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Abstract:

A suboptimal approach to attack stoc hastic conrol problems, when the well known
Linear-Quadratic-Gaussian (LQG) algorithm cannot be used, is proposed in this
paper. The stochastic system here considered is described by an observable Ito
equation with linear drift and bilinear diffusion. The aim of this paper is to provide the
suboptimal linear feedback (SLF) control la w, with optimality criterion given by the
classical quadratic cost function, for this class of nonlinear systems. The SLF control is
indeed an appropriate setting that guarantees a tradeoff betw een easy implemenation
and meaningful control-goal, whereas in general the optimal control problem involv es
the in tegration of an infinite-dimensional system.
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1. INTRODUCTION

As well kno wn, the linear-quadratic Gaussian
(LQG), finite-horizon, optimal con trol problem
admits a feedback solution resulting in a linear
transformation either of the state-process values
(for the complete information case) or of the state-
conditional-expectation with respect to the obser-
vations (for the incomplete information case). The
reader is referred to Bertsekas (1976) , Fleming
and Rishel (1975), and references therein, for a
complete explanation of the LQG control prob-
lem. In both the complete/incomplete informa-
tion cases, the optimal solution results in the
same matrix time-function (optimal control ma-
trix) performing the linear map from the state or
from the state-expectation respectively. This re-
sult represents a particular case of the separation
theorem (Wonham (1968)). The optimal con trol
matrix results to be defined by means of a back-
ward Riccati difference/differential equation for
the discrete/continuous-time cases respectively,
depending only on the system-parameters, and on

the weights of the performance-index. 8¥hen

is faced by the incomplete-information case, the
state conditional mean can be obtained by optimal
filtering. To this purpose, since the LQG problem
concerns a linear Gaussian system, the Kalman-
Bucy filter (Kalman and Bucy (1961)) can be
used.

The problem of “extending”, in some sense, the
LQG control-scheme, to wider classes of nonlin-
ear systems has been considered in Charalam-
bous and Elliot (1998), Charalambous and El-
liot (1997). In these papers, it is sho wn that,
for some classes of nonlinear systems and cost-
criterions, the stochastic optimal control problem
in the incomplete information case can be reduced
to a complete-information optimal control prob-
lem on a finite-dimensional system. In general,
(partially observable) stochastic optimal control
problems have an infinite-dimensional state space.
Indeed the separation theorem allows only to be
sure that the optimal controller can be always
expressed as a function of the optimal estimate



(in the mean square sense). Hence, even thought
this is very useful when a finite-dimensional fil-
ter can provide the optimal state estimate (as,
for instance, in the LQG case), however when
a nonlinear system is involved, and an optimal-
state-estimate is required, one is forced to use
an infinite-dimensional filter (as for instance the
Duncan-Mortensen-Zakai equation Zakai (1969)),
and this could be prohibitive in terms of com-
putational effort. Nevertheless in Charalambous
and Elliot (1998) it is shown that, under suit-
able assumptions (that is when the nonlinearity
entering the unobservable dynamic are gradient
of potentials and satisfy a generalized version of
the Riccati equation) finite-dimensional sufficient
statistics are available and allows to reduce the
original (incomplete information) problem to a
finite-dimensional and complete-information one.

Since the general problem (concerning an optimal
controller) remains open, it makes sense to ap-
proach the control problem in a different way in
order to safe both computational requirement and
meaningfulness of the control-performance crite-
rion.

At this purpose the problem of finding a subopti-
mal controller can be taken under consideration.
This consists essentialy in relaxing the require-
ment for the controller to be optimal among all
the observation functions. Some suboptimal lin-
ear feedback (SLF) control laws are derived in
Charalambous and Elliot (1998) for some kind of
nonlinearity entering the system.

In this paper the solution of SLF control problem
is provided for a controlled system that does
not belong to the class of systems studied in
Charalambous and Elliot (1998). This is given by
an observable stochastic differential equation (in
the Ito sense) with linear drift, bilinear diffusion
and an additive control.

The paper is organized as follows. In §2 the precise
setting of the SLF control problem is given. In §3
the solution of the SLF control problem is pre-
sented for the complete state information case. For
readers convenience two appendices are enclosed,
namely A and B, collecting some concepts and
results widely used throughout the paper.

2. STATEMENT OF THE SLF CONTROL
PROBLEM

Let introduce the basic notations and symbols
that will be used throughout the paper. (2, F, P)
will denote the basic probability triple. E{-} de-
notes the expectation operator. L?(£), with &
linear space, denotes the Hilbert space of all the &-
valued square-integrable random variables defined
on (2, F, P). Let Z be a linear space endowed with

some inner product, and &,n € Z. The notation
(f , n) will be used to denote the inner product
between ¢ and 7. For any matrix M, the notation
M; ; will be used to denote its (7, j)-entry. For the
identity matrix in IR" it will be used the symbol
I.. Let I be a real interval and & : I — L*(RY)
an IR‘-valued stochastic process; denote with ]:f
the o-algebra generated by {&; s € I,s < t}.
For a vector-valued process {¢;}, the notation ¢/
shall indicate the j-th entry. If {&} and {n:}
are two second-order scalar martingales, the nota-
tion {(&,n)+} will be used to indicate the mutual
quadratic variation process. The notation (£); will
be also used in place of (£, &), and will be said the
quadratic variation of &. The reader is referred to
Liptser and Shiryayev (1978) for the definition of
quadratic variation of a martingale. Anyway, this
paper is concerned only with martingales given
by Ito integrals in the form fot ¢,dW, where (
is an Ito-integrable process and W is the Wiener
process. For such a martingale the quadratic vari-
ation process has a simyle expression, and is given
by the path-integral [j ¢(?dr. Similarly, given an-
other process ¢’ the mutual quadratic variation
between fg ¢-dW, and fg ¢LdW, is given by the
path-integral fot ¢-CLdr. When ¢ and 7 are vector-
valued, the same notation (£,n) will denote the
matrix whose (i, j) entry is given by (£%,77). More-
over, it will be used the symbol (M),EZ) to denote:

(M) = st(M), (2.1)

where st(-) denotes the stack operator (see
Appendix A, formula (A.1)).

Let S C L*) be a linear space and X €
L?(&); then the symbol IT { X /S} will denote the
orthogonal projection of X onto S. Anytime the
underlying space is understood it will be used the
notation X to denote the orthogonal projection.
As well known, the projection X represents the
best (in the sense of the error-variance) estimate of
X using estimators a € §, and it is characterized
by the following property:

E{(X -X,0)} =0, VYaeS. (2.2)

Consider the following stochastic system:

with initial values: Xy, = X;, Y3, = 0, where
B:IR" x R™ — IR" is the bilinear map:

m
B(Xy,dWy) = > M XodWF, (2.5)

k=1
where A\, € R, k = 1,...,m, and W* denote the k-
th entry of the standard m-dimensional Brownian
motion, and where ¢t € I, I = [t;,t;] C IR,



A: TRV, H: I >R, C:I— R™",
are continuous matrix functions. The o-algebra
generated by W will be denoted with F;. The
initial point X; is a deterministic vector in IR". As
shown later, the hypotesis non-randomness for X;
is without loss of generality. The control function
u: (2 xI) — IRP is assumed to be adapted to
the non-decreasing family {F} }:c;. The symbol
Li(Y) wiil be used to denote the set of IR'-valued
linear transformations of {Y;; s € I,s < t}.
One has that £}(Y) is a closed linear subspace
of L2(RY). Finally, let X; = IL{X,/LP(Y)}, the
linear-optimal estimate of the state X solution of
(2.3). It is now possible to give a precise statement
of the SLF control problem in the general case
(incomplete information):

J 2.6
uerg;r(ly) (u), (2.6)

J(u) = %E{ / (@)X

t;

+ (ut, R(t)ut)] dt + (th : Fth) }

(2.7)
where Vt, Q(t) = Q)" > 0, R(t) = R(t)"
0, and F = FT > 0, under the differential
constraints represented by system (2.3), (2.4).

When the state process solution of eq. (2.3) is
available the controlled system reduces to a single
equation, namely the only state equation (2.3).
Since the state process is available, we are con-
cerned with a different family of controls than
LP(Y), previously considered for the general case.
As a matter of fact, we will consider as admissible
control functions the linear maps of X;. This kind
of space will be denoted with £¥(X). Hence, the
SLF control problem for the complete information
case can be stated as follows:

ueIB;I(lX) J(u), (2.8)
under the differential contraint represented by eq.
(2.3) alone, where J is given by (2.7).

3. SOLUTION OF THE SLF CONTROL
PROBLEM IN THE COMPLETE
INFORMATION CASE

Theorem 3.1. The solution of the problem (2.8),
under the differential contraint (2.3), is the follow-

ing:

u¢ = L°(t) Xy, (3.1
L°(t) = —R)TTH®)TG(1), (3.2)

~

G(t)=—-AMTG(t) — GHA(t) — Q(t)
G(tf) =F (34)

Proof. In the following time dependencies are
omitted, for short, provided that this does not
cause confusion. Since u has the form v = LX
with L : [t;, tf] — IRP*"™ continuous, the index J
can be rewritten as:

ty

J(L) = %E{ / (XT : (Q+LTRL)XT)dT

ti
n (th , Fth)}.

Let V(t) be the (unique) solution of the following
(backward) equation

V=—-(A+HL'V -V(A+HL)-Q - L*RL,
(3.5)
where the final condition is V'(t;) = F. Note that

V = VT, Let the function &(s,
defined as: a € IR", as

£(t, X;) = (Xt : V(t)Xt). (3.6)

@), s € [t;,ty], be

Since
ty

/df - (th : Fth) - (Xt,. : V(ti)Xti),
ti

one has

J(L) = %E{]f

t;

(XT Q-+ LTRL)XT) dr

ty
dé Xi,, V() Xy, }
+J +( t t)

(3.7)
By the Ito formula it results:
de(t, Xy) = t X,)dt + Z )dX]
(t, X, )d(M", M7
+ = Z aazaaj t) ( ) >t7
(3.8)
where M; denotes the bilinear diffusion term:
M, = Z / M X dWE. (3.9)
k=17,

Now, from the definition of the process £ given in
(3.6), one has:

% tx0) = (X0, V0)X),

o (3.10)



(t, X,)dX!

i

dX; V(t)Xt) n (Xt : V(t)dXt),

(3.11)
e
80@80@

Taking into account that (W& W), =0, # 7, it
results:

M) = Z/)\ZX[Z]dT = /AX Adr, (3.13)

k=17,

(t, X¢) = 2V, ;(2). (3.12)

where A = 3"/ | AZ. From (3.13) and taking into
account of (3.12) one has:

1 ¢
2 ig 80@80@'

)

(t, X¢)d(M*, M7),

t

_ / [st(V ()" AXEdr,

t;

Substituting this and (3.10), (3.11), in (3.8), tak-
ing into account of the system equation (2.3), and
recalling that u has the form v = LX), it results:

de(t, X)
= (X, (V+(A+HDV + V(A+ HL)X )dt

+ 2(X , VB(X, dW)) +[st(V()]" AXPat.

Since E [(X , VB(X,dW)) = 0, taking into
account of (3.5), the substitution of the above
equation in (3.7) results in

ty

/ stV ()] AR { X} an

t;

+ (Xt,. : V(ti)Xti)}.
(3.14)

Now, a version of the Ito formula in the Kronecker
formalism (see Appendix B) will be used in order
to write a closed form expression for the process
XL[Z] (apply Theorem B.2 and then use formulas
(B.1), (B.2)), with the help of formulas (A.2) and
(B.3) after some manipulations one has:

J(L) = %E{

dx, = U2 [(A(t) + H)L(t) ® I,) xPdt

+AXPdt + " U X Haw,
k=1

(3.15)
with U2 as in Lemma B.1.

Denoting with ®r(¢,7) the transition matrix as-
sociated to U2 [(A(t) + H(t)L(t)) ® I,,], one has:

X2 = exp{AI 2 (t — 1))@ (¢, 1) X, P

+Z / exp{ AL (t — 7)}® L (t, ) U N X, Elawk,
k=17,
from which, taking the expectations:

E(X:?) = exp{ALz(t — t;)}®. (¢, ;) X2
Substituting the above expression in (3.14), and
denoting ®(t—t;) = Aexp{Al,2(t—t;)} one has:

tr

J(L) = %E{/[st(V(t))]ch(t—ti)@L(t,ti)Ximdt

+ (Xti ) V(ti)Xti ) }

(3.16)
As well known, denoting by V¢ the solution of
(3.5) for L = L° (L° given by (3.2)) it results:
Veo(t) = G(t), with G solution of the Riccati
equation (3.3). Moreover, for any V solution of
(3.5):

V(t)—G(t) >0, Vt € [t;,ts], VL € RP*". (3.17)
The theorem is proven as soon as it is shown that
Vt € [ti,ty], J(L) — J(L°) >0, VL € RP*". From
(3.16) one has:

J(L) — J(L")

-taf e

— [sHGWO)T B(t — t)o (¢, 1) X, }dt}

St — t;)P (¢, 1) X,

+ %E{ (Xtu (V(tz) - G(tl))th) }

Because of (3.17) the last term in the previous
expression is non negative all over the control
interval; as far as the first term is concerned it
is possible to show that, for any t € [t;,tf] one
has

argmin { [st(V (1)) ®(t — t) @ (t,4:) X |
L()
=—R() "H()'G(),

(3.18)
with G solution of the Riccati equation (3.3), from
which we get the required non negativeness even
for the first term. As a matter of fact, let z(t)
solution of the (deterministic) system:

2(t) = (A(t) + Ht)L()zL(t),  zo(t:) = Xi.
(3.19)
Then, using formulas (B.1) and (A.2), one has:



d [2 [2

EZL < . ~—zL(t)

= Un(Ly @ z1.(8) [(A(t) + H()L(1)zr(t) @ 1]
— UZ[((A(®) + HOL(t >> 21(0) © z1.(0)]

= U2[(A(t) + H($)L(1) ® L] 2 (),

with initial condition: 2[2]( t;) = XH Hence, re-
calling the definition of the above used semigroup
®, it results:

22t) = @, (4, 1) X, (3.20)

Since A > 0, and hence Aexp{AI=(t —1t;)} >0,
VteI:

arg I?(n)l [st(V)]" @(t — t;) L (t, ;) X2
= arg Iil(n)l [st(V)]" @, (¢, 1) X1,

and, using (3.20) and (A.4),

(st (VD] (8,1 X = [st(V ()" 2 (1)
= (z1.(t) , V(t)zL(t)).

(3.21)
Now, from the deterministic optimal control the-
ory it is well known that

ty

%/(ZL(T) )

t

45 Galty)

Ji (L) = Q+ LTRLz( (7)) dr

FZL(tf)) = (zr(t) , V(t)zr(t))

with V' solution of equation (3.5) and the solution
of the control problem:

mLin Je(L),
zr(t) = (A+ HL)zL (1), zr(t) = Xi,
is given by L° = —R™'HTG with G solution

of (3.3). Then, taking into account (3.21), (3.18)
a

follows.

4. CONCLUSIONS

The SLF control problem has been considered as
a suitable framework to attack stochastic optimal
control problems in a class of nonlinear systems.
The case studied has been a finite-horizon opti-
mal control problem with the classical quadratic
cost criterion for a controlled system described by
a single bilinear stochastic Ito equation. In the
control-system theoretical language this means
that the system-state is completely observable,
and this case can be also referred as the “com-
plete” infomation case. The control has the struc-
ture of a linear function of the current state and

the SLF control problem consists in finding the
linear map minimizing the quadratic cost. The-
orem 3.1 provides the solution of this problem.
It results that the equations solving the SLF
control problem are formally very similar to the
ones solving the classical LQG control problem
in the complete information case, and hence the
simplicity and meaningfulness of the LQG control-
scheme results still preserved even in the present
sub-optimal case. As in that problem, the solution
of the SLF control problem is provided by the
control-matrix (equation (3.2)), that depends of
another matrix, G, solution of the backward Ric-
cati equation (3.3). Looking at the structure of the
solution one can see that it does not depend from
the initial condition X;, and hence, the hypotesis
for X; to be non-random, is not really restrictive
(simply, the initial condition can be considered
as “unknown”). The SLF control problem in the
general case has been here formally stated as the
optimization problem (2.6). This will constitute
the subject of a future paper.

Appendix A. Kronecker algebra.

Let M and N be matrices of dimension r x s and
p % q respectively. The Kronecker product M ® N
is defined as the (r - p) x (s - ¢) matrix

m11N mlsN
M®N = ,
ma N mypsIN
where the m;; are the entries of M. Let M be the
rxsmatrix M =[my  my ms |, where m;
denotes i-th column of M, then the stack of M is
the r - s vector

stM)=[mT mI ... mT]". (A1)
Given suitably dimensioned matrices, A, B,C, D,

and vectors u, v, the following properties hold (see
Bellman (1970), Rodgers (1980)):

(A-C)® (B-D)=(A® B) - (C ® D), (A.2)
(Ao B)T = AT @ BT, (A.3)
st(A-B-C)=(CT @ A) - st(B), (A.4)
u®v=stv-ul), (A.5)

tr(A® B) =tr(A) - tr(B), (A.6)

The Kronecker power of the matrix M is defined
by the recursive rule: M = M @ mMMh-1 =
M= M, MO = 1. Although the Kronecker
product is not commutative, the following theo-
rem holds (see Rodgers (1980), Carravetta et al.
(1996)).

Theorem A.1l. For any given pair of matrices
A E ]R,TXS B 6 ]Rnxm:

B A=CL (A® B)Cspm , (A7)



where the commutation matrix C., , is the (u-v) x
(u-v) matrix such that its (h,l) entry is given by:

1, jfl:(|h_1|v)u+([%]+1);
{Cuvtni = {0, otherwise.
(A.8)

Appendix B. The vector Ito formula in the
Kronecker formalism

All of the following results, but formula (B.3),
can be found in Carravetta et al. (2000). They
constitute a powerful machinery that allows the
calculation, for a given stochastic process ¢, of the
stochastic differential of the process ¢!"l, where
[h] is any integer Kronecker power. Let z € R"
and F : R" — R™*? twice differentiable. Let the
matrix (d/dz) ® F(z) € R™("P) be defined as

4 o Fla) = ag;(f) agm(:)

dzx

Lemma B.1. For any h > 1,1 > 1 integers:

4 & alt) = U1, @ ) (B.1)
% ® % ®all = 0! (1,2 @ «l=2]), (B.2)
where

h—1
Uh = (Z Ol oies ® Inf),

7=0
h—1h—2
Or=> "> (CF s @1,r)
7=0 s=0
° (In ® C,Z;nh—2—s X In);

C.,., are commutation matrices (Theorem A.1).

From Lemma B.1 the following useful equality can
be easily derived

02st{I,} = 2- st{I,}. (B.3).

Indeed, looking at (B.2) it follows that matrix O2
satisfy the relation:

d d

e 2l — 2

dz ®© dz @ Ons
and by calculation of the derivatives in the left
hand side of the previous equation, (B.3) can be

directly verified. U

Theorem B.2. Let (X, F;) be a vector contin-
uous semimartingale in IR™ described by the Ito’s
stochastic differential: dX; = df; + dM;, where
(B¢, Ft) is an a.s. continuous bounded variation
process and (M, F;) is a square integrable martin-
gale. Let F: IR — IR?, be a continuous function
endowed with the first and second derivatives.

Then the process Z; = F(X;) is a square inte-
grable semimartingale, whose differential is given

by

dZ, = (i ®F(x)) X,

dx =X
1/d d (2)
+5 (dw ® = ® F(m))xZXtd(M>t ,

with (M)® as in (2.1)
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