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Abstract: A new Anti-Windup Bumpless Transfer (AWBT) scheme for state constrained
linear systems is presented. The AWBT strategy is based on the design of a special limiting
circuit in the framework of standard AWBT control. The limiting circuit involves a two
step calculation: first, the effect of the current control action over future state constraints
is predicted; next, if any violation of the constraints is detected, an allowed control action is
back-calculated. The resulting control action is such that the offending constrained states are
taken to their saturation limits. Connections between the proposed state constraint AWBT
scheme and Model Predictive Control (MPC) are also investigated. The state constraint
AWBT and MPC strategies are shown to be equivalent in a non-trivial region of the state
space.
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1. INTRODUCTION

All real world control systems are subject to either or
both input and state constraints. These can represent
physical constraints (hard constraints) or limitations
imposed on the relevant variables (soft constraints)
in order to meet certain specified requirements e.g.,
safety regulations. If one ignores the constraints when
designing a control strategy, then significant degra-
dation in the resulting closed loop performance may
result.

Different methods can be adopted to deal with this dif-
ficulty. A possible classification includes the cautious,
evolutionary and tactical approach (Goodwin, 2001).
The cautious approach is the simplest way of tack-
ling the problem, and involves reducing the demand
on the control performance until the constraints are
avoided under all expected operational regimes. How-
ever, this approach may lead to conservative designs
since it does not take advantage of the available con-
trol authority, possibly compromising efficiency and
productivity. The evolutionary approach consists in
designing, first, a linear controller without consider-
ing the constraints, and then modifying the controller

implementation in some way (typically by introduc-
ing nonlinearities) in order to compensate for the
effect of the constraints on the closed loop perfor-
mance. Traditional anti-windup schemes fall into this
category (Åström and Rundqwist, 1989; Kothare et
al., 1994; Kapoor et al., 1998). A clear advantage of
these anti-windup strategies is that they are, in general,
simple and easy to implement. Hence they have gained
a strong appeal in practice. In the tactical approach
the constraints are included from the beginning in
the control design. This potentially leads to improved
performance but at the expense of increased complex-
ity of the control strategy. One well known example
of this approach is Model Predictive Control (MPC)
(Garcia et al., 1989; Morari and Lee, 1997; Mayne et
al., 2000).

The scheme described in the current paper fits under
the anti-windup classification. However, we depart
from the traditional goal in this area of handling input
amplitude or slew rate constraints and, instead, extend
the ideas to deal with state constraints. A proposed
scheme to deal with state constrained systems from an
anti-windup perspective has been presented by Park
(1999), where an additional compensator is added to
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the controller in order to reduce the error between the
plant output and the output of a suitable process model
when state constraints are active. The strategy relies
on the assumption that the constraints in the plant are
hard constraints.

Here we present a general purpose anti-windup strat-
egy for state constrained systems which can effec-
tively deal with both soft and hard state constraints.
The controller is based on a relatively standard struc-
ture for AWBT schemes but incorporates a special
design for the associated limiting circuit. For simplic-
ity we consider the single input-single output case.
However, extension to more general cases are pos-
sible and will briefly be addressed in Section 5. We
also investigate the connection between the proposed
AWBT strategy and MPC, describing the conditions
under which both strategies are identical. The analysis
extends the result recently presented by De Doná and
Goodwin (2000) to state constrained systems.

2. REVIEW OF ANTI-WINDUP STRATEGIES
FOR INPUT CONSTRAINTS

Input saturation is arguably the most common type
of constraint encountered in practice. Consequently,
the problem of dealing with input constraints has
received attention since the early stages of the de-
velopment of control applications (see, for example,
Fertik and Ross (1967) and Lozier (1956)). AWBT
schemes are generally based on various modifications
to an otherwise linear control. These special embel-
lishments of the controller compensate for the detri-
mental effects of the constraints on the plant. The
corresponding modifications to the controller can be
generated in many different ways. Thus, a variety
of AWBT schemes have appeared in the literature
(Bernstein and Michel, 1995). A general framework
to describe and classify AWBT schemes can be found
in Kothare et al. (1994). The main idea behind most
of these anti-windup schemes is a mechanism for “in-
forming” the controller states that the constraints are
active so that appropriate modifications to the future
control actions can be taken.

For the SISO case a general implementation of an
AWBT scheme for input constraints is depicted in
Figure 1. To explain the symbols in Figure 1, we
assume that the controller C(q) (where q is the for-
ward shift operator) is biproper and minimum phase.
Recall that biproperness is not restrictive, since it can
be accounted for by adding fast zeros to the controller
numerator. In that case the controller can be decom-
posed as:

C(q)−1 = h∞ + H(q) (1)

where h∞ is the high frequency gain of C(q)−1 and
H(q) is a strictly proper transfer function. If the limit-
ing circuit in Figure 1 is replaced by a unity gain, it can
be seen that the transfer function that relates the plant
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Fig. 1. General anti-windup scheme for input con-
straints.
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The controller setup presented in Figure 1 has two
main characteristics (actually, these are general prop-
erties of many AWBT schemes (Goodwin et al.,
2001)):

• The states of the controller are driven by the ac-
tual constrained control signal feeding the plant.
This is achieved by forcing the limiting circuit of
Figure 1 to contain the same nonlinearity as the
plant input, so that u′(k) = u(k).

• The feedback path H(q) in the controller is sta-
ble.

3. ANTI-WINDUP STRATEGY FOR STATE
CONSTRAINTS

We next turn to the issue of state constraints. State
constraints can potentially cause the same type of dif-
ficulties encountered with input constraints. Specifi-
cally, whenever the control signal u(k) forces any par-
ticular constrained variable into saturation, integrator
windup of the controller can occur. We will design
the state constrained anti-windup controller by modi-
fying the limiting circuit shown in Figure 1 so that the
predicted states never violate the imposed saturation
limits. We adopt a discrete time framework. We begin
by assuming that the full state vector is measured (we
will later show how state estimates can be utilized in
lieu of the true states). Thus, consider the discrete time
linear system described in state space form by:

x(k + 1) = A x(k) + B u(k) (3)

where x(k) ∈ R
n and u(k) ∈ R, subject to the

constraint:

z(k) = C x(k) ∈ Z , [−∆, ∆], ∆ > 0 (4)

We restrict the development to the case of a single con-
straint for clarity. Extensions to the case of multiple
constraints will be discussed in Section 5.

A key observation pertaining to the development of an
AWBT scheme for state constraints is that the state
constraint set Z, implicitly defines a corresponding
input constraint set U. This property has been studied
before in different contexts. A formal analysis in terms



of the theory of maximal output admissible sets can
be found in Gilbert and Tan (1991). The relationship
between the constraint sets Z and U is described in the
following Lemma:

Lemma 1. Consider the system (3) subject to the state
constraint (4). Then there exists a nonlinear mapping
ϕ(z, x) : R × R

n → R which converts the state
constraint set Z into an equivalent input constraint set
U. In addition, the set U is a time varying set which
depends at time t = k upon the current value of the
plant state vector x(k), that is U = U(x).

Proof. The derivation of the nonlinear mapping ϕ(z, x)
relies upon the use of a one-step ahead predictor of
z(k). Using the system dynamics (3) and the relation
z(k) = C x(k) we have:

z(k + r) = CAr x(k) + CAr−1B u(k) (5)

where r is the relative degree of the transfer function
G(q) relating the plant input to the constrained vari-
able z(k). Equation (5) shows that the first time in
which it is possible to affect the state z(k), given a
certain control move u(k) at time t = k, is at time
t = k+ r (this is a consequence of the fact that the first
Markov parameters D, CB, CAB, . . . CAr−2B,
which appear in the time response of z(k), are zero).
Solving for u(k) in (5), shows that the required map-
ping ϕ(z, x) : R×R

n → R such that U(x) = ϕ(Z, x)
is given by:

u = ϕ(z, x) = (CAr−1B)−1(z − CAr x) (6)

where, for clarity, the time dependence of the variables
has been omitted. Using ϕ(z, x) we have the following
induced constraint set for the input:

U = U(x) ,
[
∆(x)−, ∆(x)+

]
(7)

where

∆(x)− = (CAr−1B)−1(−∆ − CAr x)

∆(x)+ = (CAr−1B)−1(∆ − CAr x) (8)

It follows from the above development that z ∈ Z ⇐⇒
u ∈ U. Moreover, from equation (8) we see that the
induced input constraint set is time varying with the
limits depending on the current value of the system
state vector x(k). 2

Lemma 1 shows that there is a way of translating a
given state constraint set Z into an equivalent input
constraint set U. In other words, if u(k) is constrained
to the set U, then z(k) will be restricted to the desired
set Z. This result immediately suggests that a simple
way of dealing with state constraints in the AWBT
framework is to define the limiting circuit of Figure
1 based upon the definition of U(x) in (7)-(8). Thus,
an appropriate limiting circuit can be thought of be-
ing the result of performing the following two stage
procedure:

Predictor
u′(k)

x(k)

û(k)
ϕ(z, x)

ẑ(k+r)
∆

Fig. 2. Limiting circuit u′(k) = satU(x)(û(k)) for the
state constraint anti-windup scheme.

• given the current state x(k) and the control ac-
tion û(k) demanded by the controller, a predic-
tion ẑ(k + r) of the constrained variable is per-
formed, using expression (5).

• Any constraint violation is detected by applying
the saturation function sat∆(·) defined by

sat∆(·) , sign(·) min(| · |, ∆) ,

to the prediction ẑ(k+r). Based on the saturated
value of ẑ(k+r), an allowed control action u′(k)
is computed by back-calculating its value using
the mapping ϕ(·, x) in (6).

We will use the notation satU(x)(·) to refer to the
limiting circuit described above. This circuit is illus-
trated in Figure 2. It is clear that if no violation of the
constraint occurs, then u′(k) = û(k). On the contrary,
when the constraint on z(k) is active, u′(k) is such
that z(k) is taken to the limit of the constraint set
Z. As a consequence, controller windup is effectively
averted, since the controller dynamics contained in
H(q) will be driven by the correct input control signal
to the plant which, in turns, carries the embedded in-
formation that the constraint on z(k) is active. Notice
that no distinction has been made between soft and
hard constraints which shows that the proposed state
constraint AWBT strategy can be used in both cases.

4. CONNECTIONS BETWEEN ANTI-WINDUP
FOR STATE CONSTRAINTS AND MODEL

PREDICTIVE CONTROL

The problem of dealing with state constraints can also
be formulated as a Model Predictive Control problem
(Goodwin et al., 2001). Model Predictive Control is a
control strategy which solves, at each iteration, a fixed
horizon optimal control problem defined as:

PN(x) : V o
N = min

U
VN (x, U) (9)

subject to the state constraint z = C x ∈ Z,
where x = x(0) denotes the current state and U =
[u(k), u(k + 1), . . . , u(k + N − 1)] is an admissible
control sequence yet to be determined. Also VN (x, U)
is a quadratic cost function defined as:

VN (x, U) =

N−1∑

k=0

x(k)T Q x(k)+R u(k)2+x(N)T Px(N)

(10)
where Q is a non-negative definite matrix, R is posi-
tive real and P is the unique positive definite solution
of the algebraic Riccati equation:



P = AT PA + Q − KT R̄K (11)

R̄ = R + BT PB. (12)

A standard result establishes that in the absence of
constraints, the solution to the fixed horizon opti-
mal control problem is given by the control sequence
u(k) = −Kx(k), k = 0, 1, . . . , N − 1, where:

K = R̄BT PA. (13)

On the other hand, when constraints are imposed,
the minimization problem (9) has to be solved nu-
merically using standard optimization methods. The
quadratic cost function (10) is characterized by a pre-
diction horizon, a control horizon and a constraint
horizon. The prediction horizon determines the num-
ber of steps ahead in which the state evolution is
considered (in this case N ). The control horizon cor-
responds to the number of changes allowed in the
control sequence U (in this case also N ). Finally, the
constraint horizon is the time interval over which the
constraints are imposed i.e., the value Nc such that:

z(l) ∈ Z, l = k, k + 1, . . . , k + Nc (14)

It is interesting to notice that when the constraint
horizon is reduced to Nc = r, where r is the relative
degree of the transfer function which relates z(k) to
u(k), Lemma 1 establishes that this is equivalent to
imposing an input constraint only on the first element
of the control sequence U i.e., u(k). It is not difficult
to see that, in this case, the MPC strategy is equivalent
to the use of the saturation function satU(x)(·) on
the unconstrained optimal state feedback control law
u(k) = −Kx(k). In other words, satU(x)(−Kx(k))
is optimal if the constraint horizon is Nc = r. Notice
also that the control law satU(x)(u(k)) can be thought
of as being equivalent to an AWBT scheme in the
state space framework; since if we implement the
state space feedback using an observer, we will be
feeding the observer dynamics with the real control
signal applied to the plant. More will be said on this in
Section 5.

A recent result presented by De Doná and Goodwin
(2000) has shown that, for an arbitrarily large con-
straint horizon Nc, the clipped version of the uncon-
strained optimal control law is still optimal provided
the states of the system are confined to the interior
of a certain region SN of the state space. This shows
that, in a non-trivial region of the state space, the
constraint horizon can be taken as 1 (for the case
of input constraints) even though future controls may
also reach saturation. It is tempting to conjecture that
a similar result should hold for the AWBT state con-
straint scheme. However the result in De Doná and
Goodwin (2000) does not immediately extend to the
state constrained case, since the derivation of the result
is based on the inherent assumption that the constraint
is fixed and independent from the current state x. On
the other hand, we have seen from Lemma 1 of Section
3, that this is not the case when dealing with state con-

strained systems. To overcome this restriction we will
present below an extension of the result of De Doná
and Goodwin (2000) applied to linear systems subject
to a single state constraint z ∈ Z. This is described in
the following

Theorem 2. Given the fixed horizon optimal control
problem PN (x) defined in (9), where x denotes the
initial state x = x(0) of the system (3), then ∀x ∈ SN

the minimum cost is:

V 0
N (x) = xT Px + R̄

N∑

k=1

γk(Ãk−1x)2 (15)

and for all x ∈ SN the optimal sequence U that attains
this minimum is:

u0(k, x) = satU(x)(−Kx(k)), ∀k = 0, 1, . . . , N − 1
(16)

where,

Si , {x|φk
nl(x) ∈ Yi−k, k = 0, 1, . . . i − 2}(17)

and S0 , S1 , R
n, i = 2, 3, . . .N

Yi = ∩i−1
j=1Xj , i = 2, 3, . . .N (18)

and Y0 , Y1 , R
n

Xi , {x|γi(Ã
i−1φl(x)) = 0} (19)

φl(x) = (A − BK)x (20)

φnl(x) = Ax + BsatU(x)(−Kx) (21)

also,

Ã , A − BL (22)

L , (CAr−1B)−1CAr (23)

γi , K̃x − sat
∆̃i

(K̃x) (24)

K̃ , K − L (25)

∆̃i ,

(
1 +

i−2∑

k=0

∣∣∣K̃ÃkB
∣∣∣
)

∆̃ (26)

∆̃ ,
∣∣(CAr−1B)−1∆

∣∣ (27)

Proof outline. The theorem is proved by induction,
based on dynamic programming arguments and mir-
roring the analysis in De Doná and Goodwin (2000).
In the sequel u and x denote u = u(i) and x = x(i)
respectively.

Starting from i = N , the value function associated to
the optimal control problem PN (x) is:

V 0
0 (x) = xT Px; ∀x ∈ S0 , R

n (28)

Using the principle of optimality, the value function at
the following step i = N − 1 is given by:

V 0
1 (x) = min

u∈U

{
xT Qx + Ru2 + V 0

0 (Ax + Bu)
}

= min
u∈U

{
xT Px + R̄(u + Kx)2

}
(29)

where we have used (11) and (12). It is clear that
the unconstrained optimal solution to (29) is given by



u = −Kx, ∀x ∈ S1 , R
n. From the convexity of

the cost function, the constrained optimal control law
is given by:

u0(N − 1, x) = satU(x)(−Kx), ∀x ∈ S1 (30)

A key observation, at this stage, is that the limits of the
saturation function satU(x)(·) are not fixed but depend
on the current value of x. However, the definition of
the mapping ϕ(z, x) in (6) suggests that it is possible
to express the time varying constraint imposed to
u = − Kx as a fixed constraint imposed to a shifted
version of u. Indeed, if we adopt the variable ũ defined
by

ũ = u + L x (31)

where L is specified in (23); then we have the result:

u ∈ U(x) ⇔ ũ ∈ Ũ , [−∆̃, ∆̃] (32)

with ∆̃ defined in (27). This is readily seen from (6)
and the definition of ũ in (31). Based on this result, the
optimal control law (30) can be written as:

u0(N − 1, x) = −Lx − sat
∆̃

(K̃x) (33)

which, if replaced in the optimal value function (29),
gives the result:

V 0
1 (x) = xT Px + R̄γ1(x)2, ∀x ∈ S1 , R

n (34)

with γ1(x) defined in (24). With this observation,
the remainder of the proof follows that of De Doná
and Goodwin (2000), since the problem has been
translated into an equivalent problem having fixed
input constraints, now in terms of the shifted variable
ũ. 2

This result solves the fixed horizon optimization prob-
lem. To extend the result to the receding horizon prob-
lem we need to ensure that the state trajectories are
kept inside a positively invariant set. For the state
constraint case this extra step parallels the result in
De Doná and Goodwin (2000) and will thus not be
repeated here.

5. EXTENSION TO MORE GENERAL
PROBLEMS

We briefly discuss extensions to more general situa-
tions.

Cases where the state is not directly measured.
In the above analysis we have assumed that the full
state vector (including disturbances) are directly mea-
sured. This will rarely be the case in practice. How-
ever, it is straightforward in principle to replace the
true state by a state estimate - say given via a Kalman
filter. Indeed, it is the observer dynamics that con-
tribute to the dynamics in H(q) of Figure 1. These
connections are further discussed in Goodwin et al.
(2001)

Multiple constraints.
The results presented in Sections 3 and 4 can be

directly extended to more general cases. For example,
they can be applied to the case where the number of
state constraints is equal to the degrees of freedom
available in the input control signal. This allows one
to deal with multiple constraints, provided the control
signal is not a scalar. If the number of constraints
exceeds the number of control signals then feasibility
problems may arise . This is a well known problem
associated with the control of constrained systems
(Maciejowski, 2002). One way of getting around this
difficulty is to impose a certain hierarchy among the
constraints. In this case, it is possible to use the same
hierarchy to modify the AWBT circuitry in order to
automatically discard the constraints with less priority
when in-feasibility arises.

6. SIMULATION EXAMPLE

Consider the marginally stable linear system (3) with

A =

[
1 0

0.4 1

]
, B =

[
0.4
0.08

]
, C =

[
1 0

]
, (35)

subject to the state constraint

|x1(k)| = |Cx(k)| ≤ ∆ = 1. (36)

In the fixed horizon cost function (10) we consider
N = 10, Q = 10I2×2 and R = 0.1.

In Figure 3 we can observe the system state trajectory
when applying the AWBT control law satU(x)(−Kx)
(with K computed from (13)), compared to the state
trajectory obtained using MPC for the initial condition
x0 = [−0.2 − 1.6]T . The dashed lines show the state
constraint set Z, whilst the continuous lines represent
the set YN , defined in (18). Figure 3 clearly shows that
both state trajectories match exactly, which confirms
the results of Theorem 2. Notice that x(k) ∈ SN

∀k, since the state trajectory evolves in the interior
of the set YN . Notice also that the state constraint is
active for more than one step; as a result, the state
space region in which the AWBT strategy and MPC
are equivalent is larger than the trivial region where
the state x1(k) stays unsaturated.

In Figure 4 the control sequences obtained with both
control strategies are compared, confirming that they
are coincident. The dashed lines represent the input
constraint set U(x) which, as described in Lemma 1,
changes with time depending upon the current value
of the system state x(k). The control sequence stays
saturated during the first two sample times which
agrees with the fact that x1(k) saturates for k = 1, 2
and that the relative degree of the transfer function
which relates x1(k) to u(k) is r = 1.

7. CONCLUSIONS

This paper has presented an AWBT scheme for state
constrained linear systems. The proposed strategy is
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Fig. 3. State trajectory with satU(x)(−Kx) (circle)
and with MPC (plus).
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Fig. 4. Control sequence with satU(x)(−Kx) (circle)
and with MPC (plus).

an extension of traditional AWBT schemes used for
input constrained linear systems. The method has been
shown to be equivalent to Model Predictive Control in
a non-trivial region of the state space.
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