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Abstract: The late sixties and early to mid seventies saw and explosion of interest and inno-
vation in the area of frequency domain methods in the analysis and design of multivariable
control systems. The emergence of multivariable frequency domain control design techniques
in the 1960’s and 1970’s was based on traditional views of the role of the designer in the
design process. Classical influences on the emerging Nyquist and root-locus theory were
therefore natural and, it can be argued, very successful. This paper presents a personal review
of the ideas, concepts and techniques from the perspective of a researcher active in the area
at the time. The paper will aim to provide a personal insight into the issues and provide an
opportunity for young researchers to review the wide range of contributions made before the
current use of H-infinity (and related optimisation) methods become so prevalent.
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1. INTRODUCTION

Multivariable control systems design is now a rela-
tively mature discipline with many of the issues raised
by the generalisation of classical frequency domain
methods solved in a form that has found useful ap-
plication and acceptance in the field. This is not to say
that the area has been fully examined and satisfactory
conclusions reached in all areas, but it does say that
the progress has been substantial leaving issues to be
resolved that are of some complexity and in urgent
need of attention. The predominance of and increasing
focus on H-infinity methods and concepts in current
thinking has been the product of many years research
and thought driven by need and the increasing power
of computer systems and the increased sophistication
and potential of software. Further progress can be ex-
pected but it may rely on new paradigms, techniques
and tools of analysis.

At this time, it is essential that innovation is sought
but, I argue, it is also essential to build on the past in
an effective and constructive way. This past includes

H-infinity approaches but it also includes methods
that have been recorded, used and now omitted from
the day-to-day vocabulary of the field. This can, and
should, be regarded as a natural evolution of the es-
sentially human process of research in the area but
it should also be regarded with concern if the rich-
ness of the conceptual base is lost to new and young
researchers in the field. This paper aims, in part, to
address this issue by providing a personal view of
the developments in the late sixties and early to mid
seventies and the explosion of interest and innovation
in the area of frequency domain methods in the anal-
ysis and design of multivariable control systems. The
emergence of multivariable frequency domain control
design techniques in the 1960’s and 1970’s assumed
the availability of computing resources but was con-
ceptually based on traditional views of the role of
the designer in the design process. Classical influ-
ences on the emerging Nyquist and root-locus theory
were therefore natural and, it can be argued, very suc-
cessful. This reliance on the human input was both
a strength and a weakness but in whatever emerges
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in the future, the development of the human input,
either through education and training or through the
encouragement of the tenuous and vital ingredient of
intuition, will be essential.

As an employee (and external London) PhD stu-
dent working for the United Kingdom Atomic En-
ergy Authority in the period 1969-1973, the author
was fortunate in hitting the research community at a
time when multivariable frequency domain techniques
were rapidly developing. As a trained physicist, he
naturally sympathised with the model-based and phys-
ically relevant approach. This influenced his choice of
research programme and it also influences the contents
of this paper.

The paper and presentation are unashamedly based on
the now classic edited text of reprints by MacFarlane
(1979) and the 1978 text by the author. All readers are
referred to these texts for a view of the period from the
late seventies.

The presentation is guided by the historical sequence
but this is modified to provide a coherent summary of
the concepts and their interrelationships.

2. MULTIVARIABLE FEEDBACK CONTROL
SYSTEMS

The times were dominated by linear theory and linear
controllers where thel-input m-output system has
a state space model�A�B�C�D� with m� l transfer
function matrix (TFM)

G�s� �C�sI�A��1B�D (1)

The control system is assumed to be described by
its own l �m TFM K�s� in a familiar unity negative
feedback system, although some generalisations are
possible (see references). The simplified problem is
to designK�s� using acceptable components to en-
sure, amongst other things, acceptable stability, per-
formance and robustness targets.

The area is unusual in that it relies on a small number
of basic relationships from which to develop a useable
design theory. They are summarised below for com-
pleteness:

Stability, Poles and Zeros: The ratio of the closed-
loop characteristic polynomialρc�s� to the open-loop
characteristic polynomialρo�s� is equal to the Return-
difference Determinant

ρc�s��ρo�s� � �Im�G�s�K�s�� (2)

where

Q�s� � G�s�K�s� (3)

is the forward path TFM. The idea of poles moved eas-
ily to the multivariable case but zeros caused more of

a problem. For design purposes, the relevant definition
applies most usefully to the case whenm � l i.e. the
zeros of a system with TFMR�s� and characteristic
polynomialρ�s� are the zeros of the zero polynomial

z�s� � ρ�s��R�s�� (4)

Performance: The closed-loop TFM relating the plant
outputy to the demand signalr is computed as

Hc�s� � �Im�Q�s���1Q�s� (5)

Interpreted element by element, this, in principle, pro-
vided complete data on the closed loop transient per-
formance. Such an analysis is essential but the pre-
occupation of the researchers in the period being dis-
cussed was on the reduction of input-output interac-
tion as represented by the off-diagonal terms ofHc�s�.
Stability and Robustness: The relevant TFM here was
typically the Sensitivity TFM relating the tracking er-
ror e � r� y to the signalr:

S�s� � �Im�Q�s���1 (6)

3. DIAGONAL DOMINANCE AND THE
BEGINNINGS OF A THEORY

There is no doubt that the issue of interaction was seen
as a barrier to real progress in multivariable design and
consequently pre-occupied the minds of researchers.
The mathematical reason for this is, in simple terms,
the non-linear dependence of the stability relationship
and the closed-loop TFM on the off-diagonal terms of
G�s�. In a mathematical sense, ifm � l, the removal
of interaction simply relies on the construction of
an inverse of the plant model i.e. the choice of the
controller TFM

K�s� � G�1�s�D�s� (7)

where D�s� is diagonal ensures that interaction is
removed from both the forward path and closed-
loop systems. The complexities of the inverse and
the perceived priorities to achieve a simple controller
(for ease of construction and commissioning/retuning)
made this ”solution” unacceptable to designers at the
time.

The pioneering idea that exact removal of all interac-
tion was unnecessary and unachievable in the presence
of plant uncertainty and modelling errors is easy to
state but non-trivial to prove.

The first pioneering result that provided a clear and
rigorously defined situation where interaction is suf-
ficiently small as to permit the design of the m con-
trol loops independently (ignoring the interaction!)
was provided by (Rosenbrock, 1969). The importance
of his contribution was that the criterion was based
on classical frequency domain data and hence fitted
well into the classical way of thinking. This meant



that it was potentially easily understood by classically
trained control engineers and hence more easily trans-
ferred into industrial use - benefits that were difficult
to ignore!

The mathematical trick used by Rosenbrock was to
demand that suitable TFMs have the property of being
diagonally dominant.

Definition 1. An m�m matrix M is diagonally (row)
dominant if, for each indexi,

�Mji�� ∑
j ��i

� ri (8)

Note 1. M is diagonally column dominant ifM T is
row dominant.

Note 2. In both cases, diagonal matrices are diago-
nally dominant and diagonally dominant matrices are,
in a precise sense, nearly diagonal.

The nice thing about this well-known result is that it
permits a graphical interpretation i.e. the requirement
that, for each index i, the Gershgorin circle of radiusr i
and centreMii in the complex plane does not contain
the origin.

The idea can be used in a number of ways (see e.g.
(Owens, 1978a)) that will be illustrated in the pre-
sentation. The essence of the kind of result obtained
can be summarised as verifications that the process of
applying familiar Nyquist or inverse Nyquist stability
criteria to diagonal elements ofQ�s� and/or its inverse
will successfully predict closed-loop stability. This is
achieved provided that uncertainty introduced by ig-
noring the off-diagonal (interaction) terms is removed
by demanding that the diagonal term’s Nyquist or
inverse Nyquist loci with super-imposed Gershgorin
circles creates a band in the complex plane that does
not contain a specified fixed point (typically the origin
or the classically familiar��1�0� point).

Rosenbrock’s work, in effect was one of the first re-
sults on robust multivariable control where the nomi-
nal model is taken to be the model obtained by ignor-
ing interaction. It had a powerful impact on thinking
in research in multivariable control systems design
because it demonstrated feasibility of a frequency do-
main approach and had a familiar ”feel” to the graph-
ical designers.

The work lead to a multitude of papers on how to
achieve the diagonal dominance condition using struc-
tured pre-compensator(s) and many applications (see
for example (Patel and Munro, 1982)). It was very
influential and the discerning reader will find echoes
of the ideas in aspects of modern robust control and
related areas. Applications were not restricted to linear
systems as can be seen in (Cook, 1972).

4. LOOP ADDITION CONCEPTS

The search for methods that reduced to the analysis
of simple single loop designs (where interaction was
either suppressed or removed from the analysis) also
lead to the practically motivated idea of closing the
loops one-by-one - a technique that had possibly been
used by practitioners for many years but which had
little theoretical basis for design. The theoretical base
was provided by (Mayne, 1973) (and also described
in Owens (1978)) in the form of recursive Nyquist-
like design processes. The methods had computational
issues to address and optimistically assumed that the
designer had an idea of the ”best” sequence of loop to
close.

The ideas attracted great attention for its theoretical in-
terest but was not, to my knowledge, used extensively
in applications or further developed at the theoretical
level.

5. EIGENVALUE BASED METHODS

Rosenbrock’s work is an approximate eigenvalue
method as Gershgorin’s theorem, in its original form,
states that the eigenvalues of a complex matrixM lie in
the union of its Gershgorin circles. A diagonally (row
or column) dominant matrix is hence non-singular.

Macfarlane pioneered the use of eigenvalues (as pre-
cise functions of frequency) within multivariable fre-
quency domain design theory (MacFarlane (1979,
1980) in a series of papers with his students that iden-
tified a rigorous relationship between the eigenvalues
of Q�s� and closed-loop stability. His more heuristic
earlier work was put on a rigorous foundation with
(Postlethwaite and MacFarlane, 1979) and further de-
veloped as a computational design tool with others
including Kouvaritakis and Edmunds (MacFarlane,
1980). The method was called the ”Characteris-
tic Locus Design Method” (or CL Method) (see
(Maciejowski, 1989); (MacFarlane, 1980);(Owens,
1978a) for various descriptions/interpretations)

The mathematical formulation of the stability crite-
ria and ”encirclement conditions” required the use of
complex variable theory on Riemann surfaces (where
frequency dependent eigenvalues have well-defined
functional characteristic to which complex variable
theory can be applied). Computational aspects of the
theory were subject to more uncertainty as design ul-
timately consisted of the systematic manipulation of
the frequency dependence of eigenvalues to ensure
stability, performance and reduced closed-loop inter-
action. This problem lead to a number of computa-
tional approaches, some of which are summarised in
(MacFarlane, 1980).

It is difficult to do real justice to this major contribu-
tion in a few words. It certainly clarified the funda-
mental relationship between stability and eigenvalues



and provided necessary and sufficient conditions for
stability (in contrast to Rosenbrock’s results which
were clearly only sufficient). Many of Rosenbrock’s
results can be derived from this work using eigenvalue
approximation theory. The computational aspects of
design were subject to more uncertainty - eigenvalue
manipulation is notoriously difficult and the need to
manipulate frequency dependent eigenvalues was even
more complex. Substantial progress was made how-
ever using the idea of commutative and approximately
commutative controllers (MacFarlane 1980) where at-
tempts were made to influence eigenvalues at fre-
quency points and in the vicinity of those points. In-
teraction reduction was achieved typically at low and
high frequencies by the choice of coefficient matrices
of multivariable PI controllers. At other frequencies,
interaction was typically reduced by the use of high
loop gains.

The author was involved with multivariable control
from a very special perspective that ultimately linked
in closely to the ideas of Rosenbrock and MacFarlane.
The intuition (with hindsight) is that systems with a
”modal” structure may be particularly suited to anal-
ysis using eigenvalue-type methods. The author was
working on the design of sector based control systems
for xenon-induced spatial oscillations in thermal nu-
clear power reactors at AEE Winfrith, UK. The sym-
metrical placing of the sensors and actuators lead to
symmetry properties of the TFMG�s� which then lead
to simple expressions for eigenvalues and symmetric
control structures that retained this property and al-
lowed systematic and exact control design without the
problems that could arise in the use of the CL method.
Details can be found in (Owens, 1973b) where the
ideas also were easily extended to include analysis of
failure situations.

The extension of this work was to the idea of dyadic
transfer function matrices (Owens, 1973a) based on
the idea that eigenvalues were not necessarily physical
quantities of the system e.g. the choice of units for
inputs and outputs influence the eigenvalues but do not
change the underlying reality of the system dynamics!
Whereas eigenvalues are obtained by similarity trans-
formation of a TFM, the argument was that physical
quantities would be accessible through equivalence
transformations. In the context of the nuclear reactor
application, this was expressed by noting thatG�s� has
the dyadic TFM form

G�s� � PD�s�Q (9)

whereP andQ are constant nonsingular matrices and
D�s� is a diagonal TFM. For the nuclear reactor,D�s�
could be related to physical modes of the underlying
partial differential equation model withP andQ re-
flecting mode shapes and the influences of modes on
the output and input on modes respectively.

The constancy ofP andQ made the method a special
case where difficult issues arising in CL analysis were

absent. In Owens (1974) (also reprinted in MacFarlane
(1979) and described in Owens (1978)) the author
extended the ideas to show that the same principles
hold for an arbitrary square, invertible TFM. That is,
a decomposition of the from of (9) can be derived at
any selected frequency but whereP andQ then depend
on that frequency andD�s� is only diagonal at that
frequency. The resultant Method of Dyadic Expansion
hence made it possible to exactly manipulate eigen-
values at any specified frequency using simple com-
pensators. It also made it possible to manipulate (in
an approximate sense) the behaviour of eigenvalues
in the vicinity of that frequency using the diagonal
terms ofD�s� as models and using Gershgorin circles
to estimate the uncertainty.

6. WHY DIT IT CHANGE?

Eigenvalue methods were very much a UK phe-
nomenon and caused great excitement. It is a mat-
ter of speculation and opinion as to why they were
ultimately replaced by H-infinity methods (see Ma-
ciejowski, 1989). It can be argued that the com-
putational complexities and uncertainties of achiev-
ing diagonal dominance conditions and/or shaping
eigenvalues overwhelmed the community who then
opted for the hands-off computational certainties of
the optimisation-based H-infinity approach. No doubt
much was achieved by this change. A personal view is
that something may also have been lost e.g. how would
the modal structures of dyadic TFMs have arisen from
H-infinity; how would loop-by-loop methods be de-
veloped and more, generally, how is it possible to
input physical information and insight to the process.
No doubt many discussions in bars around the world
will help to resolve the issue?

Much remains of the ideas in the form of the un-
derlying methods of robust control (Skogestad and
Postlethwaite, 1996) and issues of approximation (see
(Owens and Chotai, 1986)) who consider the use of
frequency domain design base on the use of exper-
imental step response data) but the current accumu-
lation of ideas and methods is now potentially much
richer and computationally better understood. The
open question is whether or not substantial further
progress is possible!

7. MULTIVARIABLE ROOT LOCI

The development of a generalisation of the classical
and well-known root-locus method in the mid sev-
enties created several years of excitement with most
results summarised in three texts, namely (MacFarlane
1980; Owens 1978b; Postlethwaite and MacFarlane,
1979) and a number of associated publications. The
work yielded a deep understanding of both the com-
plex variable theory of multivariable root loci and
a clear and systematic method for controller design



based of the manipulation of root locus asymptotes
but was not used extensively for reasons that may boil
down to those of mathematical complexity or simple
a human response to the perception that the multi-
variable generalisation was unlikely to replicate the
usefulness of the classical version.

The formulation of the problem was relatively sim-
ple but the subsequent analysis could be approached
from several viewpoints. MacFarlane, Postlethwaite
and co-workers undertook fundamental studies of the
complex variable theory of root loci using the CL
methodology of Riemann surfaces. This lead to a com-
plete analytic function theory of the concept and the
existence and parameterisation of series expansions
for the closed loop poles about ”the point at infin-
ity” i.e. infinite loop gain. The role and properties
of zeros were retained in the multivariable case and,
broadly speaking, the asymptotic analysis indicated
that a multivariable root locus could be visualised as
m superimposed root-loci of m single-input-single-
output (SISO) systems. This is a crude picture but
useful for visualisation and the interpretation of an
m�m multivariable system as containing m separate
SISO systems of different relative degree. These rela-
tive degrees could then be interpreted in terms of prop-
erties of oscillation and stability in a classical sense,
although quite how these properties would appear in
the system’s outputs could not be predicted without
additional analysis.

MacFarlane and Postlethwaite’s work did however
indicate that, in certain situations, the above picture
fails - in the creation of what appeared to repre-
sent non-integer relative degrees. The author of this
paper took a more computational viewpoint of the
root locus question by providing algorithms for char-
acterising the nature and parameters of the asymp-
totes through matrix computations on the first few
terms in the Markov matrix sequence�CAkB} -
the so-called method of dynamic transformation (see
(Owens, 1978a)). This analysis confirmed the fact that
the orders of the asymptotes generically took cer-
tain values (later proved to be related to the struc-
tural invariants of a group action on matrix triples
�A�B�C�D� (Owens, 1978b)) and provided formulae
for the asymptotic directions and pivots.

The computational approach was powerful in charac-
terising and computing asymptotes but failed to ad-
dress the form of the non-generic case with any ease.
It did however provide methods for systematic ma-
nipulation (design) of parameters in the asymptotes
(Owens, 1978b) and hence influencing the response
speed and degree of oscillation (performance?) of the
closed-loop system. The asymptotic nature of the anal-
ysis meant however that the methods provided little
information on the position of roots at smaller gains
and could have sensitivity problems that meant that
high gain properties did not provide any guidance to
lower gain behaviours. As this is likely to be the region

of practical relevance, it was considered that multivari-
able root locus methods would have to be supported by
other techniques such as the ones considered earlier in
this paper.

8. FREQUENCY RESPONSE METHODS IN
OTHER AREAS

The excitement that was associated with the above
work spilled over into related areas.
(MacFarlane, 1979) provides a section on the applica-
tion of the ideas to so-called-multi-dimensional sys-
tems characterised by TFMs dependent on two inde-
pendent complex variables (representing dynamics in
two orthogonal dimensions). These ideas arose from
areas such as 2D digital signal processing. The author
was involved with the early recognition (by Edwards
and Owens) that some physical processes involving
repetition where the output from one repetition in-
fluenced the output from the next are examples of
2D systems. Examples of application areas included
long-wall coal cutting control, control of agricultural
ploughing and metal rolling with more theoretical ap-
plications in areas of iterative algorithms and iterative
learning control theory.

Some of these ideas were reported in the text by
(Edwards and Owens, 1982) and have been substan-
tially further developed by (Rogers and Owens, 1992).
The basic stability result (Owens, 1976; Edwards and
Owens, 1982; Rogers and Owens, 1992) was ex-
pressed as necessary and sufficient conditions for sta-
bility in terms of the Characteristic Loci (eigenvalues)
of a carefully selected TFM. In this case no further im-
provement is possible as H-infinity methods are only
sufficient in the 2D context.

9. SUMMARY AND CONCLUSIONS

The 1960s and 1970s development of extensions of
classical frequency domain design methods to cope
with multivariable systems saw a great change in the
ability of the community to analyse and design multi-
loop control systems. The UK research community
was a major player in these innovations based on
the use of eigenvalue approximation in Rosenbrock’s
inverse Nyquist array method, Mayne’s Sequential
Return Difference Method, MacFarlane’s eigenvalue-
based Characteristic Locus Method and the author’s
contribution to CL theory in the form of the Method
of Dyadic Expansion. The insight produced by these
studies coupled with the technically more complex
results for multivariable root loci identified solutions
and unsolved problems, many of which still remain.

The move from these approaches to the more algo-
rithmic use of H-infinity approaches can be explained
in many ways. What is not in doubt is that H-infinity
builds firmly on the foundations provided by this early



work. Students and researchers new to the area may
find a perusal through the references will provide the
connections that they need to make further progress in
what is still a vibrant area of relevant research.

10. A NOTE ON MODEL DESIGN

It has not been possible to be comprehensive within
the limitations of this paper. The paper has focussed
on the UK (where most of the developments began)
but there was interest around the world. It has also
focussed on the design process for a given model.
The idea of dyadic transfer function matrices indicates
what can be achieved if additional model structure is
included in the theoretical analysis and development
of the design process. Dyadic TFMs are, intuitively
only one of a large number of modelling assumptions
that could be made. In classical control, the canonical
models chosen for simplified design and conceptual-
isation are the familiar first and second order mod-
els (formulae) omitted. The author introduced similar
concepts for squarem�m systemsG�s� (brought to-
gether in the text, Owens (1978b)) by defining first
order MIMO lags as systems with inverse TFM of the
form

G�s��1 � sA0�A1 (10)

and second order MIMO systems via

G�s��1 � s2A0� sA1�A2 (11)

with A0 non-singular. These definitions also cover the
SISO case. Mixed first and second order systems are
obtained for MIMO systems by allowingA0 to be
singular in (11)! The benefits of these assumptions are
clear in design terms but have not been exploited fully
in practice. My belief is that they offer an opportunity
and have been sufficiently successful to merit prac-
tical and theoretical consideration of these and other
MIMO structures to act as guides and benchmarks for
industrial use, whatever the chosen design method!
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