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Abstract: In this paper we consider the problem of modelling observed data
using a class of multivariate models with unknown-but-bounded (ubb) noise and
uncertainty. Standard ARX models with additive and multiplicative bounded noise
belong to the considered class, as well as the deterministic counterpart of ARCH
models extensively used in econometrics. We outline a method to fit these models
based on historical data, and discuss the issues of set-valued forecasting.
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1. INTRODUCTION

1.1 Uncertainty models

Models with bounded uncertainty, or uncertain
systems for short, have been around for a long
time in the systems and control community, (Boyd
et al., 1994; Doyle, 1982). Reasons for their suc-
cess in control applications can be summarized
as follows. These models lend naturally them-
selves to worst-case (or very rare event) analysis.
Bounded uncertainty models do not assume any
prior information on the distribution of the un-
certain parameters. Very efficient approximation
methods, mostly based on convex optimization,
can be devised for computing prediction bounds;
by “efficient” we mean that these algorithms scale
extremely well when the model size (for instance,
the number of assets under consideration) grows.
Similarly, efficient convex optimization methods
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for fitting these models based on historical data
have been (recently) introduced. Finally, these
models can be mixed with stochastic description.
For example, it is possible to consider stochas-
tic models with deterministic uncertainty, such
as Brownian motions with unknown-but-bounded
volatility.

In this paper, we explore some of the ideas in-
volved in uncertainty models, and discuss their
relevance to finance applications. In particular, we
introduce a new class of multivariate bounded un-
certainty models that capture some of the features
of the celebrated AR/ARCH models.

1.2 Basic idea

The basic idea behind deterministic uncertainty
models is as follows. Consider a simple stochastic
model for an asset price S(k)

S(k + 1) = (γ0 + σε(k))S(k),
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where γ0, σ are constants, and ε(k) is a standard
Gaussian sequence, see for instance (Luenberger,
1995). A bounded-uncertainty counterpart of the
above model would be

S(k + 1) = (γ0 + σu(k))S(k), ‖u(k)‖2 ≤ 1.

The above system may be viewed as a determinis-
tic system subject to a time-varying input u that
is unknown-but-bounded. The prediction problem
for the stochastic process is to compute the dis-
tribution of the asset price at some future time T .
For the deterministic counterpart, the prediction
problem is to compute bounds on the asset price.

It can be argued that, since we are computing the
bounds on the asset price, the resulting prediction
will be overly conservative. This can be true if
one is not careful about the choice of the model.
However there are several arguments in favor of
bounded-uncertainty models. First, in some situa-
tions, the worst-case is really what we are trying to
predict. This notion is useless for stochastic mod-
els with non-compactly supported distributions,
but for uncertainty models it does make sense.
Second, the uncertainty models should be useful
in the context of approximation. The prediction
problems for general uncertainty models is very
difficult, but there are systematic approximation
methods that are very efficient. In short, these
models seem to be much more computationally
tractable than stochastic models.

As said before, one should not make a conflict
out of the distinction between stochastic and
deterministic uncertainty, since it is possible to
consider models with both kinds of uncertainty.
Such models have been considered for instance
by (Avellaneda and Parás, 1996), but their gen-
eralization to multivariate situations is out of the
scope of this paper.

In this paper, we will exhibit multivariate uncer-
tainty models that are deterministic counterparts
to AR/ARCH models. We also discuss how the
prediction problem can be attacked. General is-
sues related to non-probabilistic estimation may
be found in the classical references (Norton and
Veres, 1991), (Kurzhanski and Valyi, 1996).

Notation

For a square matrix X, X � 0 (resp. X � 0)
means X is symmetric, and positive-definite (resp.
semidefinite). For P ∈ Rn×n, with P � 0, and
x ∈ Rn, the notation E(P, x) denotes the ellipsoid

E(P, x) =
{
ξ : (ξ − x)T P−1(ξ − x) ≤ 1

}
,

where x is the center, and P determines the
“shape” of the ellipsoid.

2. AR/ARCH MODELS

2.1 Stochastic GARCH models

GARCH (Generalized AutoRegressive Conditional
Heteroskedastic) models are stochastic models in-
troduced by (Bollerslev, 1986) for modelling fi-
nancial data. If S(k) denotes a price (of a share,
a bond, etc), the AR(r)/GARCH(p,q) model de-
scribes the evolution of the log-return

x(k) = log
S(k)

S(k − 1)
,

in terms of the stochastic difference equation

x(k) = γ0 +
r∑

l=1

γlx(k − l) + σ(k)ε(k),

where ε(k) is a standard Gaussian variable, and
the “volatility” σ(k) follows the dynamics

σ(k)2 = α0 +
p∑

i=1

αix(k − i)2 +
q∑

j=1

βjσ(k − i)2.

For a discussion of these models, and their
relevance in a financial context, see for in-
stance (Shiryaev, 1999). Multivariate versions of
GARCH models are discussed in (Gouriéroux,
1997).

To fit these models, that is, compute the parame-
ters αi, 1 ≤ i ≤ p, βj , 1 ≤ j ≤ q, and γl, 1 ≤ l ≤ r,
given historical values of the returns x(k), 1 ≤ k ≤
N , we can use the maximum likelihood method.
In the case of an AR(r)/GARCH(p,0) model, we
must maximize the function

pα,γ(x) = Πn
k=1(α0 +

p∑
i=1

αix(k)2)−1/2×

exp

{
−1

2

N∑
k=1

(x(k)− γ0 −
∑r

l=1 γlx(k − l))2

α0 +
∑p

i=1 αix(k)2

}
.

The problem of maximizing the log of this func-
tion is a convex programming problem of the
MAXDET type, that can be solved in polynomial
time (Vandenberghe et al., 1998).

2.2 Uncertain Vector AR/ARCH Models

Since the appearance of GARCH models, a large
number of variants have been proposed, includ-
ing multivariate versions. We will not discuss
these variants here. Instead, we introduce a mul-
tivariate, bounded uncertainty counterpart to the
AR/ARCH models.

We define the model as follows:

x(k) = Ax(k − 1) + b + P (k)1/2u(k), (1)



where ‖u(k)‖2 ≤ 1, and A ∈ Rn×n, b ∈ Rn

are given, and the vector u(k) is unknown-but-
bounded. The positive semidefinite matrix P (k),
the square root of which plays the role of a
volatility matrix, obeys the following recurrence
relation

P (k) = P +
p∑

i=1

αiQ(k − i), (2)

where P � 0 is a positive semidefinite matrix,
Q(k − i) .= x(k − i)x(k − i)T , and the αi’s are
positive numbers. We note that the recurrence
relation is well-defined, in the sense that the right-
hand side in the above equation is a positive
semidefinite matrix.

Let us check that the above model captures some
of the structure of the classical AR/ARCH model.
Consider the univariate case (n = 1 and x is
scalar). We observe that the new iterate is an
affine combination of the previous return x(k− 1)
and a noise term. The noise term P (k)1/2u(k)
has two components: u(k) has the same role as
the Gaussian noise ε(k) in the stochastic model.
The other component P (k)1/2 is a deterministic
equivalent to the variance. Its square P (k) obeys
a recurrence relation that is affine in the previous
values of the squares, x(k − i)2, 1 ≤ i ≤ p.

3. PARAMETER FITTING

We now examine the problem of fitting the pa-
rameters of the above model, namely A, b, P , α, to
data. In the parallel work (Calafiore et al., 2002),
we are developing a general statistical theory of
identification of set-valued models based on con-
sistency criteria, analogous to the one discussed
in this paper.

Assume we are given historical returns x(k) over
a time period: 1 ≤ k ≤ N . We define the vector
θ as the collection of m := 3n(n + 1)/2 + p + q
parameters needed to define the model, in short
θ = (A, b, P, α).

Our approach is as follows: we require that, at
each step k, 1 ≤ k ≤ N , the recurrence equa-
tions (1-2) should be consistent, in the sense that
for every k, 1 ≤ k ≤ N , there exists a vector
u(k) with ‖u(k)‖2 ≤ 1, such that the equations (1-
2) hold. These consistency relations will impose a
number of constraints on the model variable θ. We
will observe that the constraints define a convex
set C, that has the form

C =

{
θ | F (θ) = F0 +

m∑
i=1

θiFi � 0

}
, (3)

where F0, . . . , Fm are symmetric matrices that de-
pend on the historical data only, and the notation

F (θ) � 0 means that F (θ) is positive semidefinite.
It is easily verified that the above set is convex.

Once the variables are constrained in the set C
by the consistency relations, it suffices to select a
member in the set to serve as our “best estimate”
for the parameters. There are of course an infinite
number of possible choices. We will take a specific
solution in this set, by minimizing a linear objec-
tive under the constraint F (θ) � 0. The problem
is a semidefinite program, solvable in polynomial-
time.

We now turn to a more precise description of the
set C. For every k, 1 ≤ k ≤ N , equation (1) holds
for some u(k), ‖u(k)‖2 ≤ 1 if and only if

P (k) � q(k)qT (k),

where q(k) .= Ax(k − 1) + b− x(k). Equivalently,
using the Schur complements rule the above is
expressed as [

P (k) q(k)
qT (k) 1

]
� 0,

where

P (k) = P +
p∑

i=1

αiQ(k − i).

We see that the consistency equations are satisfied
for some vectors u(k), ‖u(k)‖2 ≤ 1, if and only if
for 1 ≤ k ≤ N

Fk(θ) :=

 P +
p∑

i=1

αiQ(k − i) q(k)

qT (k) 1

 � 0.

The above conditions are convex in θ = (P,A, b, α).
In fact, we may describe the above constraints via
a linear matrix inequality (LMI) description such
as (3). Specifically, if we define the block-diagonal
matrix

F (θ) := diag (F1(θ), . . . , FN (θ), α1, . . . , αp) ,

then the parameter θ = (A, b, P, α) is consistent
with observed data if and only if F (θ) � 0.

Our estimate is chosen by solving the following
semidefinite program

minimize TrP +
p∑

i=1

αi subject to F (θ) � 0.

The rationale behind the choice of the above ob-
jective function is to select, among all consistent
models in the considered class, the one with small-
est “covariance” P (k).



4. PREDICTION

We now turn to the problem of predicting future
asset prices, based on the model (1-2). We assume
that x(0) is given, and we seek to predict x(T ) for
some future time instant T ≥ 0.

In a stochastic setting, prediction means comput-
ing the distribution of the variable x(T ). In a
deterministic uncertainty setting, the prediction
problem is to compute the reachable set, that is,
the set of states that are reachable by the system
at time T . For general uncertainty models, this
problem is in general extremely difficult. Hence
the idea of computing outer approximations for
reachable sets, that results in guaranteed bounds
for x(T ), and related payoff functions.

To compute bounds in a recursive and tractable
manner, one may use ellipsoids of confidence for
the states. The approximate prediction problem
is to recursively compute ellipsoids of confidence
Ek := E(X(k), x̂(k)) for the state at time k, for
0 ≤ k ≤ T . This approach has been introduced in
(El Ghaoui and Calafiore, 1999), for approximat-
ing the reachable set of uncertain linear systems.
Here, X(k) is a positive-definite matrix that de-
termines the shape of the ellipsoid, and x̂(k) is its
center.

4.1 Problem setup

Let us assume we computed ellipsoids of confi-
dence Ek−i = E(X(k − i), x̂(k − i)) for 1 ≤ i ≤ p.
Consider the problem of computing an ellipsoid of
confidence for the new state,

x(k) = Ax(k − 1) + b+ (4)(
P +

p∑
i=1

αiQ(k − i)

)1/2

u(k), ‖u(k)‖2 ≤ 1.

We seek X(k) � 0 and x̂(k) such that

(x(k)− x̂(k))T X(k)−1(x(k)− x̂(k)) ≤ 1 (5)

whenever x(k − i) belongs to the ellipsoid of
confidence Ek−i, 1 ≤ i ≤ p

(x(k − i)− x̂(k − i))(x(k − i)− x̂(k − i))T (6)

� X(k − i),

and x(k) satisfies (4) for some u(k), ‖u(k)‖2 ≤ 1,
that is

P +
p∑

i=1

αiQ(k − i) � q(k)qT (k). (7)

The above problem (that is, checking if the above
is true) is hard in general.

4.2 Lagrange relaxation: basic idea

We are now going to apply a Lagrange relaxation
method. The basic idea can be understood from
the following simple example. Assume we seek to
find a sufficient condition ensuring

ξT Fξ ≤ 0

whenever

φ(ξξT ) � 0,

where ξ ∈ Rm is a vector of variables, F is a sym-
metric m × m matrix, and φ is a linear mapping
from the space of symmetric m × m matrices to
the space of symmetric N×N matrices. The above
problem is hard in general, but a simple sufficient
condition is as follows. If there exists a symmetric,
positive semidefinite N × N matrix S � 0 such
that

for every ξ ∈ Rm, ξT Fξ ≤ TrSφ(ξξT ),

then our original condition is true. For any given
S, the above condition is a simple scalar condition
on ξ

ξT Fξ ≤ ξT φ∗(S)ξ,

where φ∗ is the map dual to φ. This scalar
condition is equivalent to

F � φ∗(S),

which is a linear matrix inequality (LMI) condi-
tion on S � 0. The morale of this example is as
follows. A sufficient condition for a quadratic func-
tion to be negative whenever some quadratic ma-
trix inequality holds, can be formulated in terms
of a linear matrix inequality in some “Lagrange
multiplier” matrix S. The latter is easily checked
using semidefinite programming. We notice that
the main tool used here (Lagrange relaxation for
quadratic programming) is the same as the one
used in the context of combinatorial optimiza-
tion with astounding success, see for instance
(Goemans and Williamson, 1994).

In our context, we will obtain a linear matrix
inequality condition on some matrix S � 0 that
guarantees that the ellipsoid E(X(k+1), x̂(k+1))
is an ellipsoid of confidence for the new state. We
will observe that this condition is jointly convex
in S and the variables X(k + 1), x̂(k + 1). We
will use this fact to optimize the “size” of the new
ellipsoid, via semidefinite programming.

4.3 LMI update conditions

We return to the problem of checking if inequal-
ity (5) holds whenever inequalities (7) and (6)



hold. This condition is true if there exist Lagrange
multiplier matrices S(k) � 0 and T (k − i) � 0
(1 ≤ i ≤ p) such that

δT (k)T X(k)−1δ(k) ≤ 1+
p∑

i=1

TrT (k − i)
(
δ(k − i)δT (k − i)−X(k − i)

)
+

TrS(k)

(
q(k)qT (k)− P −

p∑
i=1

αiQ(k − i)

)
,

where we set δ(k) .= x(k) − x̂(k). For fixed S(k),
T (k − i), x̂(k) and X(k + 1), the above condition
is a single scalar condition on the vector

ξ =


1

x(k)
x(k − 1)

...
x(k − p)

 .

We can express this condition as

ξT F (X(k), x̂(k),

S(k), T (k − 1), . . . , T (k − p))ξ ≤ 0, ∀ξ,

for some appropriate symmetric matrix F (·) of
size np + 1. The above condition is equivalent to

F (X(k), x̂(k), S(k), T (k − 1), . . . , T (k − p)) � 0.

We already know that the above is an LMI con-
dition on S(k), T (k − 1), . . . , T (k − p) for fixed
X(k), x̂(k). We will show that the above is in fact
an LMI in all variables X(k), x̂(k), S(k), T (k −
1), . . . , T (k − p). This is the consequence of sim-
ple but tedious algebra: The LMI condition on
X(k), x̂(k), S(k), T (k − 1), . . . , T (k − p) isX(k) H(x̂(k)) 0

∗ G1(·) G2(·)
∗ ∗ K(·)

 � 0 , (8)

where

H(x̂(k)) .=
[
x̂(k) I 0

]
,

G1(S(k), T (k − 1), . . . , T (k − p)) .=Ω(·) 0 −x̂(k − 1)T T (k − 1)
∗ 0 0
∗ ∗ T (k − 1)− α1S(k)

+

 bT

−I

AT

S(k)

 bT

−I

AT

T

,

being Ω(·) .=
∑p

i=1 TrT (k − i)(X(k − i) + x̂(k −
i)x̂(k − i)T ), and

G2(T (k − 2), . . . , T (k − p)) .=−x̂(k − 2)T T (k − 2) · · · −x̂(k − p)T T (k − p)
0 · · · 0
0 · · · 0

 ,

K(S(k), T (k − 2), . . . , T (k − p)) .=

diag (T (k − 2)− α2S(k), . . . , T (k − p)− αpS(k)) .

4.4 Optimizing the size of the confidence ellipsoid

There are many ways to measure the size of an
ellipsoid. We will not discuss the different possible
choices: volume, diameter, etc. Here, we choose
to measure the size of an ellipsoid by the sum of
the squared semi-axis lengths. If the ellipsoid is
described as E(X, x̂), then the size is TrX.

The problem of minimizing the size becomes

minimize TrX(k) subject to (8), S(k) � 0.

The above is a semidefinite program in variables
X(k), x̂(k), S(k), T (k − 1), . . . , T (k − p).

Let us discuss the complexity of our estimation
method, using a general-purpose interior-point
method for semidefinite programming, such as the
one detailed in (Vandenberghe and Boyd, 1996).
The LMI constraints involve two matrices, one is
S(k), which is of order n, the other inequality
involves a matrix of order n(p + 2) + 1 = O(np).
The number of variables is n(n + 1)(p/2 + 1) +
n = O(n2p). In practice, it is observed that the
number of iterations of interior-point methods for
SDP is almost constant, independent of prob-
lem size (Vandenberghe and Boyd, 1996). Each
iteration costs about O(p4n6). This might seem
prohibitive for very large-scale problems, but for
moderate-size problems the algorithm is tractable.
In addition, it is possible to exploit the structure
of the problem to improve performance. Research
along these lines is under way.

5. CONCLUSIONS

In this paper we introduced a new class of
bounded uncertainty models. These models may
be viewed as a deterministic counterpart of
stochastic ARCH models, which are extensively
used in financial mathematics for return and
volatility modelling. The main point of the paper
is that bounded uncertainty ARCH models are
computationally tractable, both from the point
of view of model construction (parameter fitting)
and from that of set-valued forecasting. Identi-
fication of a particular model in the considered
class is performed using a criterion of consistency
with observed empirical data. A parallel line of



research is developing the theoretical statistical
foundations that lie behind the construction of
this type of data-consistent models, see (Calafiore
et al., 2002) for further details.
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