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Abstract: The classical control theory is based on the design of linear controllers for
systems described by linear models. However, there exist some situations where it is not
recommended, or even possible, to use a fixed linear controller to control a process. One
of those situations arises when the magnitude of the process gain experiences a dramatic
variation within the operating range of interest. A classic example of a chemical process
where this situation occurs is the pH control around the neutralization point in a
continuous stirred tank. In this work, the disturbance attenuation problem for a strong acid
– strong base pH control system is addressed. To solve this problem, a nonlinear +∞

control law is derived based on a nonlinear model previously developed. The attainment
of that control law is done with the help of recent mathematical results from the authors
concerning the solution of Hamilton-Jacobi inequalities. The nonlinear controller is
implemented on an experimental reactor and its performance is compared with a PID
control law tuned according to the classical minimum error integral criteria. The obtained
results show that the nonlinear +∞ control theory can be a good alternative to solve this
difficult SISO control problem.
&RS\ULJKW�������,)$&
Keywords: Nonlinear control, pH control, H-infinity control, Control applications,
Process control.

1. INTRODUCTION

The theory of classic control is based on the design
of linear controllers for systems described by linear
models or nonlinear models linearized around an
operating point. However, there exist some situations
where it is not recommended to use such a linear
controller. One of those situations arises when the
magnitude of the process gain experiences a dramatic
variation within the operating range of interest. In
this situation, the use of a fixed linear controller can
lead to a poor performance of the closed loop system
and even to its loss of stability. A classical example
of a chemical process where this situation happens is
the pH control around the neutralization point in a
continuous stirred tank. In this control problem, the
titration curve – which represents the system’s input-
output map - presents a highly nonlinear behavior in

response to addition of acid or base. This behavior is
amplified even more if the reagents are strong acid
and/or base.

In the present work, the objective is to control the pH
of an experimental system within this difficult range
of operation. The problem can be stated as to
maintain the pH in the neutralization point
manipulating a strong base stream in response to
disturbances on the strong acid flow. To solve this
disturbance attenuation problem, a nonlinear +∞

controller is designed and implemented in a bench-
scale plant. This synthesis approach is possible due
to recent mathematical results from the authors
concerning the solution of Hamilton-Jacobi
inequalities (Longhi, HW� DO�, 2001). It must be
emphasized that this control law synthesis is not
based on any kind of linearization procedure, such as
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multi-linear models (Gálan, HW� DO�, 2000), gain
scheduling or adaptive (Su, HW� DO�, 1998) schemes,
nor in a change of the control objective to fit a
known solution method (Li and Zhang, 1999).

2. DISTURBANCE ATTENUATION PROBLEM

Consider the IA (Input-Affine) nonlinear system
description of equation (1).
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where x ∈ M (M ⊆ ℜn) is the vector of the system’s
state variables defined on a neighborhood of the
origin, w ∈ ℜq is the vector of exogenous inputs, u ∈
ℜm is the vector of control inputs and z ∈ ℜs is the
vector of exogenous outputs which characterizes the
control objective. The mappings f(x), g(x), k(x) and
g(x) are assumed to be nonlinear smooth functions
and, for simplicity, f(0) = h(0) = 0.

The disturbance attenuation problem via state
feedback is concerned with the construction of a
feedback controller, u(x), satisfying two objectives:
(1) To asymptotically stabilize the resulting closed-
loop plant, and (2) To minimize the influence of the
exogenous inputs, w, on the objective variable, z. If
the influence from w(t) on z(t) is measured as the
finite /2-gain between these variables, this
disturbance attenuation problem can be solved by
using the results from the nonlinear +∞ control
theory (Isidori and Astolfi, 1992). In fact, for linear
systems, the /2-gain has the same meaning of the
+∞ norm for the system operator. Here, the /2-gain
is defined as in Van der Schaft (1992).

'HILQLWLRQ����)LQLWH�/ � �JDLQ��� Given any γ > 0, the
mapping from w(t) to z(t) is said to have finite /2-
gain less than or equal to γ if, under the zero initial
condition x( )0 0= ,

∫ ∫γ≤T
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for all T ≥ 0 and all w(.) ∈ /2(0,T), where || • ||
denotes the Euclidean norm. 

However, as the minimization of the /2-gain can
lead to a controller with a very small validity region
(Yazdanpanah,� HW� DO�, 1999) or very near to the
stability frontier (Keel and Bhatacharyya, 1997), it is
usual in the literature to consider only suboptimal
solutions to the disturbance attenuation problem. In
this case, the minimum of γ is replaced by the gain
attenuation at some acceptable level. The suboptimal
solution to the nonlinear +∞ control problem for a
system described by equation (1) can be given by
theorem 1 (Van der Schaft, 1999).
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IRU� ,$� V\VWHPV���Consider the nonlinear system of

equation (1) and a real parameter γ > 0. Suppose that
exists a smooth positive definite solution, V(x) > 0,
to the HJI (Hamilton-Jacobi-Isaacs) inequality given
by equation (3),
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then, the closed-loop system with the feedback of
equation (4),
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is asymptotically stable at the origin and has locally a
/2-gain (from w to z) less or equal to γ.  Moreover,
the worst-case disturbance is given by equation (5).
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It must be noted that theorem 1 does not give a
method to solve the problem nor the size of the local
state-space region where its solution works. In fact,
these are the main drawbacks to apply the results
from the nonlinear +∞ theory to real systems. Before
to go to the developed solution, it is necessary to
define what is the validity region for the nonlinear
+∞ controller. This definition was based on
(Yazdanpanah,�HW�DO., 1999).

'HILQLWLRQ� �� �1RQOLQHDU� +∞� FRQWUROOHU� YDOLGLW\
UHJLRQ���The region of the state space of equation (1)
that, subject to the nonlinear state feedback law from
theorem 1, simultaneously satisfies the HJI inequality
and guarantees asymptotic stability of the worst-case
disturbance of equation (5) in closed-loop system, is
referred to as the validity region corresponding to the
controller of equation (4). Any region that is a subset
of this state-space region is referred to as an estimate
of the validity region.

In this work, the solution for the nonlinear +∞

control problem is found by solving the optimization
problem 1 (Longhi, HW�DO�, 2000). The solution of this
optimization problem furnishes a control law and an
estimate of its validity region. Its formulation, based
on preliminary results concerning the positivity of
multivariable scalar functions (Longhi,�HW�DO�, 2001),
requires the definition 3.

'HILQLWLRQ� �� �5HDO� ORFDO� UHJLRQ��� The real local
region of a multivariable scalar function y(x) is the
set composed by the subsets of the real field where
each element of x can assume values such that y(x) is
real and y ≠ 0 unless x = 0. 
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Choose the form of function V(x) and substitute in
H*(x). Write these two functions as quadratic form



representations: )x(P)x()x(V V
T ΘΘ=  and

),x( P)x()x(H H
T

* ΦΦ=  where PV and PH are

symmetric real matrices obtained directly from the
coefficients of V(x) and H*(x), respectively. Write
the time derivative of V(x)  as the quadratic form
representation: )x(.P.)x()x(V Vd

T ΨΨ=& , where PVd is a

symmetric real matrix obtained directly from the
coefficients of ).x(V&  Let αi , βi and δi be the

parameters which define the positivity region of V(x)
and the negativity regions of )x(V&  and H*(x),

respectively. Choose the parameters of V(x), Θ(x),
Φ(x) and Ψ(x) in a way to maximize the region
defined by V(x) = C subject to the constraints PV > 0,
PH < 0, PVd < 0 and  γmin < γ < γmax. The parameter C
∈ ℜ+ is obtained as the minimum value of V(x)
intersecting the positivity region of V(x) and the
negativity regions of & ( )V x  and H*(x). The solution,
V(x), solves locally the problem within the validity
region defined by V(x) < C for the γ level
attenuation. 

Roughly speaking, the optimization problem 1 tries
to find a solution to the HJI inequality that
maximizes the size of the validity region associated
with that solution. This is quite different from the
usual approach in the nonlinear +∞ control theory
where the main objective is to maximize the level of
attenuation regardless to the fact that the resulting
controller has a practical validity region or not.

Despite the fact that optimization problem 1 can be
considered a very general approach to solve the
nonlinear +∞ control problem via state feedback,
usually it is a very complex problem, many times
intractable. To reduce its dimension, some
simplifications can be done. One expected problem
occurs when it is desired to use non-ellipsoidal (non-
quadratic) forms to represent V(x). In these cases, it
could be very tedious to find an equation for the area
of V(x) = C. Furthermore, the resulting equation can
have a very complex form, inadequate for using in an
optimization problem. So, aiming the simplification
of the problem, it is recommended to use, when
possible, quadratic forms to represent V(x).

Moreover, if the situations 1 and/or 2, below, occur,
the problem’s size can be considerably reduced:
1. If V(x) is globally positive definite, then the

parameters αi are eliminated from the problem.
2. If the condition of equation 6 is satisfied, then

the signal of )x(V&  does not need to be

evaluated.
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In the last case, the HJI inequality satisfaction

implies the negativity of )x(V&  in the same state

space region. This situation occurs when the
description of the IA system is known and the lower
bound of γ is defined as the minimum necessary to
assure that the inequality (6) holds.

3. NEUTRALIZATION SYSTEM MODELING

The experimental apparatus is located at the Food
Technology and Science Institute of Federal
University of Rio Grande do Sul. It is composed by a
2.5 liters stirred tank, pH and flow sensors, and a
remote computer responsible for the on-line
computation of the control actions, see figure 1. The
acid stream is composed by HCl 0.1 M and the basic
stream by NaOH 0.1 M, where M denotes the molar
concentration, [gmol L-1].

Fig. 1. Sketch of the continuous pH neutralization
process.

The process model considered in this work uses the
change of coordinate proposed by (Narayanan et al.,
1998): η = [H+] - [OH-], where [A] denotes the molar
concentration of the chemical specie A. The relation
between the variable, η, and the original variable, pH

( ]H[logpH 10
+−= ), is given by equation (7). The

advantage of using η instead of pH is the attainment
of a concise IA model, as it can be seen in equation
(8).
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where VR is the reactor volume, FA is the acid stream
flow, FB is the basic stream flow, CA0 is the acid
concentration in the acid stream, CB0 is the base
concentration in the basic stream and KW = 10-14 is
the equilibrium constant for the water dissociation.
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Fig. 2. Comparison between the model of equation
(8) and the experimental data.



Figure 2 presents the comparison between the model
of equation (8) and the experimental data. The highly
nonlinear behavior of the pH system can be easily
seen in this figure. The modeling error in the basic
region - due to the acid characteristic of the available
water used in the experiments - can also be seen in
the figure.

4. NONLINEAR CONTROLLER SYNTHESIS

In order to obtain a description whose the steady
state of interest is the origin, the following new
variables were defined: RAA V/F=θ ,

RBB V/F=θ , SS1x ηη −= , ASSAw θθ −=  and

.u BSSB θθ −=

Furthermore, to assure the off-set suppression, an
additional state was incorporated to the original
control variable: 2i x.T)x(u)x( +=ν  (where

122 xdtdxx ==& ). Now, the control system can be

adequately represented by equation (9) and the

objective variable .
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If a simple Lyapunov function 2
2
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is considered, the HJI inequality (10) must be solved
for V(x) > 0.
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As the LaSalle’s detectability condition is satisfied, it
is sufficient to find a solution for the non-strict
inequality H*(x) ≤ 0 to solve the disturbance
attenuation problem. In order to cancel the quadratic
cross product (x1x2) from inequality (10), it is
assumed that Ti=10 b/a. Now, the HJI inequality can
be rewritten as:
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A necessary condition for a local solution to

inequality (11) is 0)a01.01( 2 ≤+ λ . This situation

only occurs if λ < 0, which has the same meaning of
γ > 1. Then, if the lower bound of γ is fixed as equal
to 1 in the formulation of the optimization problem 1,
the condition of equation (6) is automatically
satisfied, and the searching for a local solution to
inequality (11) becomes easier.

To solve the optimization problem 1, the quadratic
form representation of equation (12) was used.
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where the matrix PH* is givev by:
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So, the optimization problem 1 can be stated as:
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In order to simplify the delimitation of the controller
validity region, it was assumed that β1 = β2. In
addition, it was arbitrarily chosen that the maximum
and minimum level of attenuation (γ) are 1.0 and 1.5,
respectively. The solution for the problem (13) is
given by:
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and, consequently, the controller validity region is
given by equation (15).
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which is nearly equivalent to the pH region given by:
12 < pH < 2.

Finally, one can construct the suboptimal nonlinear
+∞ controller as a function of the original control
variables η:
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Since the disturbance attenuation problem solved by
the nonlinear +∞ control theory only considers
vanishing perturbations, for the more realistic case of
persistent disturbances, it is hoped that the controller
validity region be sufficiently large to support strong
disturbances on w(t).



5. EXPERIMENTAL RESULTS

To implement the controller of equation (16) in the
experimental plant, it was needed to develop an
interface to connect the plant to a remote computer.
This interface was written using the Matlab/Simulink
environment. In figure 3, the graphical interface used
to control the plant is shown. The interface’s inner
program measures the pH and proceeds a nonlinear
static transformation into the variable η. Then, this
variable is feed in a PI controller, which is simply the
controller of equation 16 without the quadratic term,
together with the desired set-point. This slight
modification of the control law is justified because
several simulations had shown that this last term has
a negligible contribution in the control law.

In the figure 4, the nonlinear +∞ controller behavior
is shown in response to some disturbances on the
acid stream (see table 1). In the same figure, it is
plotted the performance of an usual PI controller
tuned according with the classical minimum integral
error criteria. The PI tuning was constructed using
the ITAE parameters for the disturbance attenuation
case and an experimentally identified FOPDT (First

Order Plus Dead Time) model (Seborg, HW�DO., 1989)
for the same operating point.

In the figure 5, the responses of the same both
controllers is shown for set-point changes. It can be
noted that the good properties of the nonlinear +∞

controller are not maintained. This could be expected
because the nonlinear controller was not designed to
compass this kind of situation. In fact, as distant from
the neutralization point, worst is the nonlinear +∞

controller performance. A possible ad-hoc solution
for this problem could be found by choosing different
controller’s settings for each operating condition,
characterizing a gain scheduling procedure.
However, this approach was not validated yet.

Table 1. Disturbance applied on the acid stream.

Time [s] Acid Flow [ml/min]
0 0
0+ 2.40
500 3.52
1000 4.80
1300 1.28
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)LJ���� The developed MATLAB/SIMULINK interface used to control the experimental system.
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6. CONCLUSIONS

In this work, the pH control of a continuous stirred
tank was addressed. A nonlinear +∞ controller was
designed and implemented in a bench-scale plant.
The controller synthesis, based on preliminary
mathematical results from the authors, guarantees a
validity region for the controller. The main
disadvantage of the design method is that it is still
not automated as an algorithm. For the author’ s
knowledge, this is the first application of nonlinear
+∞ controller to an experimental chemical process.
The performance of the nonlinear controller was also
compared with a well-tuned PI controller.
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