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Abstract: One of the main drawbacks of NMPC schemes is the enormous computational effort
these controllers require. On the other hand, linear MPC methods can be implemented solving
just Quadratic Programming (QP) or Linear Programming (LP) problems. In this paper,
an alternative implementation of NMPC suggested by De Keyser (1998) is implemented
to reduce the computational effort. This methodology is based on on-line linearisation and
solves and iterative procedure which, if convergent, provides with the solution of the NMPC
problem. This controller is tested and compared with the purely nonlinear MPC schemes.
Copyright c© 2002 IFAC

Keywords: predictive control, nonlinear systems, constraints

1. INTRODUCTION

In real life problems to be faced by the control engi-
neer,constraintsand nonlinearitiesstand out as the
most important difficulties. Constraints limit the per-
formance which can be achieved by the closed-loop
system, and must be handled in an efficient way if
performance is a priority. Several strategies have been
suggested to design and analyse control systems under
constraints, among which Model Predictive Control
(MPC) has gained widespread acceptance during the
last two decades. The reasons for MPC success are the
simplicity of the ideas behind the control strategy and
the possibility to handle constraints and nonlinearities
in a rigorous way.

The term MPC encloses a wide family of control algo-
rithms which make predictions of the future behaviour
of the plant by using an explicit model of the pro-

cess. Although the industrial processes are inherently
nonlinear, the vast majority of MPC applications are
based on linear models (Qin and Badgwell, 2000). In
the linear MPC case, the optimisation problem can be
written as a Linear or Quadratic Programming (LP
or QP) problem for which there exist very efficient
software tools. However, sometimes nonlinearities are
significant enough to justify the application of Nonlin-
ear Model Predictive Control (NMPC) strategies (Qin
and Badgwell, 2000).

A very important issue of NMPC, which was over-
looked in the first few formulations, is the real-time re-
quirement of industrial control systems. This require-
ment is essential to translate the academical results
into the industrial world. Due to the use of a nonlinear
model, the NMPC strategy is based on solving a non-
convex optimisation problem on-line. It is well known
that the available optimisation algorithms for non-
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convex problems cannot guarantee that the solution
obtained (if any) is a global optimum. In fact, these
tools do not even guarantee that a feasible solution
exists. Even when a suboptimal feasible solution is
found, the computational effort is enormous compared
to that of solving QP and LP counterparts, which
makes it difficult to apply NMPC to industrial pro-
cesses. The following quote (Morari and Lee, 1999)
clarifies this point:

“Though the theoretical purists tend to stay
away from linearisation approaches, lineari-
sation is the only method which has found any
wider use in industry beyond demonstration
projects.”

Some recent results present efficient implementations
of NMPC (Morari and Lee, 1999; Qin and Badg-
well, 2000), but the computational burden they require
is still much larger than that involved in linear MPC
applications. In order to overcome this drawback, sev-
eral alternatives to purely non-linear MPC have been
suggested. These alternative methods try to obtain
an optimisation problem for which the computational
burden and the implementation difficulties are similar
to those of linear MPC. The optimisation problem
associated to NMPC is substituted by a QP counter-
par which is generated applying different approximate
or iterative algorithms. Several approaches which fol-
low these guidelines have been suggested (Oliveiraet
al., 1995; Nevistíc, 1997; Meǵıas et al., 1999), and
an overview of these can be found in (Morari and
Lee, 1999).

In this paper, the application of a modification (De Key-
ser, 1998) to the Extended Prediction Self-Adaptive
Control (EPSAC) suggested by De Keyser and Cau-
wenberghe (1985) is investigated. The EPSAC formu-
lation is similar to that of the better known Generalised
Predictive Control (GPC) (Clarkeet al., 1987), but a
nonlinear version of EPSAC has been recently pro-
posed to handle nonlinear systems (De Keyser, 1998).
At each sampling instant, the nonlinear EPSAC uses a
local linearisation of the process to compute an “op-
timised response”, analogous to the “forced response”
of linear MPC methods. This scheme is applied within
an iterative algorithm which, if convergent, provides
with an exact solution to the optimisation problem.
The controller is expected to be identical to a purely
NMPC strategy, unless the optimisation yields some
other local minimum. However, simulation results are
not provided in (De Keyser, 1998) to show the prop-
erties of the nonlinear EPSAC. In addition, it must
be pointed out that no strict theoretical results are so
far available for the nonlinear EPSAC, but this paper
focuses only on practical considerations.

In this paper, the nonlinear EPSAC and a standard
NMPC algorithm are compared taking into account
both performance and computational issues. The pa-
per is organised as follows. In Section 2 the formula-
tion of NMPC is shortly reviewed. Section 3 presents

the formulation of the nonlinear EPSAC. In Section 4
some simulation results obtained with both the nonlin-
ear EPSAC and a standard NMPC implementation are
shown, and a comparison between these strategies is
provided. Finally, conclusions are drawn in Section 5.

2. A BRIEF OVERVIEW OF NMPC

Given a Multiple-Input Multiple-Output (MIMO) pro-
cess, described by the following autonomous nonlin-
ear ODE system:{

ẋ = f(x,u),
y = g(x),

(1)

with n states (x), m inputs (u) andp outputs (y), the
control aim is to find a control profile to minimise a
cost function:

J(t) =
N2∑

k=N1

p∑
i=1

γi [wi(t + k|t)− yi(t + k|t)]2

+
Nu∑
k=1

m∑
i=1

λi∆u2
i (t + k − 1|t). (2)

wherewi(t + j|t) are the future values of the setpoint
for the i-th output, which are known at timet or
assumed to be equal to the current valuewi(t|t),
and yi(t + k|t) are future predictions of the system
of Equation (1). The tuning knobsN2 and Nu are
called, respectively, the prediction horizon and the
control horizon, for obvious reasons, whereasN1 is
the lower prediction horizon. Finally,γi and λi are
nonnegative weights, and∆ui(t + k|t) are future
control increments (or moves). In this paper,N1 and
all the weightsγi have been set to 1 for all the
simulated experiments. The control increments from
∆ui(t+Nu|t) and beyond are taken to be zero so that
the optimisation problem depends on a finite number
(Nu ×m) of decision variables.

In the NMPC literature, the cost function is often
defined to take into account the states instead of the
outputs, and the aim is to lead the state vector to
the origin (regulatory problem). Note that the cost
function of Equation (2) can be applied for both the
setpoint tracking and the regulatory problems. In the
latter case, the outputsy should be identical to the
statesx, and the setpoints should be zero. Note, also,
that state measurements or estimations are required in
order to solve the model equations forward in time to
compute the predictions, irrespective of which kind of
cost function is used.

The optimisation problem is often solved subject to
input (amplitude and moves) and output constraints:

uimin ≤ ui ≤ uimax, i = 1, . . . ,m,
∆uimin ≤ ∆ui ≤ ∆uimax, i = 1, . . . ,m,
yimin ≤ yi ≤ yimax, i = 1, . . . , p.

The complexity of the optimisation problem to be car-
ried on in NMPC controllers is very remarkable. Two



different strategies can be distinguished to solve this
problem, namely thesequentialapproach and thesi-
multaneousapproach. In the latter, the objective func-
tion and the model equations converge at the same
time, whereas in the former, the model equations are
satisfied at every sampling instant and the implemen-
tation is simpler. In this work, the controllers have
been implemented using the sequential approach, for
which the intermediate solutions are feasible with re-
spect to the model equations. This is a relevant advan-
tage in the case of on-line applications.

For on-line implementations of NMPC, the use of gra-
dient (first-order) information is essential in order to
reduce the computational burden. Gradients are com-
puted using either the adjoint system method (Rosen
and Luus, 1991), the finite difference method, or the
trajectory sensitivity equations method. Although the
trajectory sensitivity method can be more stable com-
pared to the adjoint method, it requires a larger num-
ber of equations and increases the computation time.
For this reason, the adjoint system approach has been
used throughout this work.

3. NONLINEAR EPSAC

This section presents the formulation of the nonlin-
ear1 EPSAC suggested in (De Keyser, 1998). For
simplicity of notation, the SISO version is formulated
here, but the controller has been implemented for the
MIMO case. The key idea of this formulation is that
the sequence of manipulated variables can be thought
of as the sum of a base control sequenceubase(t +
k|t) plus a sequence of increments of the manipulated
variablesδu(t + k|t). That is:

u(t + k|t) = ubase(t + k|t) + δu(t + k|t).
Thej-step ahead output prediction is computed as the
sum of the response of the processybase(t + k|t) due
to the base input sequence plus the response of the
processyoptimise(t + k|t) due to the future control
increments with respect to the base input sequence:

y(t + k|t) ≈ ybase(t + k|t) + yoptimise(t + k|t).
The nonlinear model is used to computeybase(t+k|t)
while yoptimise(t + k|t) is computed from a linear
model of the plant, obtained linearising the nonlinear
model about the current state at each sampling instant,
hence the use of the “≈” sign. The cost function is
quadratic in the decision variablesδu(t + k|t) and
the optimisation problem can be solved using a stan-
dard QP algorithm as in linear MPC. The component
yoptimise(t+k|t) is the cumulative effect of a series of
impulse and step inputs:

yoptimise(t + k|t) = hkδu(t|t) + hk−1δu(t + 1|t)
+ · · ·+ gk−Nu+1δu(t + Nu − 1|t),

1 Apart from the use of a nonlinear model, the nonlinear EPSAC
formulated in (De Keyser, 1998) differs from the linear counterpart
in the disturbance model.

where the parametersh1, h2, . . . , hk, · · · , hN2 are the
coefficients of theunit impulse responseof the sys-
tem, whereas the valuesgk refer to theunit step re-
sponsecoefficients. Using matrix notation, the predic-
tion equation becomes

Y = Y + GU

where

Y =
[
ybase(t + N1|t) · · · ybase(t + N2|t)

]T
,

U =
[
δu(t|t) · · · δu(t + Nu − 1|t)

]T
,

(3)

and

G =


hN1 hN1−1 hN1−2 · · · gN1−Nu+1

hN1+1 hN1 hN1−1 · · · gN1−Nu+2

· · · · · · · · · · · · · · ·
hN2 hN2−1 hN2−2 · · · gN2−Nu+1

 .

In this description, the coefficients of the matrixG are
computed using the linearised model about the current
state. It is also possible to use different linear models
for different time instants in the future,i.e. linearising
about a suboptimal trajectory, thus obtaining a Lin-
ear Time Variant (LTV) version of this methodology,
which has been used in the second example reported
in Section 4.

The superposition principle does not hold for non-
linear processes and the output predictions generated
this way will only coincide with the output prediction
generated by a NMPC controller when the sequence
of future control moves (U ) is zero. If this is not the
case, the base control sequence is made equal to the
last base control sequence plus the optimal control in-
crements found by the QP algorithm. The procedure is
repeated until the sequence of future controls is driven
close enough to zero (the prediction equation becomes
exact) in an iterative scheme. To reduce the number of
iterations, the initial value ofubase(t + k|t) is critical.
A simple but effective choice (De Keyser, 1998) is
to start with the optimal control policy derived at the
previous sampleu∗(t+k|t−1) with the corresponding
time shift. In this paper, this strategy has been used.
Another strategy which has been tried is the use of
the steady-state value required to lead the output to
the setpoint asubase(t + k|t) for k ≥ Nu, in the first
iteration. However, this alternative does not reduce the
number of iterations in the simulation examples.

The convergence conditions of the algorithm are very
difficult to obtain, since they depend on the severity
of the nonlinear characteristics of the process, on past
inputs and outputs, on the future reference sequence
and on perturbations.

A simple relationship exists between the control ac-
tions∆u andδu:

∆u(t|t)
∆u(t + 1|t)

· · ·
∆u(t + Nu − 1|t)

 = A


δu(t|t)

δu(t + 1|t)
· · ·

δu(t + Nu − 1|t)

 + b,

with the matrixA and the vectorb given by:



A =


1 0 0 · · · 0
−1 1 0 · · · 0
· · · · · · · · · · · · · · ·
0 0 · · · −1 1

 ,

b =


ubase(t|t)− u(t− 1)

ubase(t + 1|t)− ubase(t|t)
· · ·

ubase(t + Nu − 1|t)− ubase(t + Nu − 2|t)

 .

The cost function is a quadratic form inU defined in
Equation (3), and then QP can be applied to solve the
optimisation problem.

4. TEST EXAMPLES

Several simulation tests have been carried out to inves-
tigate the performance and stability properties, as well
as the efficiency, of the nonlinear EPSAC approach
compared to the standard NMPC. The first experiment
has been carried out for a benchmark robot presented
in (Nevistíc, 1997), where an MPC law with linear
time-varying models is shown successful. This is sim-
ple two link (1R-1P) manipulator with a robot arm and
a cart that moves radially along the arm. The model of
the robot dynamics is given by:

(J + mr2)ϕ̈ + 2mṙϕ̇ = T1

ρmr̈ − ρmrϕ̇2 = T2

where:

m = 1 kg is mass of the cart,
J = 6.4314 kgm2 is the joint moment of inertia,
ρ = 1 m is the length (radius) of the arm,
ϕ(t) ∈ [00, 2700] is the position of the robot arm,
r(t) ∈ [0.27 m, 1 m] is the position of the cart, and
T1(t), T2(t) are the torques of the arm and the cart,

respectively.

The outputsy = [ϕ, r]T represent the position
of the robot arm and of the cart, given in ra-
dians and metres, respectively. The inputs,u =
[T1, T2]T are limited by lower and upper bounds,
[T1min, T1max, T2min, T2max] = [−20, 20,−10, 10]
Nm. The problem considered here is a setpoint change
to ϕref = π/2 rad andrref = 0.8 m.

In Figure 1 the results obtained with both the stan-
dard NMPC and the nonlinear EPSAC are presented.
It must be pointed out that there is little difference
between the results (performance) provided by both
controllers, and some of the signals are almost iden-
tical, e.g. seeϕ(t). The parameters are the same as
those used in (Nevistić, 1997), which are chosen as
N2 = 10, Nu = 2, and the sampling time is0.1 s.
On the other hand, the associated computational ef-
forts indicate a clear advantage of the EPSAC. For the
standard NMPC, the computation time (of the whole
simulated experiment) is39.2 minutes, whereas the
EPSAC takes just2.1 minutes. The simulation has
been carried out using (interpreted) MATLAB in a
800 MHz computer with 256 MBytes of RAM. This
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Fig. 1. Robot: nonlinear EPSAC (solid) vs. NMPC
(dash-dotted),N2 = 10, Nu = 2

advantage arises from the use of linear models, which
avoids the computationally demanding prediction in-
tegrations, resulting in a significant reduction of the
computational burden (by a factor of 5–100). In other
experiments, which are not shown here for brevity,
the difference between NMPC and the EPSAC be-
comes greater when the parameters are tuned to re-
sult in more aggressive control action. Compared to
the results MPC+LTV presented in (Nevistić, 1997),
the difference in performance is very small, and no
computation times are reported. In (Blet, 2001) some
examples are shown where the nonlinear EPSAC is
implemented on a LTV basis, which reduces the num-
ber of iterations, although each iteration requires a
somewhat larger computational burden.

Parameter Value
k10 (1.287± 0.040) · 1012 h−1

k20 (1.287± 0.040) · 1012 h−1

k30 (0.043± 0.270) · 109 mol−1 h−1

∆HRAB 4.2± 2.36 kJ mol−1

∆HRBC −11.00± 1.92 kJ mol−1

∆HRAD −41.85± 1.41 kJ mol−1

Table 1. Parameter uncertainty

For the following example, a comparative analysis be-
tween the nonlinear EPSAC and the standard NMPC
is not an objective. The main aim is to to test the
nonlinear EPSAC in a difficult framework in which
linear MPC cannot be successfully applied. This case
study considers a continuously fed stirred tank reactor
(CSTR) with a cooling jacket in which cyclopentenol
is produced from cyclopentadiene by acid-catalysed
electrophilic hydration in aqueous solution. This pro-
cess is often referred to as the van de Vusse reactor.
Further details on the derivation of this benchmark
process and the chemical background can be found in
(Chenet al., 1995). The highly nonlinear behaviour of
this reactor at the operating point chosen here, which
is rated0.92 on a 0–1 nonlinearity scale suggested by
Helbig et al. (1998), is a result of the so-called van de
Vusse reaction that exhibits interesting properties, like
a change of steady-state gain at the operating point. A



“reference” solution to this benchmark problem based
on a NMPC scheme with an extended Kalman filter
(EKF) is presented in (Chenet al., 1995).
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Fig. 2. Robustness to parameter uncertainties of the
CSTR controlled with the nonlinear EPSAC

The reactor is fed with diluted cyclopentadiene (sub-
stance A) with concentrationcA0 (unmeasured dis-
turbance) and temperatureϑ0. In a thermal reaction,
cyclopentenol (substance B) with concentrationcB

(the controlled variable) is produced and reacts fur-
ther on in an unwanted reaction to C. In parallel, the
initial reactant A reacts to D, which is not wanted
either. As the process is exogenous, an external heat
exchanger (energy floẇQK) is used to cool down the
reactor. The manipulated variables are the volumetric
flow rate V̇ and the energy flow ratėQK , for which
constraints are considered:3 h−1 ≤ V̇ /VR ≤ 35 h−1,
−9000 kJ h−1 ≤ Q̇K ≤ 0 kJ h−1.

The dynamics of the reactor can be described by
the following nonlinear differential equations that are
derived from component balances for substances A
and B and from energy balances for the reactor and
the cooling jacket:

ċA =
V̇

VR
(cA0 − cA)− k1(ϑ)cA − k3(ϑ)c2

A

ċB =− V̇

VR
cB + k1(ϑ)cA − k2(ϑ)cB

ϑ̇ =
V̇

VR
(ϑ0 − ϑ)− 1

ρCp

[
k1(ϑ)cA∆HRAB

+ k2(ϑ)cB∆HRBC
+ k3(ϑ)c2

A∆HRAD

]
+

kwAR

ρCpVR
(ϑK − ϑ)

˙ϑK =
1

mkCPK
[Q̇K + kwAR(ϑ− ϑK)],

The concentrations of A and B, the temperature in
the reactor and the temperature in the cooling jacket
are denoted bycA, cB , ϑ andϑK , respectively. The
reaction velocitieski are assumed to depend on the
temperature via the Arrhenius law

ki(ϑ) = ki0 exp
( Ei

ϑ0C + 273.15

)
, i = 1, 2, 3.

The nominal and the simulation values of the different
parameters can be found in (Chenet al., 1995).

The reactor is considered at an operating point where
optimal yield with respect to a desired product is
achieved. However, in practice, chemical reactors are
often not operated at the point of maximal yield, since
these conditions are very difficult to achieve due to
some unfavourable properties at this point. In addi-
tion, the physico-chemical parameters of the bench-
mark problem are only known within bounds (see
Table 1). The controller has to compensate the effects
of changes in the setpoint valuecBref and of a dis-
turbance inϑ0 simultaneously. The maximal steady-
state offset should no exceed0.02 mol/l (control tol-
erance). In (Chenet al., 1995), a solution based on
NMPC+EKF with Nu = 3, N2 = 200, λ1 = 0,
λ2 = 0 is presented. These settings are chosen not
only for stability, but also for the feasibility of the
nonlinear programming problem. The sampling period
is 20 s. In those results, the manipulated variables are
“blocked” to remain constant for every two sampling
periods. For the nonlinear EPSAC, the same sampling
time has been chosen, whereas the other parameters
are N2 = 3, Nu = 1, λ1 = 0, λ2 = 0. The
nonlinear EPSAC has been used with a LTV model
at each sampling instant.

Fig. 2 shows how the nonlinear EPSAC tries to make
cB to track the setpoint changes from maximum (1.09
mol/l) to minimum (0.8 mol/l) at t = 0.111 hours
(400 seconds) and back to maximum value at time
t = 0.639 hours (2300 seconds), against model-plant
mismatch and disturbances. There is model-plant mis-
match in the first0.5 hours (1800 seconds) according
to the extreme case which results from taking the “+”
sign for all the parameters in Table 1 and, after that,
according to the other extreme case (“−” sign), as dis-
cussed in (Chenet al., 1995). The nominal (internal)
model uses the central values provided in Table 1. At
time t = 0.306 h (1100 s) andt = 0.833 h (3000 s)
the feed temperatureϑ0 changes from104.90C down
to 1000C and up to1150C, respectively. This indeed
constitutes quite a difficult framework to test the solu-
tion provided by the nonlinear EPSAC. It can be ob-
served that the controller is able to satisfy the control
requirements even under these quite hard conditions.

5. CONCLUDING REMARKS

In this paper, the performance of the nonlinear EPSAC
suggested by De Keyser (1998) is tested against that
provided by a purely NMPC scheme. The simulation
results presented for two benchmark models, com-
monly found in NMPC literature, are quite satisfying
as performance, stability and computational burden
are concerned. The nonlinear EPSAC leads to a con-
venient solution which is comparable to that obtained



with NMPC, but the computational burden of the latter
is reduced by a factor of 5–100. The EPSAC is shown
to produce a convenient closed-loop behaviour even
for a van de Vusse CSTR working at an optimal yield
operating point.

The idea exploited by the nonlinear EPSAC is to apply
the “superposition” principle in which a “base” pre-
diction is performed with the nonlinear model whereas
an “optimise” prediction is calculated from a local
linearisation at each sampling instant. This proce-
dure is embedded within an iterative scheme until the
“optimise” prediction is lead to (close to) zero. This
provides with an “exact” solution of the optimisation
scheme which has been shown almost identical to that
obtained with a standard NMPC controller.
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