◦Ψ

◦
s =

0, and pre–multiplying both sides of Eqn. 6 by
W◦, the unknown state vector xk−s and process
uncertainty vector es,k can be removed from Eqn.
6, leading to the following PRV:

εs,k =W◦P
◦
s

[

ys,k
us,k

]

=W◦P
◦
s

[

f
y
s,k

fus,k

]

+W◦os,k ∈ <
ms−ns (7)

where P◦
s = [Ims

−H◦
s] and W◦ at least has

ms−ns independent rows. Notice that Ψ
◦
s contains

ns non–zero columns, hence it is at most ns–
dimensional. Note that in Eqn. 7, the first line on
the right hand side (RHS) is the computational
form of the PRV, and W◦P

◦
s is the PRV model.

Eqn. 7 can be splited into:

εs,k = ε
f
s,k + ε

∗
s,k (8)

where ε
f
s,k = W◦P

◦
s

[

f
y
s,k

fus,k

]

and ε∗s,k = W◦os,k

are the fault–related and fault–free terms respec-
tively, and both of them are completely insensitive
to the process state vector xk−s and uncertainty
vector ek.

ε∗s,k is a moving average (MA) of measurement
noise ok. Since ok has been assumed to follow
a zero–mean Gaussian–distribution, ε∗s,k is also
a zero-mean Gaussian-distributed random vector
(Johnson and Wichern, 1998) with covariance
matrix

Rs,ε∗ =W◦Rs,oW
T
◦ (9)

where Rs,o = Is+1 ⊗Ro is the covariance matrix
of os,k, and ⊗ stands for the kronecker tension
product.

In the presence of sensor and/or actuator faults,
assuming thatW◦ is not located in the null space
of P◦

s , i.e.,W◦P
◦
s 6= 0, ε

f
s,k will be non–zero. As a

result, the mean of εs,k will be non–zero, but the
covariance of εs,k is unchanged. Therefore, fault
detection can be carried out by simply checking
whether the mean of εs,k has deviated from zero.

3.2 Calculation of W◦

The transformation matrix W◦ should be de-
signed to be located in the null space of Ψ◦

s, and
have maximized covariance with P◦

s such that the
PRV will be most sensitive to any fault.

Using the algorithm proposed by Li and Shah
(2002), it can be easily shown that WT

◦ consists
of the largest eigenvectors associated with the
non–zero eigenvalues of matrix (Ψ◦

s)
⊥P◦

s, where
(Ψ◦

s)
⊥ = Ims

− Ψ◦
s(Ψ

◦
s)

†, and † stands for the
Penrose-Moore pseudo-inverse.

3.3 Fault Detection Index

Instead of simply using the PRV, one uses the
squared weighted residual (SWR) as an index



for fault detection, because it has a better per-
formance (Oxby and Shah, 1998). The SWR is
calculated by:

ηs,k = ε
T
s,kR

−1
s,ε∗εs,k (10)

Since ε∗s,k is zero–mean Gaussian–distributed ran-
dom vector, ηs,k will follow a central chi–square
distribution withms−ns degrees of freedom under
fault–free condition (Johnson and Wichern, 1998),
i.e. ηs,k ∼ χ2(ms − ns), ∀ f

u
k = 0 and fyk = 0.

However, if any sensor is faulty, ηs,k will vio-
late the central chi–square distribution. Therefore,
fault detection can be carried out by checking ηs,k
against a predetermined threshold χ2

α(ms − ns),
where α is a selected level of significance, e.g. α =
5%. Under the situation that the measurements
are noisy, an exponentially weighted moving av-
erage (EWMA) filter can be applied to εs,k first
in order to remove the effect of high–frequency
noises. Subsequently, we can use the filtered PRV
to calculate the fault detection index.

4. FAULT ISOLATION

Although analyzing the PRV can detect fault, to
isolate the faulty sensor, one has to transform εs,k

into a set of structured residual vectors (SRVs).
In this paper, we consider the simplest scenario:
isolation of single sensor/actuator fault once at
a time. Isolation of multiple sensors can also be
similarly carried out if there are enough degrees of
freedom in the residual model W◦P

◦
s . Interested

readers can refer to Li and Shah (2002) for details.

We design the ith SRV ris,k such that it is insensi-

tive to the ith input or output sensor fault, while
having maximized sensitivity to the other sensors.
Mathematically,

ris,k =Wiεs,k

=WiW◦P
◦
s

[

f
y
s,k

fus,k

]

+WiW◦os,k (11)

whereWi is a transformation matrix with appro-
priate dimensions, and Eqn. 7 has been employed.
For the sake of convenience, denoteM =W◦P

◦
s ∈

<(ms−ns)×(ms+ns).

To ensure ris,k to be insensitive to the ith sensor,
clearlyWi should be orthogonal to s+1 columns
of the M matrix, i.e.

Wi[M(:, i) M(:, i+m) . . .M(:, i+ms)] = 0,
∀ i = [1, m]

Wi[M(:,ms+ i) . . .M(:,ms+ i+ ls)] = 0,
∀ i = [m+ 1, m+ l]

where M(:, j) is the jth column of matrix M.

As a result, ris,k has ms−ns− (s+1) independent
rows. The calculation of Wi can be conducted
using the algorithm developed by Li and Shah
(2002).

From ris,k, one can similarly calculate the isolation

indices ηis,k = (ris,k)
T (Ris,ε∗)

−1ris,k, ∀ i = [1, m+

l], where Ris,ε∗ = WiRs,ε∗W
T
i is the covariance

matrix of ris,k. If

ηis,k ≤ χ2
α(ms − ns − s− 1), ∀ i ∈ [1, m+ l];

η
j
s,k ≥ χ2

α(ms−ns−s−1), ∀ j ∈ [1, m+l]∩{j 6= i}.

then it can be concluded that the ith sensor fails.

5. CONDITIONS FOR PERFECT AND
PARTIAL DECOUPLING

5.1 Condition for Perfect Decoupling

To completely make the PRV uncorrelated from
any process uncertainties, m − n > 0 must be
satisfied. Furthermore, to leave some degrees of
freedom for the design of fault isolation, a stricter
condition: ms − ns − (s + 1) > 0, should be
ensured for the isolation of single sensor fault,
which implies m− n− 1 > 0.

It should be noted that m − n − 1 > 0 seems to
be overly restrictive, but is still possible, because
most processes have redundant or duplicate sen-
sors for critical process variables.

5.2 Condition for Partial Decoupling

In the case that the perfect decoupling condition
is not satisfied, a partial decoupling scheme is
proposed in this section.

Performing singular value decomposition (SVD)
on matrix G◦

s results in

G◦
s = UGSGV

T
G (12)

where SG is a diagonal matrix with ns singular
values in decreasing order in the diagonal,UG and
VG are two unitary matrices.

UGSGV
T
G can be splited into two parts:

UGSGV
T
G = UG,1SG,1V

T
G,1 +UG,2SG,2V

T
G,2

(13)

where SG,1 is the first main submatrix of SG,
which contains the nse largest singular values of
G◦
s; and UG,1 and VG,1 are the first nse columns

ofUG andVG, respectively. The determination of
nse depends on how much the nse largest singular
values can approximate the total singular value in



SG, e.g. 80%, and the availability of the degrees
of freedom in the residual model.

Substituting Eqn. 13 into Eqn. 6 gives

ys,k −H
◦
sus,k =Γ

◦
sxk−s +UG,1SG,1V

T
G,1es,k

+UG,2SG,2V
T
G,2es,k

+P◦
s

[

f
y
s,k

fus,k

]

+ os,k (14)

Using Eqn. 14, by selecting Ψ◦
s = [Γ◦s UG,1],

the transformation matrix W◦ can be similarly
calculated as before. Eventually, in this case, the
PRV will be

εs,k =W◦P
◦
s

[

f
y
s,k

fus,k

]

+W◦UG,2SG,2V
T
G,2es,k

+W◦os,k (15)

From Eqn. 15, the dimension of PRV isms−n−n
s
e.

Further, for the isolation of single sensor fault, the
dimension of SRVs will be ms − n− nse − (s+ 1).
Obviously, at least. ms − n − nse − (s + 1) > 0
should be ensured.

6. NUMERICAL EXAMPLE

A numerical example is provided to demonstrate
the correctness of the proposed scheme. The
simulated process is a second order continuous-
time dynamic system under closed–loop condition
with four outputs, two inputs and two unmea-
sured disturbances. The process disturbances are
simulated by integrated white noises. The out-
puts are assumed to be corrupted by Gaussian–
distributed white noises with covariance 0.12I4.
The continuous-time system is sampled with a
period of 0.5 second. The system matrices in the
discrete–time domain are

A =

[

0.28283 −0.00059394
1.2584 0.042506

]

B =

[

0.2844 −0.00032506
0.68872 0.15287

]

C =









1 0
0 1

0.5 0.5
0.5 −0.5









A set of training data is used for the identification
of the system matrices using the CANSTART

command in MATLAB, whose estimates are given
below.

A◦ =

[

0.3041 −0.0050
1.3334 0.0182

]

B◦ =

[

0.2801 0.0004
0.6880 0.1513

]

C◦ = C

Further, based on A◦, B◦ and C◦, H
◦
s and Ψ

◦
s are

constructed, andW◦ is calculated. Since there are
6 sensors in total (4 outputs and 2 inputs) in the
simulated system, accordingly, 6 transformation
matrices, Wi, i = [1, 6], are calculated. With
H◦
s , W◦ and Wi, a sequence of PRV and 6

sequences of SRVs can be produced from the
training data. Further, the covariance matrices
Rs,ε∗ and Ris,ε∗ , ∀ i = [1, 6] are estimated. Note

that the ith SRV ris,k is designed to be insensitive

to the ith sensor but to be most sensitive to the
other 5 sensors.

Four types of faults, e.g., bias, drift, complete
failure and precision degradation, are simulated
in this example. A bias f ik = 0.05 is introduced
to one sensor from time instant 500 to 700. As
illustrated in Fig. 1, since the first fault isolation
index η1

s,k is within a predetermined confidence
limit all the time, while the other isolation indices
ηis,k i = [2, 6] are all beyond the limit during 500
to 700, it can be inferred that the first output
sensor is faulty.

The FDI results by partially decoupling the pro-
cess uncertainties are displayed in Fig. 2. Since
the major elements in the uncertainty vector have
been removed from the residuals, correct detection
and isolation result has been obtained with an
acceptable performance.

For comparison, the original Chow–Willsky scheme
is applied to the same data set, and the FDI
results are illustrated in Fig. 3. Therein the faulty
sensor is not correctly identified, because the first
fault isolation index η1

s,k is beyond the limit due to
the effects of process uncertainties, violating the
predetermined logic of isolation. It shows clearly
that the original Chow–Willsky scheme fails to
isolate the faulty sensor under the same condition.

7. CONCLUSIONS

A robust scheme for the detection and isolation of
sensor and actuator faults in dynamic processes
has been proposed. This approach can completely
decouple the effects of any process uncertainties,
such as MPM and unmeasured disturbances from
the PRV under certain conditions. In comparison
with the existing robust FDI schemes, the simplic-
ity of our approach is obvious.

This approach has been applied to a simulation
example, where four types of sensor faults, in-
cluding bias, drift, complete failure and preci-
sion degradation, are simulated. In the simulation,
complete and partial decoupling of the process
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Fig. 1. Complete robust detection and isolation

indices of a bias fault in the 1st output sensor
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Fig. 2. Partial robust detection and isolation in-

dices of a bias fault in the 1st output sensor
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Fig. 3. Detection and isolation indices of a bias

fault in the 1st output sensor with traditional

Chow–Willsky approach

uncertainties have been conducted. The simula-
tion also demonstrates that our new approach is
more robust with respect to process uncertainties
in comparison with the original Chow–Willsky
approach.
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