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Abstract: This paper is devoted to the identification and control of a glass fibre
bushing. First a mathematical model, based on physical equations (electric, hydraulic
and thermal balances), allows to predict the throughput, the electric power consumed
and the temperature of the tip plate of the bushing. Then controls oriented linear
models are obtained via experimental identification on the industrial process. Per-
formance analysis of the existing control system is then provided by identifying the
usual sensitivity functions on real data.
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1. INTRODUCTION

This work concerns the regulation of a glass fibre
bushing. Indeed, today, the products quality and the
production yields are not completely satisfactory.
Moreover, very simple, and not ”optimal”, control
strategies of bushing, such as PI controllers, are
used currently in Vetrotex plants. The industrial
challenge is then to provide a methodology for de-
signing a control system, ensuring good production
indicators, in the considered industrial framework.
In this paper, the bases of control system design
are tackled, i.e. the modelling of the process using
identification algorithms, and the way to quantify
the performances of the control system using the
well-known sensitivity functions. As the glass fibre
production works in closed-loop, experimental iden-
tification procedures will be done in closed-loop.
The collected real data are then used to perform
identification algorithms. Furthermore, the existing
controller will be analyzed, allowing future improve-
ment of the control strategies. Another important
aim is to put in place tools which will be used for
multi-variable (i.e. multi types of glass fibre) control

system design.
This paper is organized as follows. In Section 2
the industrial process is presented. A mathematical
model is described in Section 3. In Section 4 the
identification procedure is explained. The bushing
transfer function is identified in Section 5. In Section
6 performances of the control system are analyzed.
Conclusions are given in Section 7.

2. THE PROCESS

Glass is a phase we exceptionally find in nature
and always after a sudden cooling of melted rocks.
Glass is often a brittleness symbol. However, when
glass is fibered under the form of fine filaments
and when these filaments are collected in strands
to do glass fibre, its resistance is higher than best
steels resistance. Moreover, glass fibre is an excellent
electric isolant, is non-flammable and has a very low
sensitivity to thermal variations. Glass fibre is very
used for the reinforcement of organic and mineral
matrices, to do what it is called ”composites”. Glass
fibre is particularly useful in three main domains:
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• in electronic, such as to produce copper-plated
laminates in printed circuit board manufacture.
• in building, where glass fibre is incorporated in
cement matrix.
• in automotive, where it is used in body panels.

2.1 The Glass Fibre Production

Here is a short presentation of the glass fibre produc-
tion. For more details see [Loewenstein, 1993]. The
fabrication steps are the following ones: raw mate-
rials for glass fabrication are heated in a furnace at
a temperature of 1400◦C. At a such temperature,
the glass is fluid. Then it flows by gravity down
shafts in refractory material up to the bushing, a
parallelepiped box jailed in cement. The upper part
of a bushing, called the screen, is a pierced plate,
heated by Joule effect. Its goal is to homogenize
glass temperature around 1250◦C in order to com-
pensate heat losses during its transport. The lower
part (the tip plate) is a pierced plate with tips. The
figure 1 represents the different parts of a bushing.

Fig. 1. Scheme of a bushing

The tip plate is in contact with air. Glass flows
down the tips by gravity and glass threads are
mechanically drawn by winders to form filaments,
with a diameter varying from 5 to 24µm. A chemical
product, called the size, is added at this moment
to the filaments in order to confer good mechanical
and antistatic properties to the filaments which are
linked together to form glass fibre. The figure 2 is a
simplified representation of the fabrication process.

Fig. 2. Scheme of a glass fibre production process

A glass fibre is generally characterized by its linear
weight (g/km) and a bushing by its tips number and
its throughput (kg/day).

2.2 The Regulation

As throughput can not be measured, only the bush-
ing temperature which is linked to the throughput,
is measured and controlled.
Bushing temperature control plays an essential role
in the quality of the produced glass fibre. The pur-
pose of a stable temperature is two-fold. As glass
throughput strongly depends on bushing temper-
ature, a stable temperature avoids the variations
of fibres diameter. Moreover, by avoiding strong
variations of glass throughput, a stable temperature
causes less production breaks.
The regulation loop (see figure 3) is made by a
controller, actuators and a bushing. Actuators are
a thyristor block and a transformer. The control
input is, via the thyristor block opening, the electric
power supplied to the bushing. The feedback data is
the temperature of the bushing. Today the control
strategy is an industrial PID, including some addi-
tional filters.

Fig. 3. Scheme of a glass fibre production process

In the next part the mathematical model of a glass
fibre bushing is developed.

3. MATHEMATICAL MODEL BASED ON
PHYSICAL KNOWLEDGE

Vetrotex uses complex models for bushing simula-
tion and design, but they are useless for the real-
time control. The mathematical model relies on
many different physic domains, as electric, hydraulic
and thermal. The physical laws on which the model
is based are detailed. The figure 4 is a scheme of the
model.

Fig. 4. Scheme of a bushing model

3.1 Electric Equations

Using the bushing geometry and the electric conduc-
tivity σ (Ω−1.m−1) depending of the temperature T
(◦C) of the components of the bushing, the electric



resistance of all the plates composing the bushing is
given by:

R(T ) =
L

σ(T ).S
(1)

where L is the length (m) and S the section (m2)
of the plate.
The electric power Pe (W ) lost by Joule effect in all
the components of the bushing is:

Pe(T ) =
U2

R(T )
(2)

where U (V ) is the voltage between the terminals
of the bushing.

3.2 Thermal Balances

The thermal energy of an object is given by

E = m.cp.T (3)

where m is the mass (kg) and cp the heat capacity
(J.K−1.kg−1) of the object.
For a pierced plate, the variation of thermal energy
∆E per time unit is equal to

∆E
∆t

= m.cp.
∆T
∆t

= Pe + φin − φout (4)

where Pe represents the electric power source, φin

the glass inflow, φout the glass outflow.
To determine the temperature in the bushing, we
need to know all energy flows. Glass flows φin and
φout are characterized by the three types of heat
transferts, which are:

• Conduction. The flow φcond is given by the
Fourier’s law:

φcond = λ.S1.
dT

dx
= λ.S1.

∆T
∆x

(5)

where λ is the thermal conductivity (W.m−1.K−1)
and S1 the contact area (m2).

• Convection. The flow is expressed by the following
relation:

φconv = h.S2.∆T (6)

where h is the coefficient of convection (W.m−2.K−1)
and S2 the contact area (m2).

• Radiation. The radiative flow is obtained by the
relation:

φrad = ε.σ.S3.(T 4 − T0
4) (7)

where ε is the emissivity of the object, S3 the
contact area (m2) and σ the Stefan-Boltzmann
constant.(σ = 5.67.10−8 W.m−2.K−4)

3.3 The Hydraulic Equation

The temperatures of the screen and of the tip plate
allow to calculate the glass viscosity (µ, in Poises)
at the screen and at the tip plate, as:

log(µ(T )) = A+
B

T − T0
(8)

where A, B et T0 are real constants depending on
the type of glass.
The bushing throughput Q (kg.s−1) is thus given
by the following equation:

Q =
ρ2.g.H

Rs.µ(Ts) +Rp.µ(Tp)
(9)

where ρ is the glass density (kg.m−3), g the gravity
constant (m.s−2), H the glass height (m) from the
tip plate, and Rs and Rp are the geometric resis-
tances (m−3) of the screen and of the tip plate.

Physical equations are nonlinear but, around the op-
erating point, the model can be considered as linear.
This assumption will be used in the identification
procedure, where linear models will be obtained.

4. BACKGROUNDS ON CLOSED LOOP
IDENTIFICATION

The practical importance of plant model identifi-
cation has been recognized for many years. In our
industrial framework, the temperature variations in
open loop can disrupt the production, which is not
satisfactory. Closed-loop identification is performed
around a glass temperature set-point.

4.1 The Identification Process

System identification allows to get a model that de-
scribes the dynamical behavior of the process. The
obtained model is valid only around the set-point
(few C). The identification process is described in
[Ljung, 1987].
The initial step is to obtain good experimental data.
To realize a good identification the reference input
sequence should be as informative as possible, i.e.
have a strong frequency content in interesting fre-
quency ranges. A pseudo random binary sequence
(PRBS) is then chosen. The second step is the selec-
tion of a model structure. Among the classical ones
(ARX, ARMAX, OE, ...), an ARMAX structure is
chosen and represented under the following form:

A(q)y(t) = q−dB(q)u(t) + C(q)e(t) (10)

with: • A(q) = 1 + a1.q−1 + ...+ anA
.q−nA

• B(q) = b1.q−1 + ...+ bnB
.q−nB

• C(q) = 1 + c1.q−1 + ...+ cnC
.q−nC

where y(t) is the output signal, u(t) the input signal,
e(t) a white noise and q the shift operator. Such a



model is noted [nA nB-1 nC d] in what follows. The
following step is the choice of a criterion which will
give informations on how well the model fits the
experimental data. We use a very usual criterion:
the final prediction error (FPE). The fourth step is
the parameter estimation and allows to determinate
the coefficients of the chosen structure. The last step
consists in validating the model thanks to tools such
as step response, Bode diagram, poles and zeros,
model residuals,...

4.2 Three Stage Identification

Among the closed-loop identification methods de-
scribed in the literature as in [Karimi and Landau,
1998], the three stage procedure is here used (see
[Ebert et al., 1997]). It needs output signal y(t),
reference input signal r(t) and command signal u(t)
(output of the controller). This method does not
require the knowledge of the controller transfer func-
tion. The principle is the following one:
• Determine the complementary sensitivity function
T from y(t) and r(t) and the sensitivity function on
the input KS from u(t) and r(t).
• Reconstruct the signals yr(t) and ur(t) with r(t)
and respectively T and KS.
• Identify the model from yr(t) and ur(t).
This model is then compared with the one given by
a direct identification method between the signals
y(t) and u(t).

5. IDENTIFICATION OF THE BUSHING
TRANSFER FUNCTION

In [Åström and Wittenmark, 1997] it is advised to
take a sampling period Te such as:

Tr

Te
= 4 to 10 (11)

where Tr is the rise time of the system. So a value
of 5s for Te represents a good choice in our case.
A time base of 20s and a magnitude of 1◦C for the
PRBS are taken to have a good excitation of the
process dynamic. This PRBS is given as reference
input signal in the controller. Data are collected in
the form of 4− 20mA signals, using industrial data
acquisition modules.

5.1 Direct Identification of the Bushing Transfer
Function

The transfer function of the bushing P (q) is the
transfer function between the output signal y(t) and
the command signal u(t).
The ”best” found ARMAX model is [2 2 1 1], the
criterion is FPE(P ) = 4.6 ∗ 10−2 and the transfer
function is:

P (q) =
0.53(q − 0.66)

(q − 0.92)(q − 0.05)
(12)

5.2 Identification of the Bushing Transfer Function
by the Three Stage Method

As mentioned previously, this method needs to iden-
tify two sensitivity functions. Both identifications
are described in the next section devoted to perfor-
mance analysis. So, in this part, we consider only
the results of the three stage method. The obtained
ARMAX model is [5 5 1 1] and FPE(P ) = 7.3 ∗
10−2.
The figure 5 represents the Bode diagrams of P (q)
corresponding to both identification methods.
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Bode diagram of P by direct identification (solid line)
and by the three stage procedure (dot line).
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Fig. 5. Identification results

It is important to notice that both model diagrams
coincide except in high frequency where the model
orders difference appears. Indeed, high frequency
dynamics are difficult to identify.

5.3 Validation through the sensitivity functions

A criterion to estimate the quality of the identifica-
tion of P (q) by the direct method is the comparison
of Bode diagrams of T (q) obtained by identification
and of P (q).K(q)

1+P (q).K(q) reconstructed via the identifica-
tions of P (q) and K(q).

Bode diagrams of T (solid line) and PK/(1+PK) (dash line)
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Fig. 6. T (q): Zeroes = (0.59, −0.59) Poles
= (0.66 + 0.27i, 0.66− 0.27i, −0.73)

T (q) is an ARMAX model [3 3 2 1] where
FPE(T ) = 6.9 ∗ 10−3. K(q) is a controller rep-
resented by an ARMAX model [1 2 1 0] where
FPE(K) = 1.3 ∗ 10−3. Except at high frequency,



both Bode diagrams coincide, this validates the
identification of P (q) by the direct method. At low
frequency, the value of the gain is −0.50dB. This
gain, close to 0dB, means that there is a very low
steady-state error.
These preliminary results, even incomplete, show
that the second order model for P (q) is convenient.
Moreover, experimental time domain validation has
been performed using different sets of input data. In
the next section, we study the performances of the
existing closed-loop system.

6. PERFORMANCE ANALYSIS

In this part the usual tools for performance analy-
sis, i.e. the sensitivity functions, are identified and
analyzed. The aim of the performance analysis is to
study how the reference is tracked and how distur-
bances and noises are rejected.

6.1 Criteria for the Performance Analysis

The more useful tools to discuss about control sys-
tem performances are derived through the sensitiv-
ity functions. The sensitivity functions are transfer
functions between variables of the control system.
The three sensitivity functions are (see Figure 3):
• The sensitivity function S(q) is the transfer func-
tion between the control error e(t) and the reference
input sequence r(t).
• For T (q) and KS(q), see section 4.2.
Moreover, let us introduce the open loop transfer
function L(q), which is the transfer function be-
tween the output signal y(t) and the error e(t).

6.1.1. Phase and Gain Margins Noted ∆φ and
∆G, the phase and gain margins describe the ro-
bustness in stability of the control system:

∆φ = 180 + arg(L(jωc)) where |L(jωc)| = 0dB

∆G = 1
|L(jω180)| where arg(L(jω180)) = −180◦

As pointed in [Goodwin et al., 2001], ”the phase
margin quantifies the pure phase delay that should
be added to achieve the same critical condition, and
the gain margin indicates the additionnal gain that
would take the closed loop to the critical stability
condition”. It is often required to have ∆φ > 30◦

and ∆G > 6dB. The phase and gain margins are
used to provide the appropriate trade-off between
performance and stability.

6.1.2. Module Margin ∆M It is a robustness cri-
terion. The module margin is characterized for the
SISO systems as the inverse of the largest value
of |S(jω)|, noted MS . It represents the minimal
distance from the Nyquist curve to the critical point
-1. So, to have good robustness, the module margin
must not be too low, typically ∆M ≥ 0.5.

6.1.3. Frequency Domain Peaks The maximum
peaks (MS and MT ) of the sensitivity and com-
plementary sensitivity functions are robustness in-
dicators. Indeed, the smaller MS is, the better the
robustness is. Skogestad and Postlethwaite [1996]
advise to impose MS < 6dB and MT < 2dB.
Moreover the maximum of |KS(jω)| is related to
the actuator constraint.

6.1.4. Bandwidth In [Skogestad and Postleth-
waite, 1996] the bandwidth frequency is defined
as the frequency ωS where |S(jω)| crosses at first
−3dB from below. This frequency characterizes the
performances of the control system. Indeed, for
frequencies smaller than the bandwidth frequency,
the output disturbances effects on the controlled
output will be rejected. Bandwidth may also be
defined for the remaining sensitivity functions. For
exemple, the bandwidth frequency ωT of |T (jω)|
characterizes the tracking of the closed-loop system.
Nevertheless we should have ωS < ωc < ωT . In
[Skogestad and Postlethwaite, 1996] the rise time
tr of the closed-loop system is approximated by the
relation:

tr � 2.3
ωT

(13)

All the definitions characterize the input/output
performances of the control system.

6.2 Performance Analysis

In this part direct identification methods are used.

6.2.1. Output Performance Analysis The output
performances are characterized by analysing the
characteristics of L(q), S(q) and T (q), obtained by
identification.

• Identification of L(q): the ARMAX model chosen
for L(q) is [3 4 2 1]. The value of the identification
criterion is FPE(L) = 2.5 ∗ 10−3.
The figure 7 represents the Nichols charts of L(q).

Nichols charts of L
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The phase margin value is 59◦. The corresponding
frequency is ωc = 0.118rad/s. The gain margin
value is 8.7dB. As it is required to have ∆φ > 30◦

and ∆G > 6dB, the system has good stability
margins.

• Identification of S(q): the ARMAX model chosen
for S(q) is [3 4 1 0]. The value of the criterion is
FPE(S) = 9.7 ∗ 10−3.
The figure 8 represents the Bode diagram of S(q).

Bode diagram of S
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Fig. 8. S(q): Zeroes = (1.03, 0.78, −0.46)
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The maximum MS of the gain curve is 0.64dB, so
the value of the module margin is 1.56. As ∆M ≥
0.5, it ensures good robustness properties. Moreover
the curve crosses first −3dB for ωS = 0.095rad/s.
So the output disturbances are rejected for ω < ωS .

• Identification of T (q) (see figure 6): we have ob-
tained MT = 0.50dB. As MT < 2dB, it proves that
robustness properties are satisfactory.
The Bode diagram of T (q) crosses first −3dB for
ωT = 0.165rad/s. So the inequality ωS < ωc < ωT

is satisfied. Moreover, according to the relation (13),
the rise time of the closed-loop system should be
14s. Experimentally the found rise time is 13s,
which confirms the identifications.

6.2.2. Input Performance Analysis The input
performances are linked to the characteristics of
KS(q). So the identification ofKS(q) is needed. The
chosen ARMAX model for KS(q) is [3 4 1 0]. The
value of the criterion is FPE(KS) = 1.5∗10−2. The
figure 9 shows the Bode diagram of KS(q).

The gain curve crosses −3dB from above for ωKS =
0.615rad/s. So measurement noises may affect the
actuators.
Note that all the sensitivity functions should have
the same poles. Among the three poles, only com-
plex poles are common to all the sensitivity func-
tions. This difference can be explained by the fact
that there are additional filters inside the controller.

Bode diagram of KS
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Fig. 9. KS(q): Zeroes = (0.95, 0.15, −0.18)
Poles =(0.65 + 0.18i, 0.66− 0.18i, −0.11)

7. CONCLUSION

A second order model has been identified and val-
idated, and a performance analysis has been pro-
vided using the sensitivity functions. The control
system performances are satisfactory, but they can
be improved, particularly for the sensitivity of the
control (actuators) to the measurement noises. A
comparative study will be made with advanced con-
trol (LQ, H2,...). Moreover such a methodology,
based on the sensitivity functions, may also be used
for MIMO systems such as multi-products bushing.
Comparison of the real time simulation of the physi-
cal model with the identified model and experimen-
tal data will be performed and MIMO control will
be developed in the future.
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