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Abstract: One of the main drawbacks of NMPC schemes is the enormous computational effort
these controllers require. On the other hand, linear MPC methods can be implemented solving
just Quadratic Programming (QP) or Linear Programming (LP) problems. In this paper,
an alternative implementation of NMPC suggested by De Keyser (1998) is implemented
to reduce the computational effort. This methodology is based on on-line linearisation and
solves and iterative procedure which, if convergent, provides with the solution of the NMPC
problem. This controller is tested and compared with the purely nonlinear MPC schemes.
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1. INTRODUCTION cess. Although the industrial processes are inherently
nonlinear, the vast majority of MPC applications are
based on linear models (Qin and Badgwell, 2000). In
the linear MPC case, the optimisation problem can be
written as a Linear or Quadratic Programming (LP
formance which can be achieved by the closed-loop or QP) problem for which therg exist very effi_cient
software tools. However, sometimes nonlinearities are

system, and must be handled in an efficient way if >, ificant hto iustify th licati £ Nonli
performance is a priority. Several strategies have beerp'dNMcantenougn tojus ify the application of Nonlin-

suggested to design and analyse control systems underd' Model Predictive Control (NMPC) strategies (Qin
constraints, among which Model Predictive Control and Badgwell, 2000).

(MPC) has gained widespread acceptance during theA very important issue of NMPC, which was over-
last two decades. The reasons for MPC success are thinoked in the first few formulations, is the real-time re-
simplicity of the ideas behind the control strategy and quirement of industrial control systems. This require-
the possibility to handle constraints and nonlinearities ment is essential to translate the academical results
in a rigorous way. into the industrial world. Due to the use of a nonlinear
model, the NMPC strategy is based on solving a non-
convex optimisation problem on-line. It is well known
that the available optimisation algorithms for non-

In real life problems to be faced by the control engi-
neer, constraintsand nonlinearitiesstand out as the
most important difficulties. Constraints limit the per-

The term MPC encloses a wide family of control algo-
rithms which make predictions of the future behaviour
of the plant by using an explicit model of the pro-



convex problems cannot guarantee that the solutionthe formulation of the nonlinear EPSAC. In Section 4
obtained (if any) is a global optimum. In fact, these some simulation results obtained with both the nonlin-
tools do not even guarantee that a feasible solutionear EPSAC and a standard NMPC implementation are
exists. Even when a suboptimal feasible solution is shown, and a comparison between these strategies is
found, the computational effort is enormous compared provided. Finally, conclusions are drawn in Section 5.
to that of solving QP and LP counterparts, which

makes it difficult to apply NMPC to industrial pro-

cesses. The following quote (Morari and Lee, 1999) 2. ABRIEF OVERVIEW OF NMPC

clarifies this point:

Given a Multiple-Input Multiple-Output (MIMO) pro-

“Though the theoretical purists tend to sta ) i .
g P y cess, described by the following autonomous nonlin-

away from linearisation approaches, lineari-

sation is the only method which has found any ear ODE system:
wider use in industry beyond demonstration z = f(x,u), )
projects” y=g(z),

Some recent results present efficient implementationsyith 1, states £), m inputs () andp outputs ), the
of NMPC (Morari and Lee, 1999; Qin and Badg- control aim is to find a control profile to minimise a
well, 2000), but the computational burden they require ¢gst function:

is still much larger than that involved in linear MPC

L . Ny p
applications. In order to overcome this drawback, sev- _ . o 2
eral alternatives to purely non-linear MPC have been J(t) = kzj:v z;% (it + Klt) = y:(t + k[t)]
= 1 1=

suggested. These alternative methods try to obtain N
an optimisation problem for which the computational = A2 B

burden and the implementation difficulties are similar + Z Z Aibug(t+ k= 1]1). - (2)

to those of linear MPC. The optimisation problem _ )
associated to NMPC is substituted by a QP counter-Wherewi(t + j|t) are the future values of the setpoint
par which is generated applying different approximate for the i-th output, which are known at time or

or iterative algorithms. Several approaches which fol- @ssumed to be equal to the current valugt|t),
low these guidelines have been suggested (Olivaiira 2nd ¥i(¢ + k[¢) are future predictions of the system
al., 1995; Nevistt, 1997; Megaset al, 1999), and ~ Of Equation (1). The tuning knobg/, and N, are

an overview of these can be found in (Morari and called, respectively, the prediction horizon and the
Lee, 1999). control horizon, for obvious reasons, wheregs is

the lower prediction horizon. Finallyy; and \; are
Inthis paper, the application of a modification (De Key- nonnegative weights, andvu;(¢t + k|t) are future
ser, 1998) to the Extended Prediction Self'AdaptiVe control increments (Or moves)_ In this papM]’ and
Control (EPSAC) suggested by De Keyser and Cau- g| the weightsy; have been set to 1 for all the
wenberghe (1985) is investigated. The EPSAC formu- simulated experiments. The control increments from
lation is similar to that of the better known Generalised A, (¢ 4 N, |t) and beyond are taken to be zero so that

Predictive Control (GPC) (Clarket al, 1987), but a  the optimisation problem depends on a finite number
nonlinear version of EPSAC has been recently pro- (7, x m) of decision variables.

posed to handle nonlinear systems (De Keyser, 1998). ) o

At each sampling instant, the nonlinear EPSAC uses all the NMPC literature, the cost function is often
local linearisation of the process to compute an “op- defined to take into account the states instead of the
timised response”, analogous to the “forced response”0UtPuts, and the aim is to lead the state vector to
of linear MPC methods. This scheme is applied within the origin (regulatory problem). Note that the cost
an iterative algorithm which, if convergent, provides function of Equation (2) can be applied for both the
with an exact solution to the optimisation problem. S€tpoint tracking and the regulatory problems. In the
The controller is expected to be identical to a purely 12tter case, the outputg should be identical to the
NMPC strategy, unless the optimisation yields some statese, and the setpoints shoulld b(_a zero. Note, _alsoz
other local minimum. However. simulation results are that state measurements or estimations are required in
not provided in (De Keyser, 1998) to show the prop- order to solve the model equations forward in time to
erties of the nonlinear EPSAC. In addition, it must compute the predictions, irrespective of which kind of

be pointed out that no strict theoretical results are so0St function is used.
far available for the nonlinear EPSAC, but this paper The optimisation problem is often solved subject to

k=11=1

focuses only on practical considerations. input (amplitude and moves) and output constraints:
In this paper, the nonlinear EPSAC and a standard Uimin < Wi < Uimax, = 1,...,m,
NMPC algorithm are compared taking into account Atiin < Aty < Ajpax, i =1,...,m,
both performance and computational issues. The pa- Yimin < Yi < Yimaxs =1,...,D.

per is organised as follows. In Section 2 the formula-

tion of NMPC is shortly reviewed. Section 3 presents The complexity of the optimisation problem to be car-

ried on in NMPC controllers is very remarkable. Two



different strategies can be distinguished to solve thiswhere the parametets, ho, ..., hg, -, hy, are the
problem, namely theequentialapproach and thsi- coefficients of theunit impulse responsef the sys-
multaneouspproach. In the latter, the objective func- tem, whereas the valueg refer to theunit step re-
tion and the model equations converge at the samesponseoefficients. Using matrix notation, the predic-
time, whereas in the former, the model equations aretion equation becomes
satisfied at every sampling instant and the implemen- -

ST . Y=Y +GU
tation is simpler. In this work, the controllers have
been implemented using the sequential approach, forwhere
which the intermediate solutions are feasible with re- <= T
spect to the model equations. This is a relevant advan- Y = [ynase(t + Nilt) - onse(t + ]TVQ|t)] '
tage in the case of on-line applications. U = [du(t]t) -~ du(t+ N, —1[t)]

®3)

For on-line implementations of NMPC, the use of gra- and

dient (first-order) information is essential in order to hn, hni—1 hn,—2 -+ N =N, +1
reduce the computational burden. Gradients are com- G— hni+1 hny ANi—1 - NI —Nu42
puted using either the adjoint system method (Rosen e e .

and Luus, 1991), the finite difference method, or the hny, hn,—1 ANy—2 <+ gNy—N,+1

trajectory sensitivity equations method. Although the

trajectory sensitivity method can be more stable com- In this description, the coefiicients of the matGiare

computed using the linearised model about the current

pared to the adjoint method, it requires a larger num- . : : :
. . . state. It is also possible to use different linear models
ber of equations and increases the computation time. . L : o -
for different time instants in the futuree. linearising

For this reason, thg adjoint system approach has beerz‘about a suboptimal trajectory, thus obtaining a Lin-
used throughout this work.

ear Time Variant (LTV) version of this methodology,
which has been used in the second example reported

3. NONLINEAR EPSAC in Section 4.

The superposition principle does not hold for non-
linear processes and the output predictions generated
this way will only coincide with the output prediction
generated by a NMPC controller when the sequence
of future control movesl{) is zero. If this is not the
ase, the base control sequence is made equal to the
ast base control sequence plus the optimal control in-
k|t) plus a sequence of increments of the manipula‘tedcrementjS foq?dhby the QP alg??thm. The pr:)c_eddure IS
variablesyu(t + k[t). Thatis: repeated until the sequence of future controls is driven
close enough to zero (the prediction equation becomes
u(t + k|t) = Upase(t + k[t) + du(t + klt). exact) in an iterative scheme. To reduce the number of
The j-step ahead output prediction is computed as theiterations, the initial value ofiyase (t + k|t) is critical.
sum of the response of the process..(t + k|t) due A simple but effective choice (De Keyser, 1998) is
to the base input sequence plus the response of thdo start with the optimal control policy derived at the
Processyoptimise (t + k|t) due to the future control ~ previous sample*(t+k|t—1) with the corresponding
increments with respect to the base input sequence: time shift. In this paper, this strategy has been used.
Another strategy which has been tried is the use of
Y(t+ K[E) % Yoase(t + Klt) + Yoptimise (£ + K[E). the steady-sta’?ey value required to lead the output to
The nonlinear model is used to compytgs. (t + k|t) the setpoint asi,.s.(t + k|t) for k > N, in the first
while yoptimise(t + k[t) is computed from a linear jieration. However, this alternative does not reduce the
model of the plant, obtained linearising the nonlinear nymber of iterations in the simulation examples.
model about the current state at each sampling instant, N )
hence the use of the=” sign. The cost function is  he convergence conditions of the algorithm are very
quadratic in the decision variablés(t + k|¢t) and  difficult to obtain, since they depend on the severity
the optimisation problem can be solved using a stan-Of the nonlinear characteristics of the process, on past
dard QP algorithm as in linear MPC. The component inPuts and outputs, on the future reference sequence
Yoptimise (£ + k|t) is the cumulative effect of a series of and on perturbations.

This section presents the formulation of the nonlin-
ear! EPSAC suggested in (De Keyser, 1998). For
simplicity of notation, the SISO version is formulated
here, but the controller has been implemented for the
MIMO case. The key idea of this formulation is that
the sequence of manipulated variables can be though
of as the sum of a base control sequengg;.(t +

impulse and step inputs: A simple relationship exists between the control ac-
Yoptimise (t + Kk[t) = hydu(t|t) + hg_1u(t + 1[t) tions Au anddu:
+ ot Gho Ny p10u(t + Ny, — 1), Au(t]t) du(t|t)
Au(t+ 1t) A du(t+ 1t) b,
L Apart from the use of a nonlinear model, the nonlinear EPSAC At +'].V.u —1Jt) Su(t + Nu —1Jt)

formulated in (De Keyser, 1998) differs from the linear counterpart = ] ]
in the disturbance model. with the matrixA and the vectob given by:



1 0 0 0 2 !
Al 10 0| . -
_ os}
0 0 - -1 1 £t =
Ubase (tlf) - u(t - 1) 05 02
b— ubase(t + |t) - ubase(tlt) o o
0 ol 3 0 " 3
_ubase(t + Ny — 1|t) - Ubase(t + Ny — 2|t)

The cost function is a quadratic form U defined in
Equation (3), and then QP can be applied to solve th
optimisation problem.

T1Nm]
T2[Nm)

-10

4. TEST EXAMPLES
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Several simulation tests have been carried out to inves-_. . i

tigate the performance and stability properties, as well F19- 1. Robot: nonlinear EPSAC (solid) vs. NMPC
as the efficiency, of the nonlinear EPSAC approach ~ (dash-dotted)V> =10, N, =2

compared to the standard NMPC. The first experimentadvantage arises from the use of linear models, which
has been carried out for a benchmark robot presentecavoids the computationally demanding prediction in-
in (Nevistic, 1997), where an MPC law with linear tegrations, resulting in a significant reduction of the
time-varying models is shown successful. This is sim- computational burden (by a factor of 5-100). In other
ple two link (1LR-1P) manipulator with a robot arm and experiments, which are not shown here for brevity,
a cart that moves radially along the arm. The model of the difference between NMPC and the EPSAC be-
the robot dynamics is given by: comes greater when the parameters are tuned to re-
sult in more aggressive control action. Compared to
the results MPC+LTV presented in (Nevistil997),

the difference in performance is very small, and no
computation times are reported. In (Blet, 2001) some
examples are shown where the nonlinear EPSAC is
implemented on a LTV basis, which reduces the num-
ber of iterations, although each iteration requires a
somewhat larger computational burden.

(J +mr®)p + 2mrp =T}
pmit — pmrg? =T
where:
m = 1 kg is mass of the cart,
J = 6.4314 kgm? is the joint moment of inertia,

p = 1 m is the length (radius) of the arm,
o(t) € [0°,2709] is the position of the robot arm,

r(t) € [0.27 m, 1 m] is the position of the cart, and Parameter Value _
%10 (1.287 £ 0.040) - 1012 h~ 1
T, (t), T>(t) are the torques of the arm and the cart, T (1987 £0.040) 1077 R T
respectively. %30 (0.043 £ 0.270) - 10° mol T h— 1
.. 1
The outputsy = [p,r]T represent the position AHrap 4.2:£2.36 kI mol”___
f the robot arm and of the cart, given in ra- AHrpo —11.00+ 1.92kJ mol-
0 9 AHpap —41.85 £ 141 kI mor |

dians and metres, respectively. The inpuis, =
[T1,T5]" are limited by lower and upper bounds,
[Tlminv Tlmax» T?minv TQmax] [720’ 207 7107 10]
Nm. The problem considered here is a setpoint chang
to ot = w/2 rad andrf = 0.8 M.

Table 1. Parameter uncertainty

eFor the following example, a comparative analysis be-
tween the nonlinear EPSAC and the standard NMPC
is not an objective. The main aim is to to test the
In Figure 1 the results obtained with both the stan- nonlinear EPSAC in a difficult framework in which
dard NMPC and the nonlinear EPSAC are presented.linear MPC cannot be successfully applied. This case
It must be pointed out that there is little difference study considers a continuously fed stirred tank reactor
between the results (performance) provided by both (CSTR) with a cooling jacket in which cyclopentenol
controllers, and some of the signals are almost iden-is produced from cyclopentadiene by acid-catalysed
tical, e.g. seey(t). The parameters are the same as electrophilic hydration in aqueous solution. This pro-
those used in (Nevistj 1997), which are chosen as cess is often referred to as the van de Vusse reactor.
N, = 10, N, = 2, and the sampling time i8.1 s. Further details on the derivation of this benchmark
On the other hand, the associated computational ef-process and the chemical background can be found in
forts indicate a clear advantage of the EPSAC. For the(Chenet al,, 1995). The highly nonlinear behaviour of
standard NMPC, the computation time (of the whole this reactor at the operating point chosen here, which

simulated experiment) i89.2 minutes, whereas the
EPSAC takes jusR.1 minutes. The simulation has
been carried out using (interpreted) MATLAB in a
800 MHz computer with 256 MBytes of RAM. This

is rated0.92 on a 0—1 nonlinearity scale suggested by
Helbig et al. (1998), is a result of the so-called van de
Vusse reaction that exhibits interesting properties, like
a change of steady-state gain at the operating point. A



“reference” solution to this benchmark problem based 5 () — k E;

on a NMPC scheme with an extended Kalman filter i(0) = kio exp (190() 127315

(EKF) is presented in (Chegt al, 1995). The nominal and the simulation values of the different
parameters can be found in (Chetral.,, 1995).

),z’: 1,2,3.

The reactor is considered at an operating point where
optimal yield with respect to a desired product is
] achieved. However, in practice, chemical reactors are
often not operated at the point of maximal yield, since
these conditions are very difficult to achieve due to

*7 02 oa o6 os 1 12 1« some unfavourable properties at this point. In addi-
. tion, the physico-chemical parameters of the bench-
» 2000 mark problem are only known within bounds (see
% 0 Table 1). The controller has to compensate the effects
o 2000 of changes in the setpoint valug,.; and of a dis-
S & 4000 turbance iy simultaneously. The maximal steady-
10 o000 state offset should no exce@d)2 mol/I (control tol-
5 6000 erance). In (Chemt al, 1995), a solution based on

% % s 0% P 15 NMPC+EKF with N, = 3, Ny = 200, A\; = 0,

A2 = 0 is presented. These settings are chosen not
Fig. 2. Robustness to parameter uncertainties of theonly for stability, but also for the feasibility of the

CSTR controlled with the nonlinear EPSAC nonlinear programming problem. The sampling period

is 20 s. In those results, the manipulated variables are
The reactor is fed with diluted cyclopentadiene (sub- “blocked” to remain constant for every two sampling
stance A) with concentrations, (unmeasured dis-  periods. For the nonlinear EPSAC, the same sampling
turbance) and temperatutk. In a thermal reaction, time has been chosen, whereas the other parameters
cyclopentenol (substance B) with concentratign are Ny = 3, N, = 1, A\ = 0, \s = 0. The
(the controlled variable) is produced and reacts fur- nonlinear EPSAC has been used with a LTV model
ther on in an unwanted reaction to C. In parallel, the at each sampling instant.

initial A D, which i . . .
initial reactant A reacts to D, which is not wanted Flg. 2 shows how the nonlinear EPSAC tries to make

either. As the process is exogenous, an external heac to track the setpoint changes from maximurg
exchanger (energy floW ) is used to cool down the "B -
ger ( 9y flo® ) mol/I) to minimum (.8 mol/l) at¢t = 0.111 hours

reactor. The manipulated variables are the volumetric(400 seconds) and back to maximum value at time
flow rate V' and the energy flow rat€x, for which .
9y Qx t = 0.639 hours @300 seconds), against model-plant

; ; -1 y -1
(ic;rg)s(,)t(;akl‘rjltﬁ_a}ricg?{sgeg%hh_1.g V/Vr <3507, mismat_ch and_ disturbances. There is model-plant_mis-
- - match in the first.5 hours (1800 seconds) according
The dynamics of the reactor can be described byto the extreme case which results from taking thé “
the following nonlinear differential equations that are sign for all the parameters in Table 1 and, after that,
derived from component balances for substances Aaccording to the other extreme case('sign), as dis-
and B and from energy balances for the reactor andcussed in (Cheet al, 1995). The nominal (internal)

the cooling jacket: model uses the central values provided in Table 1. At
v timet = 0.306 h (1100 s) andt = 0.833 h (3000 s)
éa =—(cao — ca) — k1 (9)ca — ks(9)A the feed temperatung, changes frqrr104.90_C QOwn
Ve~ to 100°C and up tol15°C, respectively. This indeed

) v constitutes quite a difficult framework to test the solu-
¢cgp=— —c¢p+ kl('l?)CA — ]ﬂg(?g)CB q

Vi tion provided by the nonlinear EPSAC. It can be ob-
.V 1 served that the controller is able to satisfy the control
v :E(ﬂo —9) - pren [kl(ﬁ)CAAHRAB requirements even under these quite hard conditions.
+ k2(19)CBAHRBC + k3(19)C§1AHRAD
kwAgr 5. CONCLUDING REMARKS
toCVa (U =)
) 1 P . In this paper, the performance of the nonlinear EPSAC
Ik = Crre [Qk + kwAr(Y — 9K)], suggested by De Keyser (1998) is tested against that

provided by a purely NMPC scheme. The simulation
The concentrations of A and B, the temperature in results presented for two benchmark models, com-
the reactor and the temperature in the cooling jacketmonly found in NMPC literature, are quite satisfying
are denoted by 4, cg, ¥ andJk, respectively. The  as performance, stability and computational burden
reaction velocitiest; are assumed to depend on the are concerned. The nonlinear EPSAC leads to a con-
temperature via the Arrhenius law venient solution which is comparable to that obtained



with NMPC, but the computational burden of the latter Morari, M. and J. H. Lee (1999). Model predictive
is reduced by a factor of 5-100. The EPSAC is shown control: past, present and futu@omputers and
to produce a convenient closed-loop behaviour even Chemical Engineering3, 667—682.

for a van de Vusse CSTR working at an optimal yield Nevistic, V. (1997). Constrained Control of Nonlin-

operating point. ear Systems. PhD thesis. Swiss Federal Institute
The idea exploited by the nonlinear EPSAC is to apply ifzgg:hnology (ETH). Zurich. Diss. ETH No.

the “superposition” principle in which a “base” pre-
diction is performed with the nonlinear model whereas
an “optimise” prediction is calculated from a local
linearisation at each sampling instant. This proce-
dure is embedded within an iterative scheme until the
“optimise” prediction is lead to (close to) zero. This
provides with an “exact” solution of the optimisation
scheme which has been shown almost identical to that
obtained with a standard NMPC controller.
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Model predictive control for nonlinear systems
subject to input constraints. Technical report. Au-
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