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Abstract: This paper presents experimental results for the dynamic calibration of
the SCARA robot. In particular, optimized techniques are applied to determine
optimal excitation trajectories for the identification experiment, and the resulting
performances are compared with those obtained using standard robot “working”
trajectories. Experiments show that the theoretically optimal trajectories provide an
actual practical improvement on the quality of the resulting parameter estimates and
torque reconstruction. Copyright c© 2002 IFAC
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1. INTRODUCTION

The determination of a good robot dynamic
model, and consequently of the parameters that
define it, is fundamental for the application of
various advanced control schemes, as well as for
simulation purposes. Several papers and books ap-
peared in literature, dealing with robot dynamic
calibration: see e.g. (Kozlowski, 1998), (Neuman
and Khosla, 1985), (Swevers et al., 1997) and
(Gautier and Khalil, 1990) about the use of dif-
ferent dynamic models for calibration, and the
determination of the minimum set of identifiable
parameters.

The estimation of the identifiable parameters is
usually achieved by application of a Least-Squares
criterion to the motion or the energy equations of
the robot. However, the quality of the provided
estimate is strongly influenced by the trajectory
executed by the robot during the acquisition of
the experimental data used for the calibration.
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Starting from (Armstrong, 1987), perhaps one
of the earliest papers about this topic, different
solutions have been proposed to find trajecto-
ries that well excite the robot dynamic model
used for calibration, by finding an optimal se-
quence of joint position-velocity and/or accel-
eration points, to be subsequently interpolated
as in (Armstrong, 1987), (Caccavale and Chiac-
chio, 1994), and (Gautier and Khalil, 1992), or by
looking for an optimal trajectory within a given
parameterized family, as in (Swevers et al., 1997)
and (Calafiore et al., 2001).

All these methods are based on different optimiza-
tion criteria, which should theoretically guarantee
some characteristics of the computed estimates,
e.g. the minimization of the uncertainty bounds
or of the estimate bias due to unmodeled dy-
namics errors. In some cases, special simple tra-
jectories can be also adopted, as in (Visioli and
Legnani, 2000).

This paper deals with the dynamic calibration of
a two-dof SCARA robot: a good calibration is
fundamental in this case, since no knowledge of its
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inertial parameters is available, and previous tests
have shown the presence of significant friction
torques on both joints, especially at low velocities.
This robot is then used to test in practice the
actual importance of the search of an optimal
(in some sense) trajectory for calibration, and to
show if and how the use of different optimization
criteria can provide parameters estimates, which
allow a better reconstruction of the joint torques
in a wide variety of different trajectories, and
eventually a re-definition of the dynamic model
itself. Particular attention will be devoted to the
friction model, whose order could be possibly re-
discussed during the calibration procedure itself.
The tests are performed using two different groups
of trajectories: the trajectories of the first group
belong to the set of usual robot motions, whereas
the second ones are harmonic functions, chosen
following the optimization procedure presented in
(Calafiore et al., 2001).

The paper is organized as follows: the model of
the robot is described in Section 2, while the
methodology used for the calibration is illustrated
in Section 3; the experimental results are reported
and discussed in Section 4, and some conclusions
are drown in Section 5.

2. THE ICOMATIC SCARA03 ROBOT

2.1 General description

An image of the considered robot, which is a
SCARA manipulator having three degrees of free-
dom (dof), is represented in Figure 1.

Fig. 1. The Icomatic SCARA03 robot.

Two DC motors actuate the first two joints mov-
ing the gripper in the x-y plane. The quote of
the gripper is actuated by a third DC motor by
means of a speed reducer and by a pinion-rack
transmission. The vertical motion (direction Z) is
decoupled with respect to X and Y and it is not
considered in this paper.

The mechanical transmissions of the first two
joints include two Harmonic Drive speed reducers

having a transmission ratio τ1 = τ2=1/100. The
position feedback is obtained by digital encoders
(2000 steps/revolution), and the velocity is recon-
structed by numeric differentiation and low pass
Butterworth filter (100 Hz, damping factor 1.0).
Two frames (see Figure 2), are attached to the
links, to define the joint coordinates q1 and q2.

The length of both links is 0.33 m; the rotation
ranges of the joints are −35◦ ÷ 215◦ for the first
joint, and −125◦ ÷ 125◦ for the second one. The
maximum joint velocity is 3.77 rad/s for both
joints, while the maximum gripper horizontal ac-
celeration is 9 m/s2.
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Fig. 2. Scheme of the robot.

The controller is a standard PC, using a Pentium
processor and QNX4 real time operating system.
The servo loop sampling time is 1 ms. The drives
are configured in torque mode, and the desired
torque is evaluated by a standard decentralized
PID controller.

During normal operation the following data are
collected and stored: the desired and the measured
motor rotations, the estimated motor velocities,
the desired and the measured motor torques,
determined from the motor current measures.

2.2 Robot dynamic model

Using standard methodologies, a dynamic model
of the robot is constructed in the form

U =WP, W =W
(
Q, Q̇, Q̈

)
, U =

[
u1

u2

]
,

(1)
where U is the vector of the motor torques, P is a
vector of m constant parameters to be identified,
W is a 2 × m matrix depending on the joint
position, velocity and acceleration, and Q is the
joint vector coordinate, defined as Q = [q1, q2]

T .

Vector P includes the dynamic parameters of the
robot, plus some parameters describing the energy
loss in the mechanical transmissions (friction).

The dynamic parameters are defined in order to
obtain a complete and minimum model ((Gautier
and Khalil, 1990)). The so determined parame-
ters, collected in the dynamic parameters vector
Pd, are



Pd =



I1z +m2l

2
1 + Jm1/τ

2
1

m2s2x

m2s2y

I2z

Jm2/τ
2
2


 , (2)

where li is the length of link i, Iiz is the inertia
moment of link i with respect to joint axis i,
m2 is the mass of link 2, s2x and s2y are the
coordinates of the center of mass of link 2 with
respect to the frame of the second link, Jmi are
the sum of the inertia of the motor i plus that of
the corresponding speed reducer.

On the basis of some previous experimental tests,
a third order model has been considered to rep-
resent friction on joint i, including motors, speed
reducers, and joints friction terms

uf,i = a0isign(q̇i) + a1iq̇i + a2isign(q̇i)q̇2i + a3iq̇
3
i .
(3)

The friction parameters vector Pf is then defined
as

Pf = [a01, a11, a21, a31, a02, a12, a22, a32]
T
. (4)

A more detailed friction model should include a
term of losses, proportional to the torque trans-
mitted by the speed reducer from the motors to
the links. This term is equal to u/η or uη depend-
ing on the direction of the power flow (where η
is the reducer efficiency). The inclusion of this
term would make equation (1) non linear with
respect to the parameters. For this reason, and
after verifying that this term was small compared
to that of equation (3), it has been neglected.

Finally two parameters represent a torque offset
in the joints. They could represent errors in the
acquisition hardware or asymmetry of the joint
friction with respect to the velocity

Po = [po1, po2]
T
. (5)

Summarizing, P is a 15-element vector, given by

P =
[
PT

d PT
f PT

o

]T
,

and matrix W can be expressed as follows, with
c2 = cos q2, s2 = sin q2

W = [Wi,j ], i = 1, 2; j = 1, . . . , 15

with

W1,1 = τ1q̈1,
W1,2 = τ1l1 (c2 (2q̈1 + q̈2)− s2q̇2 (2q̇1 + q̇2)) ,
W1,3 = τ1l1 (−s2 (2q̈1 + q̈2)− c2q̇2 (2q̇1 + q̇2)) ,
W1,4 = τ1 (q̈1 + q̈2) , W1,6 = sign (q̇1) ,
W1,7 = q̇1, W1,8 = sign (q̇1)q̇21 , W1,9 = q̇31 ,
W1,14 = 1, W2,2 = τ2l1

(
c2q̈1 + s2q̇

2
1

)
,

W2,3 = τ2l1
(−s2q̈1 + c2q̇

2
1

)
,

W2,4 = τ2 (q̈1 + q̈2) , W2,5 = τ2q̈2,
W2,10 = sign (q̇2) , W2,11 = q̇2,
W2,12 = sign (q̇2)q̇22 , W2,13 = q̇32 , W2,15 = 1,

all the other elements of W being zero.

3. THE ROBOT CALIBRATION
PROCEDURE

Relation (1), which is linear with respect to P ,
can be used to estimate the parameters vector P ,
collecting the values of U , Q, Q̇, Q̈, at n time
instants, from t1 to tn, during the execution of a
task, thus obtaining an equation of the form

y = HP + v (6)

with y := [U(t1) . . . U(tn)]
T
, and

H :=



W

(
Q(t1), Q̇(t1), Q̈(t1)

)
· · ·

W
(
Q(tn), Q̇(tn), Q̈(tn)

)

 ,

where v is assumed to be the zero mean measure-
ment noise vector, uncorrelated from P , having
autocorrelation matrixRv, andH is the regression
matrix, assumed to be deterministic.

P can then be estimated by using a recursive
formulation of the LS algorithm: let Hi := W (ti)
and yi represent the i-th row of H and the i-
th torque measurement, respectively; let P̂i and
SP,i be defined as the estimate of the parameter
vector P , given the measurements up to i, and the
relative covariance, respectively; the estimate can
then be recursively updated using the following
recursions

P̂i+1 = P̂i +Ki+1(yi+1 −Hi+1P̂i), P̂0 = P̄ ,

Ki+1 = SP,iH
T
i+1(Rv +Hi+1SP,iH

T
i+1)

−1,

SP,i+1 = SP,i −Ki+1Hi+1SP,i, SP,0 = RP ,

where P̄ is some a priori information about P
(considered as initial condition for the recursive
estimation), having covariance matrix RP . If no a
priori knowledge is available, as in our case, then
RP = ∞, and it follows that the amplitude of the
estimation error depends on Π = HTR−1

v H.

The execution of a particular robot trajectory
during calibration determines H, and conse-
quently Π. Different “measures” on Π have been
defined in literature to (try to) predict in some
sense the quality of the computed estimate of P .
The most frequently used (see (Ljung, 1987)) are
the condition number of Π, Jk := cond(Π) (to
be minimized), and the determinant of Π or some
scalar measure depending on it: for instance, the
so-called D-optimality criterion makes use of index
Jd := log det(Π) (to be maximized).

In a previous paper (Calafiore et al., 2001) by
some of the coauthors, the optimal trajectory
search was performed using a procedure based
on genetic algorithms, and the so-determined tra-
jectories were utilized to identify the dynamic
parameters of a robot, achieving results that were
considered quite satisfying. However, no compar-
ison was made with the estimates obtained using
some other kind of trajectories. It is not clear then
how important is the use of such trajectories for



calibration, and which kind of optimality criteria
must be conveniently chosen in practice, taking
into account the particular matters related to the
considered robot (for example, the uncertainties
about the order of the friction model and about
the importance of the introduced offset parame-
ters). These topics are analyzed in the remainder
of this paper, after the definition of the adopted
trajectories.

3.1 Adopted trajectories

Two kinds of trajectories have been selected to
perform the experiments:

• standard working trajectories planned in the
robot working space (type 1);

• trajectories planned in joint space in order to
optimize some criteria (type 2).

The first group contains the three trajectories
represented in Figure 3 and labelled as Line1,
Line2 and Circle (L1, L2 and CI). The parameters
of the trajectories were selected in order to use a
consistent part of the working area but avoiding
the singular configuration (sin q2 = 0), and the
law of motion of the gripper was chosen in order to
“excite” all the model parameters, simply reach-
ing high speed and accelerations. The trajectories
L1, L2 and CI were performed respectively in 4.5,
2.5, 5.25 seconds.
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Fig. 3. The adopted trajectories (type 1) in the
robot working area.

The trajectories of the second group are of the
form

qi(t) = α0i +
na∑
j=1

αj,i sin(ωj,it), (7)

for the i-th joint. Assigned the number of har-
monics na, the parameters αj,i and ωj,i were cho-
sen according to the methodology presented in
(Calafiore et al., 2001) in order to optimize the
Jk and Jd indexes: the first one (OJK) is a four
harmonics trajectory (with duration time T = 20
s, α01 = 1.57, α11 = 0.2545, α21 = −0.1091, α31 =
0.1091, α41 = −0.1091, α02 = 0, α12 = 0.5454,
α22 = −0.5454, α32 = −0.4727, α42 = −0.5454,
ω11 = 3.7082, ω21 = 0.2472, ω31 = 2.7194, ω41 =
0.4944, ω12 = 1.7305, ω22 = 0.2472, ω32 = 0.2472,
ω42 = 0.2472), while the second one (OJD) has
one harmonic term only (with T = 25 s, α01 =
1.57, α11 = −2.18166, α02 = 0, α12 = 2.18166,

CI L1 L2 OJK OJD
Jd 55.51 58.08 39.99 51.69 75.83
Jk 7.35 106 4.09 106 7.02 107 2.45 104 1.49 106

σ1 0.036 0.037 0.061 0.035 0.040
σ2 0.012 0.012 0.031 0.012 0.012

q̇1,m 1.47 1.87 0.87 1.29 3.04
q̇2,m 1.95 2.03 1.72 1.29 2.58
q̈1,m 6.55 6.55 3.91 5.34 3.16
q̈2,m 10.11 10.02 6.99 4.12 3.03

Table 1. Trajectories characteristics.

ω11 = 1.37509, ω12 = 1.17865). All the αj,i’s are
expressed in radians, while the ωj,i’s are in rad/s.

Each trajectory was performed six times to in-
vestigate the repeatability of the system and the
measurement noise. Data were collected at 1 KHz,
and 2500 equally spaced samples were considered
for the robot dynamic calibration.

The main characteristics of all the trajectories are
reported in Table 1, which shows: the performance
indexes Jk and Jd computed on the collected 2500
samples on each trajectory, the standard deviation
σi (in Nm) of the torque measurements for the
i-th joint (computed on the samples of the six
repetitions of each trajectory, as in (Calafiore et
al., 2001)), and the maximum values of the joint
velocities and accelerations q̇m, q̈m, in rad/s and
rad/s2, respectively.

The rms value of the joint torques during the
execution of the different trajectories is reported
in the first column of Table 2.

The trajectories of the second group cover a
greater portion of the robot working space than
those of the first group; in particular, they are
characterized by a much greater excursion of the
second joint (−2.1÷2.1 rad for OJK and −2.18÷
2.18 rad for OJD, versus only 0.70 ÷ 2.06 rad,
0.78 ÷ 2.02 rad and 0.86 ÷ 2.02 rad for CI, L1
and L2, respectively). This fact, however, does
not indicate that such trajectories are necessarily
more suitable for calibration than the other ones.

4. EXPERIMENTAL RESULTS

In this section, we discuss the experimental re-
sults obtained using the previous trajectories for
identification.

From the theoretical point of view, the uncer-
tainty around the estimated parameters should be
smaller when trajectories with a large value of Jd

are employed to collect data (OJD and L1, in our
case), whereas trajectories with a small value of Jk

(OJK, OJD and L1) should guarantee a reduction
of the estimate bias due to unmodelled dynam-
ics errors. Starting from these considerations, our
expectations before performing the experimental
tests can be summarized as follows.

• If the structure of the employed dynamic
model is not correct (especially for friction),
trajectories OJK, OJD and L1 should some-
how reduce the effects of such errors.



Torques [Nm]
rms errors

Traj. (j.) CI L1 L2 OJK OJD Aver.
CI (1) 0.535 0.055 0.066 0.190 0.065 0.060 0.087
CI (2) 0.223 0.023 0.030 0.096 0.041 0.031 0.044
L1 (1) 0.512 0.100 0.079 0.796 0.148 0.083 0.241
L1 (2) 0.230 0.061 0.040 0.084 0.054 0.043 0.056
L2 (1) 0.360 0.073 0.066 0.047 0.063 0.062 0.062
L2 (2) 0.199 0.040 0.031 0.029 0.035 0.031 0.033
OJK (1) 0.531 0.111 0.062 0.260 0.057 0.064 0.111
OJK (2) 0.135 0.048 0.029 0.126 0.021 0.022 0.049
OJD (1) 0.602 0.167 0.077 5.376 1.298 0.048 1.393
OJD (2) 0.173 0.082 0.030 0.153 0.115 0.018 0.080
Aver. (1) 0.101 0.070 1.334 0.326 0.063 0.379
Aver. (2) 0.051 0.032 0.097 0.053 0.029 0.052

Table 2. Torques: rms values and errors
(complete model).

• The “best” estimates (from the point of view
of the parameter estimation uncertainty)
should be performed by trajectories OJD and
L1.

• Since the Jd index of the OJD trajectory
is much greater than the other ones, and
its Jk is relatively small (only OJK has a
better one, but with a poor value of Jd), this
trajectory should provide the best results.

The results obtained using the various trajectories
are compared to test their capability of recon-
struction of the joint torques, when different robot
motions are considered.

Results of the experimental analysis are presented
in Table 2, which shows the rms joint torque
values and the torque reconstruction errors ob-
tained for each trajectory, using the parameters
estimated on another trajectory. For instance, if
the parameters estimated using data collected on
L1 are used to reconstruct the torques when tra-
jectory CI is executed by the robot, the rms joint
torque errors are 0.066 Nm for joint 1 and 0.030
Nm for joint 2. The average values reported on the
right of each row are indexes showing how much
a trajectory is “difficult to be reconstructed”; in
other words, a high value indicates that the pa-
rameters estimated on other trajectories are not
suitable to reconstruct the torques on this trajec-
tory. Similarly, low values at the bottom of each
column indicate that the parameters estimated us-
ing that trajectory can be reliably used to predict
the torques of the others.

Table 3 reports the same values, after a nor-
malization on the torque errors resulting from
the parameters estimated on the same trajectory
for which the torque reconstruction is performed.
This table shows that the best torque prediction
on each trajectory is (obviously) always performed
using the parameters estimated on it (all the other
elements are > 1). The “easiest” trajectory to be
reconstructed is L2 (the normalized average rela-
tive errors are 1.335 and 1.157 for the two joints,
respectively), which has the worst indexes (and in
fact the parameters estimated on it give the worst
results in the reconstruction of the other trajec-
tories). The most difficult to be reconstructed is
indeed OJD (errors 29.054 and 4.399), which is the

CI L1 L2 OJK OJD Aver.
CI (1) 1.000 1.210 3.472 1.192 1.096 1.594
CI (2) 1.000 1.289 4.185 1.793 1.367 1.927
L1 (1) 1.264 1.000 10.017 1.860 1.043 3.037
L1 (2) 1.534 1.000 2.117 1.365 1.084 1.420
L2 (1) 1.567 1.422 1.000 1.350 1.334 1.335
L2 (2) 1.406 1.085 1.000 1.214 1.081 1.157
OJK (1) 1.937 1.086 4.535 1.000 1.109 1.933
OJK (2) 2.262 1.344 5.903 1.000 1.033 2.308
OJD (1) 3.487 1.610 112.106 27.066 1.000 29.054
OJD (2) 4.561 1.640 8.445 6.348 1.000 4.399
Aver. (1) 1.851 1.266 26.226 6.494 1.116 7.390
Aver. (2) 2.153 1.272 4.330 2.344 1.113 2.242

Table 3. Comparison of torque errors
(complete model) - normalized data.

most “reliable” trajectory to predict the torques
of the other ones (errors 1.116 and 1.113), as
expected.

Jd seems to be the most significant index (at
least in our case) to determine if a a trajectory
can provide “good” parameter estimates, suitable
for torque reconstruction during various robot
motions. In fact, the average error on the torque
prediction decreases when Jd increases. On the
contrary, the value of the Jk index does not seem
to have particular importance in our case with
respect to the torque reconstruction.

It should also been noticed that the value of Jd

tends to increase with joint velocity: OJD (the
best performing trajectory) has the highest value
of Jd and the highest value of the joint velocities.

A further analysis was performed comparing the
friction torque-velocity relation (3) evaluated with
the parameters estimated on the different tra-
jectories. The predictions were very similar if
the comparison was made, for each trajectory,
in the range of velocity experienced during the
acquisition. However the parameters estimated on
the “slow” trajectories (e.g. L2) are unreliable to
predict the torque for high velocities, as shown
in Figure 4, where the estimated friction torque
on the first joint is reported, together with five
vertical lines in correspondence of the maximum
velocity reached by this joint during the execution
of each trajectory.
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Fig. 4. Estimated friction torque on joint 1.



Torques [Nm]
rms errors

Traj. (j.) CI L1 L2 OJK OJD Aver.
CI (1) 0.535 0.055 0.060 0.235 0.061 0.061 0.094
CI (2) 0.223 0.025 0.031 0.089 0.035 0.033 0.043
L1 (1) 0.512 0.100 0.082 0.257 0.106 0.084 0.126
L1 (2) 0.230 0.058 0.040 0.085 0.047 0.045 0.055
L2 (1) 0.360 0.072 0.063 0.049 0.063 0.066 0.063
L2 (2) 0.199 0.039 0.033 0.030 0.033 0.033 0.034
OJK (1) 0.531 0.110 0.069 0.249 0.065 0.068 0.112
OJK (2) 0.135 0.057 0.030 0.123 0.023 0.024 0.052
OJD (1) 0.602 0.334 0.054 1.107 0.229 0.051 0.355
OJD (2) 0.173 0.068 0.025 0.148 0.022 0.019 0.057
Aver. (1) 0.134 0.066 0.379 0.105 0.066 0.150
Aver. (2) 0.049 0.032 0.095 0.032 0.031 0.048

Table 4. Torques: rms values and errors
(reduced model).

It was finally checked whether a more simple
model could be more robust with respect to torque
prediction, i.e. if it could be preferable to exclude
from the model all the parameters that cannot
be estimated with enough accuracy. A simplified
model (10 parameters) was obtained setting to
zero the third dynamic parameter (theoretically
null due to geometrical symmetry), the two torque
offsets, and the friction coefficients of the third
order terms.

Results presented in Table 4, compared with those
of Table 3, show that, using the reduced model,
the torque reconstruction on the same trajectory
used for calibration is slightly worse compared
with that provided by the complete model (for
every trajectory). However, the results obtained
reconstructing the torques applied to perform
other trajectories are better: in particular, even
if OJD remains the best performing trajectory,
similar results are obtained in this case also by
L1, while an acceptable (even if poor, anyway)
reconstruction of the torque applied on the first
joint is obtained this time also by L2 (the worst
trajectory), with a reduction of the average error
for this joint from 1.334 Nm to 0.379 Nm.

Finally, it should be remarked that a complete and
correct analysis of the quality of the parameter
estimates would be possible only if the true values
of the parameters were known. However, we notice
that the values estimated by the worst trajec-
tories are sometimes quite different from those
computed by the best ones and sometimes unfea-
sible: for example, the estimate of Pd(4) should
be always positive, as it represents the inertia
moment I2z of the second link. Table 5 shows the
parameter values (each one expressed in its proper
unit) estimated by the various trajectories in the
reduced model case.

5. CONCLUSIONS

The presented experiments confirm that, at least
for the considered robot, the identification of the
dynamic parameters takes advantage of the maxi-
mization of index Jd, and that the optimization
procedure developed in (Calafiore et al., 2001)
works satisfactorily in practice. The obtained re-

Trajectories
Parameters CI L1 L2 OJK OJD

Pd(1) 16.307 16.442 12.308 16.594 16.165
Pd(2) -0.547 1.855 1.352 2.404 2.415
Pd(4) -0.592 0.443 -3.554 0.749 0.758
Pd(5) 4.963 4.443 6.440 3.947 4.014
a01 0.185 0.195 0.144 0.175 0.210
a11 0.304 0.120 0.427 0.181 0.093
a21 -0.148 -0.024 -0.328 -0.085 -0.016
a02 0.084 0.107 0.077 0.073 0.088
a12 0.021 0.039 0.097 0.089 0.049
a22 0.002 -0.007 -0.034 -0.023 -0.007

Table 5. Parameter estimates (reduced
model).

sults also suggest that when some parameters
cannot be identified properly, it is preferable to
set them to their nominal values (as Pd(3) and
Po, which are in our case nominally equal to zero),
or to exclude them from the model (as the cubic
friction terms in our case).
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