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Abstract: Timed event graphs are described in dioids by a linear state-space or transfer
function model. This paper proposes a state feedback control under complete control and
observation of the states. By using a model reference control approach, the closed-loop
transfer function matches the control specification expressed as a given transfer function. It
is shown that under certain conditions an optimal controller exists, although two sub-optimal
controllers can always be obtained.
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1. INTRODUCTION

Discrete event systems or DES are characterized by a
discrete state-space where state transitions are event-
driven. A timed event graph or TEG is a particular
class of timed Petri nets whose places have only one
transition upstream and only one downstream. They
are suitable to represent DES subject to only syn-
chronization phenomena. Most of these systems can
be described by a combination of maximization or
minimization and addition operations. This yields to
a non linear model in conventional algebra, although
a ‘linear’ model can be obtained in an algebraic
structure named dioids (Cohen et al., 1989; Baccelli
et al., 1992). In this context, promising control ap-
proaches have been reported as in Cohen et al.(1989),
where an optimal trajectory control was proposed.
Cofer and Garg (1996) extended the notion of supervi-
sory control to satisfy a temporal specification based
on lattice theory. Recently, de Schutter and van den
Boom (2001) proposed a predictive control approach
and Menguy et al.(2000) reported an adaptive control
approach for max-plus systems. This paper proposes
an approach based on model reference control very
similar to that presented by Cottenceau et al. (2001).
However, instead of using a transfer function repre-

sentation to establish the closed-loop model matching
equation, we use a state-space representation. This
paper is organized as follows. Section 2 states some
background in dioids and residuation theory and it
develops linear equations used to describe a TEG in a
particular dioid. Mostly, this section contains existing
results in the literature whose details can be found
in Baccelli et al. (1992) and a review of linear sys-
tem theory in dioids is found in Cohen et al. (1999).
Sections 3 and 4 present our approach, that is, under
certain conditions an optimal state feedback controller
is obtained although two sub-optimal controllers can
always be calculated. Illustrative examples are pre-
sented in section 5 followed by concluding remarks.

2. DIOIDS AND TEG MODELING

A dioid is a set D endowed with two operations de-
noted � (addition) and 
 (multiplication), both as-
sociative and both having neutral elements denoted ε
and e respectively, such that: � is commutative and
idempotent (a�a= a), 
 is distributive with respect
to � and ε is absorbing for 
(a
 ε = ε 
 a = ε).
Dioids are algebraic structures where an idempotent
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addition has no inverse. This idempotent addition de-
fines a (partial) order relation (denoted�) as a� b,
a = a� b or equivalently b� a. The upper bound of
two elements a and b in D is a� b and the bottom
element of D is ε. If D is complete, then the top
element of D is >. As in conventional algebra, the
symbol
 is frequently suppressed (ab= a
b).

Theorem 1.(Minimum solution). Given a and b in a
complete dioid D, the inequality x� ax� b has x =
a�b as the least solution, where a� = e�a�a2

: : : and
ak = a
a
�� �
a (k times).This solution is also the
minimum one to the corresponding equation.

Lemma 2.(Algebra of matrices). The set of square
matrices of order n with entries in a dioidD, endowed
with two operations (sum and multiplication) defined
respectively as

A�B= [ai j �bi j ] (1a)

A
B=
� nM

k=1

(aik
bk j)
�

(1b)

is a dioid denotedDn�n where A� B, ai j � bi j .

Remark 3.A non-square matrix can be dealt by com-
pleting lines and columns with null elements ε.

Definition 4.(Power series). A formal power series a
in m commutative variables xi (i = 1 : : :m) with coef-
ficients ak in D, k = (k1; : : : ;km) 2 Z

m, is defined by

a=
M

k2Zm

akx
k1
1

: : :xkm
m (2)

Notation: a= (ak).

Lemma 5.(Algebra of power series). The set of power
series endowed with two operations (sum and multi-
plication) defined respectively as

a�b= (ak�bk) (3a)

a
b=
� M

i+ j=k

ai
bj

�
(3b)

is a dioid denotedDJx1; : : : ;xmK.

Its identity element is denoted e, corresponding to
the series with coefficients a0 = e and ak = ε for
k 6= 0. The null element is denoted ε and it corresponds
to the series with all null coefficients ε. In a dioid
DJx1; : : : ;xmK, a� b, ak� bk.

Lemma 6.(DioidMax
in Jγ;δK). The set of power series

in two variables (γ;δ) with (boolean) coefficients in
fε;eg endowed with the sum and product operations
defined by Equations (3a) and (3b) besides the addi-
tional simplification rules

γkδt �γl δt = γmin(k;l)δt (4a)

γkδt �γkδ l = γkδmax(k;l) (4b)

is a dioid denotedMax
in Jγ;δK.

Residuation is a lattice concept used to ‘solve’ equa-
tions, i.e. to invert mappings. The residual is an answer
to the problem of solving f (x) = b by considering the
subset of so-called ‘subsolutions’, that is, values of x
satisfying f (x) � b and taking the maximum element
of the subset. The main result is given by Theorem 9
which uses the following definitions.

Definition 7.(Isotone and antitone mappings). A map-
ping f from an ordered set D into an ordered set C is
isotone (antitone) if 8a;b2D, a� b) f (a) � f (b)
( f (a)� f (b)).

Definition 8.(Lower-semicontinuity). A mapping f
from an ordered set D into an ordered set C is lower-
semicontinuous if, for every (finite or infinite) subset
X ofD, f

�L
x2X x

�
=
L

x2X f (x).

Theorem 9.(Residuated mapping). Let f be an iso-
tone mapping from the complete dioid D into the
complete dioid C. There exists a greatest solution
xmax = f ](b) to the inequality f (x) � b iff f (ε) = ε
and f is lower-semicontinuous. The mapping f is said
to be residuated and f ] is called its residual.

It is straightforward that f (x) = a
x and g(x) = x
a
are both lower-semicontinuous mappings. Therefore,
by Theorem 9 these mappings are both residuated and
the following notation applies.

Definition 10.(Division). We use f ](x) = aÆnx (‘left
division’ by a) and g](x) = xÆ=a (‘right division’ by a)
to indicate the residuals of left and right multiplication
by a, respectively.

Lemma 11.(Division of matrices). Given two matri-
ces A 2 Dm�n and B 2 Dm�p, the left division of B
by A is a n� p matrix given by

AÆnB=
� m̂

k=1

(aki
Ænak j)

�
(5)

where the symbol ^ stands for lower bound. Analo-
gously for right division.

Lemma 12.(Division of power series). Consider two
power series a and b. The left division of b by a is
a power series given by

aÆnb=
� ^

i� j=k

ajÆnbi

�
(6)

Analogously for right division.

Although various dioids can be used to represent a
timed event graph or TEG, this paper assumes a de-
scription in dioid Max

in Jγ;δK. In this case, it can be
modeled by the following linear algebraic equations:

X = AX�BU (7a)

Y =CX (7b)



Where U , X e Y are vectors of dimensions m, n and p
corresponding to variables associated to m input tran-
sitions, n internal transitions and p output transitions,
respectively. Matrices An�n, Bn�m and Cp�n have en-
tries in dioid Max

in Jγ;δK with only non-negative expo-
nents, since tokens and bars in places introduce only
non-negative integer values. By Theorem 1, Equa-
tion (7a) has the minimum solution X = A�BU for
a given input U . Therefore, Y = (CA�B)U and the
transfer function of the system H is then defined by

H =CA�B (8)

For example, consider a TEG as showed in Fig. 1.

u1

u2

x1

x2

x3 y

Fig. 1. Example of a TEG.

This system is described by the following state-space
representation in dioidMax

in Jγ;δK.

x1 = (γδ2)x1�δ2u1 (9a)

x2 = (γδ3)x2�δ4u2 (9b)

x3 = δ2x1�δx2 (9c)

y= x3 (9d)

A realization (A;B;C) of this system is given by

A=

0
@

(γδ2) ε ε
ε (γδ3) ε
δ2 δ ε

1
AB=

0
@

δ2 ε
ε δ4

ε ε

1
AC =

0
@

ε
ε
e

1
A

0

(10)

The system transfer function is then given by

H =
�

δ4(γδ2)� δ5(γδ3)�
�

(11)

3. STATE FEEDBACK CONTROL

The corresponding impulse response obtained from
Equation (11) is shown by a dark gray area in Fig. 2.
It represents the contribution of u1 (on the left) and
u2 (on the right) to the output firings if an infinity
number of input firings occurs at time t = 0 (Baccelli
et al., 1992). In this case, input u1 contributes with one
event each two time units and u2 with one event each
three time units. The control objective is to modify
these impulse responses as shown, for instance, by a
light gray area in Fig. 2. This control specification was
obtained from the transfer function Gre f of Example 2.
In a manufacturing context, this could represent a
production rate reduction to satisfy a given demand,

timetime

eventevent

rate=1/4

u1 ! y

rate=1/5

u2 ! y

ee

Fig. 2. Control specification as an impulse response.

reducing intermediate stocks. This is equivalent to
modify the system transfer function as below.

Suppose all states xi are controllable and observable.
A transition is said to be controllable if its firing can
be delayed or inhibited by an external input action.
A transition is said to be observable if its temporal
sequence of firings is accessible to the external world.

This paper proposes a feedback control framework by
introducing a new control input that uses information
from the states to actuate on the state transitions. This
corresponds to X = AX�Xc�BU where Xc = FX is
the control input and F is a controller. The state-space
representation is then given by

X = (A�F)X�BU (12a)

Y =CX (12b)

Thus, the closed-loop transfer function is given by
Gm f(F) =C(A�F)�B. This is depicted in Fig. 3.

A

B C
U YX

F

Fig. 3. State feedback control.

The controller F must be such that the closed-loop
transfer function matches the control specification ex-
pressed as a given transfer function. This control ap-
proach is usually referred to as a model reference con-
trol which was also used by Cottenceau et al. (2001)
with three particular control configurations: output
feedback, state feedback (on input) and output feed-
back on state. The present approach is more general if
the previous configurations are taken as restrictions to
control and observation of the system state.

By considering a state feedback control as shown in
Fig. 3, the model matching looks for the maximum
controller Fmax such that C(A�Fmax)

�B� Gre f . The
maximum or optimal controller are stated here in the
context of residuation, i. e. delaying as maximum as
possible a transition firing while providing the best
matching to a given impulse response. By residuals of
right and left products, this is equivalent to solving the
following inequality



(A�F)� � Are f (13)

where Are f =CÆnGre f Æ=B.

Lemma 13.The inequality (A�F)� � Are f has a so-
lution iff A� � Are f .

PROOF. ()) Suppose that there exists F1 solution to
(A�F)� � Are f . By definition, A� A�F1 and A� �

(A�F1)
� due to isotony of product. Thus, A� � Are f .

(() If A� � Are f , then (A� ε)� = A� � Are f and
F = ε is a solution to (A�F)� � Are f .

Corollary 14. The inequality C(A�F)�B� Gre f has
a solution iff H �Gre f , where H =CA�B is the open-
loop transfer function of the system.

PROOF. C(A�F)�B � CAre f B, CA�B� CAre fB
by Lemma 13 and due to isotony of left and right
products. But CAre f B = C(CÆnGre f Æ=B)B � Gre f due
to (A.1). Thus, C(A�F)�B�Gre f ,CA�B�Gre f .

This means that only Gre f delaying system events
can be specified. The main result is then given by
Theorem 15 whose proof is stated after intermediate
Lemmas 16, 17 and 18 below.

Theorem 15.(Main theorem). If A� � Are f , then Fmax

is the maximum solution to (A�F)� �Are f iff Fmax is
the maximum solution to

F�
� K (14)

where K = A�
ÆnAre f Æ=A�.

Lemma 16.If F1 is a solution to (A�F)� �Are f , then
(A�F1)

� is a solution too. Moreover, F �

1 � K, where
K = A�ÆnAre f Æ=A�.

PROOF. By definition, A� A�F1. Therefore,

A� � (A�F1)
� isotony of product

A� (A�F1)
� = (A�F1)

� since A� A�

(A� (A�F1)
�)� = ((A�F1)

�)� isotony of product

(A� (A�F1)
�)� = (A�F1)

� by (A.10)

(A� (A�F1)
�)� � Are f F1 is a solution

Hence, (A�F1)
� is a solution too. Moreover,

(A�F1)
� = (A�F�

1 )� by (A.8)

(A�F�

1 )� = (A�F�

1 )�A� by (A.9)

(A�F�

1 )�A�
� Are f F1 is a solution

(A�F�

1 )� � Are f Æ=A� residual of right product

A�F�

1 � Are f Æ=A� since A�F�

1 � (A�F�

1 )�

F�

1 � A�
ÆnAre f Æ=A� residual of left product

Lemma 17.If Fmax is the maximum solution to (A�
F)� � Are f , then A� � Fmax = F�

max.

PROOF. Suppose that Fmax is the maximum solution.
By definition, Fmax � A�Fmax. Then,

F�

max � (A�Fmax)
� isotony of product

Fmax � (A�Fmax)
� since Fmax � F�

max

Nevertheless, due to Lemma 13 (A�Fmax)
� is also a

solution which contradicts the fact that Fmax is maxi-
mum. Hence,

Fmax = (A�Fmax)
�

F�

max = ((A�Fmax)
�)� isotony of product

F�

max = (A�Fmax)
� by (A.10)

F�

max = Fmax

Moreover, A� A�Fmax by definition. Consequently,

A� � (A�Fmax)
� isotony of product

A� � Fmax since Fmax = (A�Fmax)
�

Lemma 18.If A� � Are f , then A� � K � Are f , where
K = A�ÆnAre f Æ=A�.

PROOF. If A� � Are f , then

A�
ÆnA� � A�

ÆnAre f f (x) = aÆnx is isotone

A�
� A�

ÆnAre f by (A.3)

A�
Æ=A� � A�

ÆnAre f Æ=A� f (x) = xÆ=a is isotone

A� � A�
ÆnAre f Æ=A� by (A.3)

Since A� � e,

A�
ÆnAre f � eÆnAre f f (x) = xÆna is antitone

eÆnAre f = Are f by (A.4)

A�
ÆnAre f Æ=A� � Are f Æ=A� f (x) = xÆ=a is isotone

Are f Æ=A� � Are f Æ=e f(x) = aÆ=x is antitone

A�
ÆnAre f Æ=A�

� Are f by (A.4)

PROOF. [Main theorem] ()) If Fmax is the maxi-
mum solution to (A�F)� � Are f , then A� � Fmax by
Lemma 17. Consequently,

Fmax = A�Fmax since A� A�

F�

max = (A�Fmax)
� isotony of product

Therefore, F �

max = (A�Fmax)
� � Are f . In other words,

Fmax can be made as great as F �

max � Are f . Hence,
Fmax is the maximum solution to F � � Are f . However,
F�

max � K by Lemma 16 and K � Are f by Lemma 18.
Thus, Fmax can be made as great as F �

max �K, i.e. Fmax

is the maximum solution to F � � K. (() If Fmax is
the maximum solution to F � � K, then it is enough
to prove that Fmax is a solution to (A�F)� � Are f ,
since every solution F1 to (A�F)� � Are f is such that
F1�Fmax, by Lemma 16. Since A��K by Lemma 18,
F = A� is a solution to F� � K and A� � Fmax. Thus,

A�Fmax = Fmax since A� A�
� Fmax

(A�Fmax)
� = F�

max isotony of product

(A�Fmax)
� � K since F�

max � K

(A�Fmax)
� � Are f by Lemma 18



Corollary 19. Fmax = K is a solution to (A�F)� �
Are f iff K� = K, where K = A�

ÆnAre f Æ=A�. Moreover, it
is the maximum one.

PROOF. ()) If Fmax = K is a solution to (A�
F)� �Are f , then K� �K by Lemma 13. Thus, K� = K
since K � K� � K. In this case, Fmax = K is the
maximum solution to F � � K since F�

max = K� = K
and every solution F1 to F��K is such that F1�F�

1 �

K = Fmax. (() If K� = K, then Fmax = K is a solution
to F� � K and thus it is the maximum one.

Corollary 19 provides an optimal state feedback con-
troller for a system and specification satisfying K � =
K. Nevertheless, two sub-optimal controllers do exist.

4. SUB-OPTIMAL CONTROLLERS

The main result is two sub-optimal controllers given
by Lemma 21 below. Moreover, if K � = K, these con-
trollers can be easily checked to be equal to the max-
imum controller K, by using (A.5). Therefore, they
provide an alternative solution to the model matching
when conditions imposed by Corollary 19 or even
by Cottenceau et al. (2001) are not satisfied.

Lemma 20.Given Fa = KÆnK and Fb = KÆ=K, if A� �

Are f , then A� � Fa = F�

a � K and A� � Fb = F�

b � K,
where K = A�

ÆnAre f Æ=A�.

PROOF.

KA� = (A�
ÆnAre f Æ=A�)A� = K by (A.6)

Fa = KÆnK = KÆn(KA�)� A� by (A.2)

e� K by Lemma 18

e(KÆnK)� K(KÆnK) isotony of product

Fa� K by (A.7)

Fa = F�

a � K by (A.5)

Analogously,

A�K = A�(A�
ÆnAre f Æ=A�) = K by (A.6)

Fb = KÆ=K = (A�K)Æ=K � A� by (A.2)

(KÆ=K)e� (KÆ=K)K isotony of product

Fb� K by (A.7)

Fb = F�

b � K by (A.5)

Lemma 21.(Sub-optimal controllers). If A� � Are f ,
then Fa = KÆnK and Fb = KÆ=K are solutions to (A�
F)� � Are f , where K = A�

ÆnAre f Æ=A�.

PROOF. It is similar for Fa and Fb as below.

A�Fa = Fa by Lemma 20

(A�Fa)
� = F�

a isotony of product

(A�Fa)
� � K by Lemma 20

(A�Fa)
� � Are f by Lemma 18

5. EXAMPLES

Example 1.Given the example of Fig. 1, we wish
to find the maximum controller Fmax such that the
closed-loop transfer function be equal to the open-
loop transfer function of the system. In this case, Gre f

should be set to H =
�

δ4(γδ2)� δ5(γδ3)�
�
.

According to Corollary 14 this problem has a solution
since H � Gre f . Moreover, every solution F satisfies
Gm f(F) = H due to Corollary 14. By calculating
Are f =CÆnGre f Æ=B gives

Are f =

0
@

> > >

> > >

δ2(γδ2)� δ(γδ3)� >

1
A (15)

Hence, K = A�
ÆnAre f Æ=A� is given by

K =

0
@

(γδ2)� δ�1(γδ3)� δ�2(γδ2)�

ε (γδ3)� ε
δ2(γδ2)� δ(γδ3)� (γδ2)�

1
A (16)

In this case, it can be shown that K� = K and by
Corollary 19 the maximum controller that keeps un-
changed the transfer function of the system is equal to
K. According to (Cottenceau et al., 2001), we use the
maximum realizable controller Fmax that is equal to K
without terms with negative exponents, i. e.

Fmax =

0
@

(γδ2)� γδ2(γδ3)� γ(γδ2)�

ε (γδ3)� ε
δ2(γδ2)� δ(γδ3)� (γδ2)�

1
A (17)

The Fig. 4 shows the controlled system where dotted
places and transitions corresponds to the controller.

u1

u2

x1

x2

x3 y

Fig. 4. Optimal state feedback controller.

In a manufacturing context, since tasks are subject
to only synchronization, some of them can reach a
maximum delay without change the overall system
performance. In Fig. 4, internal transitions are delayed
without change the non-controlled system behavior.

Example 2. Gre f =
�

δ4(γδ4)� δ5(γδ5)�
�
.

The corresponding impulse response is shown by a
light gray area in Fig. 2. Thus, Are f =CÆnGre f Æ=B is

Are f =

0
@

> > >

> > >

δ2(γδ4)� δ(γδ5)� >

1
A (18)



Thus, K = A�
ÆnAre f Æ=A� is given by

K =

0
@

(γδ4)� δ�1(γδ5)� δ�2(γδ4)�

δ(γδ4)� (γδ5)� δ�1(γδ4)�

δ2(γδ4)� δ(γδ5)� (γδ4)�

1
A (19)

In this case, it can be shown that K� 6=K. Nevertheless,
two sub-optimal controllers are given by Fa = KÆnK
and Fb = KÆ=K due to Lemma 21. By considering only
the realizable part, it yields

Fa =

0
@

(γδ4)� γδ4(γδ5)� γδ2(γδ4)�

ε (γδ5)� ε
δ2(γδ4)� δ(γδ5)� (γδ4)�

1
A (20)

Fb =

0
@

(γδ4)� γδ3(γδ4)� γδ2(γδ4)�

δ(γδ4)� (γδ4)� γδ3(γδ4)�

δ2(γδ4)� δ(γδ4)� (γδ4)�

1
A (21)

Figs. 5 e 6 show the controlled system with controllers
Fa and Fb, respectively in dotted line.

u1

u2

x1

x2

x3 y

Fig. 5. Sub-optimal controller Fa.

u1

u2

x1

x2

x3 y

Fig. 6. Sub-optimal controller Fb.

The corresponding closed-loop transfer functions are:
Gm f(Fa) =

�
δ4(γδ4)� δ5(γδ5)�

�
and Gm f(Fb) =�

δ4(γδ4)� δ5(γδ4)�
�
. Note that Fa and Fb are both

solutions to the model matching Equation (13), al-
though only Fa exactly matches the specification Gre f .
Nevertheless, the controlled system in Fig. 6 is a
strongly connected graph which has important stabil-
ity properties (Baccelli et al., 1992).

6. CONCLUDING REMARKS

This paper proposes a state feedback control under
complete control and observation of the states. A
model reference control is accomplished by solving

a state-space model matching equation using residua-
tion theory. This approach is more general than pre-
vious control configurations considered in literature
if they are taken as restrictions to control and obser-
vation of the system state. Moreover, when certain
conditions to obtain an optimal controller are not satis-
fied, two sub-optimal controllers provides an interest-
ing alternative solution. Future work should consider
partial access to states where usual feedback control
configurations can be dealt in a uniform way.
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Appendix A. FORMULAE

In the following, a, b and x are elements of a
dioid (Baccelli et al., 1992).

a
x
a
� x

x
a

a� x (A.1)

ax
a
� x

xa
a
� x (A.2)

a�x=
a�x
a�

xa� =
xa�

a�
(A.3)

eÆna= a aÆ=e= a (A.4)

(aÆna)� = aÆna (aÆ=a)� = aÆ=a (A.5)
x

a�
= a�

x
a�

x
a�

=
x
a�

a� (A.6)

a
ax
a

= ax
xa
a

a= xa (A.7)

(a�b)� = (a�b�)� (A.8)

b�(ab�)� = (b�a)�b� (A.9)

(a�)� = a� (A.10)


