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Abstract: In this paper the learnability of Iterative Learning Control (ILC) under
the framework of energy function is explored. First we show that ILC is in essence
a pointwise adaptation learning mechanism which can henceforth learn iteration-
independent time-varying uncertainties. Next we propose a new robust ILC scheme
to address norm-bounded uncertainties. The concept of Composite Energy Function
(CEF) is introduced in the analysis of the learning convergence, consequently the
proposed ILC schemes are applicable to quite general systems.
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1. INTRODUCTION

Practical tracking control tasks must be accom-
plished in a finite time interval. Asymptotic con-
vergence in time domain without a specified con-
vergence speed obviously does not meet the task
requirements. On the other hand, it is a much
harder problem in control theory to specify the
system transient performance or achieve perfect
tracking over a finite time interval. Most advanced
control methods developed hitherto only ensure
asymptotic convergence property. ILC comple-
ments the existing control methods in the sense
that it targets at perfect tracking in a finite time
interval, which is possible under a repeatable con-
trol environment and achieved through asymp-
totic convergence in iteration domain.

The traditional ILC schemes are based on contrac-
tion mapping (CM-type ILC). In (Xu, 2002) we
have shown the limitation of CM-type ILC: the re-
quirement of global Lipschitz condition (GLC). A
non-global Lipschitz nonlinear function may incur
finite escape time in a simple dynamic system. It is
necessary to widen the learning control framework
under which ILC can handle broader classes of

system nonlinearities and uncertainties, including
NGLC (non-global Lipschitz continuous) dynam-
ics, time varying parametric and norm bounded
uncertainties.

There are two main streams in advanced control
theories: adaptive control and robust control, both
highly depending on energy function approaches.
The former mainly deals with parametric uncer-
tainties and the latter deals more with the norm-
bounded perturbations. In this paper, we will first
exhibit the main characteristic of energy funtion-
based ILC (EF-based ILC) – pointwise adaptation
when dealing with time varying parametric un-
certainties. When the norm-bounded perturbation
is concerned, adaptive type control methods are
no longer applicable. Robust control, character-
ized by high gain feedback, is able to secure the
uniform bound of the system states, but in gen-
eral is not able to obtain asymptotic convergence
because of the lack of internal model which is
nonlinear in nature. By incorporating EF-based
ILC, it is possible to eliminate the tracking error
asymptotically. Therefore we can show another
main characteristic of EF-based ILC – nonlinear
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internal model control realized through embed-
ding an integrator in the control input.

2. ILC WITH COMPOSITE ENERGY
FUNCTION

A. EF-based ILC – Pointwise Adaptation

As we all know, the traditional parameter adap-
tation mechanisms cannot deal with the time
varying parameters, i.e., θ(t). On the other hand,
under the repeatable control environment, θ(t) is
invariant with respect to the iterations. Hence for
a particular t ∈ [0, T ], the corresponding θ(t)
is considered as a constant in iteration domain
N = {0, 1, · · ·}. We can use a simple integrator
to do the parameter updating job along the iter-
ation axis. This leads to a new ILC approach –
the pointwise adaptation over the entire interval
[0, T ]. Let us give the control law and parameter
updating law. Consider the nonlinear dynamic
system in i-th iteration

ẋi = θ(t)x2
i + ui, xi(0) = 0.5 (1)

where θ(t) ∈ C1[0, T ], and x(t) is to track xd(t) ∈
C1[0, T ] with xd(0) = 0.5. The error dynamics is

ėi =−θ(t)x2
i + ẋd − ui, ei(0) = 0. (2)

The control law is

ui = kei + ẋd − θ̂i(t)x2
i (3)

and the parametric updating law is ∀t ∈ [0, T ]

θ̂i(t) = θ̂i−1(t)− x2
i (t)ei(t) θ̂−1(t) = 0. (4)

B. Convergence with Composite Energy Function

Now let us derive the convergence property of
the above ILC. For this purpose we need to find
an appropriate “energy function” which plays the
similar role as Lyapunov function in adaptive
control. Here a composite energy function is used

Ei(t) =
1
2
e2

i (t) +
1
2

t∫
0

φ2
i (τ)dτ, (5)

where φi = θi − θ̂i. We use Ei to distinguish it
from Lyapunov functions, which can be as simple

as Vi =
1
2
e2

i . The difference of Ei is

∆Ei =
1
2
e2

i +

t∫
0

(φ2
i − φ2

i−1)dτ − 1
2
e2

i−1. (6)

Using the initial resetting condition ei(0) = 0,
substituting the error dynamics (2) and the con-
trol law (3), the first term on the right hand side
is

1
2
e2

i =

t∫
0

eiėidτ =

t∫
0

ei[−θ(τ)x2
i + ẋd − ui]dτ

=

t∫
0

[−φix
2
i ei − ke2

i ]dτ. (7)

By substituting the parameter updating law (4),
the second term on the right hand side of (6) can
be expressed as

1
2

t∫
0

(φ2
i − φ2

i−1)dτ

=
1
2

t∫
0

(θ̂i−1 − θ̂i)(2θ − 2θ̂i + θ̂i − θ̂i−1)dτ

=

t∫
0

(φix
2
i ei − 1

2
x4

i e
2
i )dτ. (8)

Clearly φix
2
i ei appears in (7) and (8) with oppo-

site signs. The difference of the composite energy
function is

∆Ei = −
t∫

0

ke2
i dτ −

t∫
0

x4
i e

2
i

2
dτ − e2

i−1

2
< 0. (9)

The function Ei is a monotonically decreasing
sequence, hence is bounded if E0 is bounded. The
derivative of E0 is

Ė0 = e0ė0 +
φ2

0

2
= −ke2

0 − φ0x
2
0e0 +

φ2
0

2
. (10)

At iteration number i = 0, θ̂−1(t) = 0 ∀[0, T ],
thus θ̂0 = −x2

0e0, and Ė0 becomes

Ė0 = −ke2
0 + φ0θ̂0 +

1
2
φ2

0 = −ke2
0 −

1
2
φ2

0 + φ0θ.

Using Young’s inequality, we have for any c > 0
φ0θ ≤ cφ2

0 +
1
4cθ

2. Let 0 < c < 1
2 , Ė0 ≤ −ke2

0 −
(1
2 − c)φ2

0 +
1
4cθ

2.

Since θ(t) ∈ C1[0, T ], there exists a finite
bound θm ≥ θ(t) ∀t ∈ [0, T ]. Thus Ė0 is
negative definite outside the region (e0, φ0) ∈
R2

∣∣ ke2
0 + (1

2 − c)φ2
0 ≤ 1

4cθ
2
m , which also specifies

the bound of E0(t) in the finite interval [0, T ].

Applying (9) repeatedly we have

Ei(t) =E0(t) +
i∑

j=1

∆Ej



10 20 30 40 50 60 70 80 90 100

10
−1

10
0

Iteration    Number

|e i| su
p

Fig. 1. Learning convergence of ILC based on
CEF.

lim
i→∞

Ei(t)<E0(t)− lim
i→∞

i∑
j=1

t∫
0

ke2
jdτ

− lim
i→∞

i−1∑
j=1

e2
j(t). (11)

Consider the positiveness of Ei and boundedness
of E0, ei(t) converges to zero pointwisely as i →
∞.

Remark 1. In the pioneer work of EF-based ILC
(Ham, Qu and Kaloust, 1995; Xu, 2002), a similar
energy function has been used as Ei(t) =

∫ t

0
φ2

i dτ ,
which however is of L2 only. By adding additional
1
2e

2
i or in general a Lyapunov function V, CEF in

(5) is obvious more general with both L2 and L∞.

C. Illustrative Example

Consider system (1) and target trajectory is
xd(t) = sinπt+ 0.5, t ∈ [0, 2]. Here the unknown
time varying parameter θ = 3 + sinπ

2 t. Applying
control law (3), updating law (4) and choosing
gain k = 1, the learning convergence is shown in
Fig. 1.

3. ON THE INITIAL CONDITION

A. Relaxation – Alignment Condition

In CM-type ILC initial resetting condition is
needed. However, a perfect initial resetting re-
quires that the control system be equipped with
a precise homing mechanism, which may not be
possible for many practical engineering systems.
In EF-based ILC we could make full use of the
system knowledge especially concerning state dy-
namics. This opens a new avenue: replacing the
initial resetting condition with a less restricted
initial condition – alignment condition – and
meanwhile achieving the convergent property. The
alignment condition is simply xi(0) = xi−1(T ), i.e.
the end state of preceding iteration becomes the
initial state of the present iteration. In addition
to this, we also need xd(0) = xd(T ).

Under the framework of CEF, let us derive the
convergence property with the alignment condi-
tion. Look into the procedure in deriving ∆Ei(T )
in the preceding section. Without the initial re-
setting equation the equation (7) is 1

2e
2
i (t) =∫ t

0 eiėidτ + 1
2e

2
i (0). Choosing t = T and using the

alignment condition ei(0) = ei−1(T ), the relation-
ship (9) becomes

∆Ei(T )

= −
T∫

0

ke2
i dτ − 1

2

T∫
0

x4
i e

2
i dτ +

1
2
e2

i (0)−
1
2
e2

i−1(T ).

= −
T∫

0

ke2
i dτ − 1

2

T∫
0

x4
i e

2
i dτ. (12)

Consequently

Ei(T ) =E0(T ) +
i∑

j=1

∆Ej(T )

lim
i→∞

Ei(T )<E0(T )− lim
i→∞

i∑
j=1

T∫
0

ke2
jdτ, (13)

the tracking error sequence converges in L2-norm,
instead of pointwise convergence.

B. Spatial Resetting vs Temporal Resetting

The initial resetting condition in ILC usually im-
plies both spatial resetting and temporal reset-
ting. While time resetting is natural for a task
to be finished and repeated over a finite period,
the spatial resetting is however not an easy job
and not so imperative. Note that it is the spatial
resetting which gives rise to extra implementation
difficulty and incurs criticism.

Consider a target trajectory xd(t) ∈ C1[0, T ],
which forms a continously spatial path. When do
we need the spatial resetting? It is necessary only
when the spatial path of the target trajectory is
not completely closed, i.e. xd(0) = xd(T ). For in-
stance, xd(t) = t, t ∈ [0, 1]. In such circumstance,
a perfect tracking will lead to xi(T ) = xd(T ) =
xd(0). Hence an independent control mechanism
must work appropriately between two consecutive
iterations so as to bring back the system state to
the initial position xd(0).

For any trajectories spatially closed, i.e. xd(0) =
xd(T ), we can use the alignment condition and
remove the spatial resetting requirement, as dis-
cussed in the preceding subsection.

C. Extention to Repetitive Tasks

By relaxing the spatial resetting to the alignment
condition, we can now extend ILC to most repet-
itive control tasks – either tracking a periodic
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Fig. 2. Learning convergence for system with
alignment condition.

trajectory or reject a periodic disturbance over
[0, ∞). Let us exhibit how to convert a repetitive
control task into an ILC task. Consider the target
trajectory xd(t) ∈ C1[0, ∞) with the periodicity
xd(t) = xd(t − T ). Assume that θ(t) is also pe-
riodic with the same period T . Define the state
xi(t) = x((i− 1)T + t), ∀i = 1, 2, · · ·. By virtue of
the continuity, x(iT ) is the end point of the i-th
iteration defined over [(i− 1)T, iT ], and also the
initial point of the (i+1)-th iteration defined over
[iT, (i+ 1)T ]. Note that the alignment condition
is met because xi(T ) = xi+1(0) is in fact the same
point x(iT ). Thus the original control problem is
equivalent for xi(t) to track xd(t) over the period
[0, T ], and the ILC can be directly applied.

What can we gain by converting a repetitive con-
trol problem into ILC problem? First of all, ILC is
now able to handle periodic signals defined in infi-
nite horizon, hence cover repetitive control prob-
lems. Second, ILC based on CEF is able to handle
more general classes of system nonlinearities and
uncertainties. Indeed, the convergence analysis of
repetitive control is mainly based on small gain
theorem, quite similar to the contraction map-
ping, consequently the application is rather lim-
ited.

Remark 2: When e(0) = 0, the repetitive type
ILC will generate a continuous control profile. If
e(0) = 0, the repetitive type ILC may generate
a piecewise continuous control profile, with the
discontinuities occurring at each instant t = iT .

B. Illustrative Example
Consider system (1) with the same parameters
and target trajectory as in previous section. The
initial values are x(0) = 1 = xd(0) = 0.5. Instead
of the initial resetting condition, the alignment
condition xi(0) = xi−1(T ) is used. Applying
control law (3) and updating law (4), the learning
convergence is shown in Fig. 2, which is close to
the case with ideal initial resetting (Fig. 1).

Next, the ILC is extended to a repetitive case
where the target trajectory is xd = 0.5+sinπt, t ∈
[0,∞). The unknown time-varying parameter is
θ = 3+sinπ

2 t. Thus the learning period should be
T = 4. Applying the same ILC scheme with the
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Fig. 3. Learning convergence for repetitive track-
ing.

alignment condition, the maximum error for each
period is recorded in Fig. 3. The effectiveness is
validated.

4. CAN WE LEARN NORM-BOUNDED
UNCERTAINTIES?

A. Robust ILC

Up to now we focus on ILC with parametric
uncertainties. What shall we do if the nonlinear
uncertain term θ(t)x2 is only known a priori
as a lumped disturbance with a known bound-
ing function? Consider the following system with
norm-bounded uncertainties η(x, t) which is local
Lipschitz continuous

ẋ= η(x, t) + u, x(0) = 0.5

or ė= ẋd − η − u, e(0) = 0 (14)

where |η(x, t)| ≤ ρ̄(x, t) and the bounding func-
tion ρ̄ is known a priori. Clearly we are unable
to conduct pointwsie adaptation for η as it is x-
dependent, i.e. iteration dependent. Now let us
study how robust control works. A typical robust
control law can be chosen as

ui = ur,i = (ρiκi + 1)ei (15)

ρi =
√

ẋ2
d + ε+ ρ̄i

κi =

√
e2

i + 3ε2 + 8ε
(
√

e2
i + 3ε2 + ε)2

.

where ε > 0 is a constant. Both ρi and κi are
smooth functions of ei and t.

When the control task repeats, ILC is again the
appropriate candidate to improve control perfor-
mance. The underlying idea is as follows. Since the
system state is bounded in a set under robust con-
trol, the dynamic system is Lipschitz continuous
on the set. Thus we can adopt the most widely
applied CM-type ILC approach – embedding an
integrator in the control input so as to learn the
desired control profile directly. This leads to a new
ILC strategy – robust ILC.

Choose the learning control law as below



ui = proj(ui−1) + ur,i (16)

proj(·) �
=

{ · | · | ≤ u∗

sign(·)u∗ | · | > u∗

where u∗ is the projection bound which is suf-
ficiently large such that u∗ ≥ sup

t∈[0, T ]

|ud(t)|. In
practice, u∗ is either a physical process limitation
or a virtual saturation bound which can be arbi-
trarily large but finite.

To analyze the convergence property of the pro-
posed robust ILC, we define the following time
weighted composite energy function

Ei(t) = e−λte2
i +

t∫
0

e−λτδu2
i dτ (17)

where δui = ud − ui. Note the difference between
two CEF (5) and (17). The former contains un-
known parameters explicitely, whereas the latter
contains the unknown but desired control input
directly. The difference arise because the norm-
bounded uncertainty is the lumped one.

The ultimate objective of learning control is to
find the desired control input ud which realizes

ẋd(t) = η(xd, t) + ud(t). (18)

According to the system dynamics (14), we can
obtain

δui = (ẋd − ηd)− (ẋi − ηi) = ėi + ηi − ηd (19)

where ηd = η(xd, t).

B. Convergence Properties

Let us show the convergence properties of the ILC
scheme (16) and (15). First we will show that the
boundedness of the system state is guaranteed by
control laws (16) and (15). Define a Lyapunov
function Vi = 1

2e
2
i . Note the following fact pro-

vided that |ei| ≥ ε,

1− κi|ei|= e2
i + 3ε2 + ε2 + 2ε

√
e2

i + 3ε2

(
√

e2
i + 3ε2 + ε)2

−
√

e2
i + 3ε2|ei|+ 8ε|ei|
(
√

e2
i + 3ε2 + ε)2

≤ e2
i + 4ε2 + 2ε

√
e2

i + 3e2
i

(
√

e2
i + 3ε2 + ε)2

−
√

e2
i |ei|+ 8ε|ei|

(
√

e2
i + 3ε2 + ε)2

≤ 4ε2 + 4ε|ei| − 8ε|ei|
(
√

e2
i + 3ε2 + ε)2

≤ 4ε(ε− |ei|)
(
√

e2
i + 3ε2 + ε)2

< 0, (20)

consequently we have

V̇i = eiėi = ei(ẋd − ηi − ui)

≤ |ei|u∗ − e2
i + (1− κi|ei|)(|ẋd|+ ρ̄i)|ei|

≤ |ei|u∗ − e2
i = −|ei|(|ei| − u∗).

|ei| is globally uniformly bounded by max{ε, u∗}.
Hence xi ∈ X where X is a compact set.

Since xi is bounded and ηi is local Lipschitz, there
exists a Lipschitz constant lη

�
= sup

∣∣∣∂ηi

∂xi

∣∣∣ < ∞,
∀i ∈ N and ∀(xi, t) ∈ X × [0, T ], such that

|ηi − ηd| ≤ lη|xi − xd|. (21)

Moreover, according to the control law (15) and
(16) the boundedness of xi guarantees the finite-
ness of ur,i and ui. Consequently, ẋi and ėi are
also finite on X . From the definition of κi and ρi,
it can be derived that there exists a finite con-
stant c1

�
= sup

(xi,t)∈X×[0,T ]

ρiκi and a finite constant

c2
�
= sup

(xi,t)∈X×[0,T ]

d(ρiκi)
dt

.

Next let us see the difference of Ei(t).

∆Ei = e−λte2
i +

t∫
0

e−λt(δu2
i − δu2

i−1)dτ

−e−λte2
i−1. (22)

The first term on the right hand side of (22), with
the initial resetting condition, can be expressed as

e−λte2
i = −λ

t∫
0

e−λτe2
i dτ +

t∫
0

2e−λτeiėidτ.(23)

The second term on the right hand side of (22)
can be expressed as

t∫
0

e−λτ (δu2
i − δu2

i−1)dτ

≤
t∫

0

e−λτ [δu2
i − (ud − proj(ui−1))2]dτ

=

t∫
0

e−λτ [−2(ud − ui)ur,i − u2
r,i]dτ. (24)

Substitute (19) into (24) and drop the u2
r,i term,

we have

t∫
0

e−λτ (δu2
i − δu2

i−1)dτ



≤ −2
t∫

0

e−λτ (ηi − ηd)(ρiκi + 1)eidτ

−2
t∫

0

e−λτ (ρiκi + 1)eiėidτ

≤ −2
t∫

0

e−λτ (ηi − ηd)(ρiκi + 1)eidτ

+

t∫
0

e−λτe2
i d(ρiκi)− 2

t∫
0

e−λτeiėidτ. (25)

Substituting (23) and (25) into (22) and consider-
ing (21), yield

∆Ei ≤ −λ

t∫
0

e−λτe2
i dτ + c2

t∫
0

e−λτe2
i dτ

+2

t∫
0

e−λτ lη|xd − xi|c1|ei|dτ − e−λte2
i−1

≤−λ

t∫
0

e−λτe2
i dτ + (2lηc1 + c2)

t∫
0

e−λτ |ei|2dτ

−e−λte2
i−1

=−[λ− 2lηc1 − c2]

t∫
0

e−λτe2
idτ − e−λte2

i−1.(26)

There exists a sufficiently large λ such that λ >
2lηc1 + c2 to ensure that

Ei(t)− Ei−1(t) ≤ −e−λte2
i−1(t) ≤ −e−λT e2

i−1(t).

Consequently, Ei(t) ≤ E0(t)− e−λT
∑i−1

j=0 e
2
i (t).

Since both x0 and u0 are bounded, E0(t) is
bounded. From the positiveness of Ei(t), we can
derive that lim

i→∞
ei(t) = 0 pointwisely. Next from

(21), lim
i→∞

|ηi − ηd| ≤ lim
i→∞

lη|ei| = 0. Thus using

(19) and the boundedness of ėi we further derive

lim
i→∞

Ei(t) = lim
i→∞

e−λte2
i + lim

i→∞

t∫
0

e−λτ δu2
i dτ

= lim
i→∞

t∫
0

e−λτ (ėi + ηi − ηd)2dτ

= lim
i→∞

ei∫
0

e−λτ ėidei.

Since ėi is bounded, lim
i→∞

ei = 0 leads to

lim
i→∞

Ei(t) = 0 pointwisely. Hence, ui converges
to ud almost everywhere as i → ∞. On the other
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Fig. 4. Learning convergence of robust ILC for
norm bounded uncertainties.

hand the boundedness of ėi(t), which implies the
uniform continuity of ei(t). Hence, ei(t) → 0
uniformly can be derived.

Remark 2. Similar to Section IV, alignment con-
dition can be applied to remove the initial reseting
condition, and the ILC works for repetitive tasks.
In such case the CEF (5) instead of (17) should be
chosen, and the Lipschitz condition will be used
in the controller design.

C. Illustrative Example

Consider system (14) with η = (3 + sint)x2. The
target trajectory is xd = sinπt+0.5, t ∈ [0, 2]. The
known bounding function of η is ρ̄ = (16x4+1)1/2.
Choose ε = 0.3, u∗ = 60 and apply the robust
ILC scheme. The simulation result is shown in
Fig. 4. At i = 0, the tracking error is the result
of the robust control alone. Through comparison,
the learning effect is obvious.

5. CONCLUDING REMARKS

In this paper, we first demonstrate how the con-
cept of energy function can be incorporated in ILC
design and analysis. Second, synthesizing with ro-
bust control, EF-based ILC nullifies the influence
from the norm-bounded disturbances. Third, with
the alightment condition, we are able to remove
the initial resetting condition and accomplish the
repetitive control tasks.

6. REFERENCES

Ham, C., Z. H. Qu and J. H. Kaloust (1995). Non-
linear learning control for a class of nonlinear
systems based on Lyapunov’s direct method.
Proc. of American Control Conference, Seat-
tle, Washinton, USA , 3024-3028.

Xu, J. X. and V. Badrinath (2000). Adaptive
robust iterative learning control with dead
zone scheme. Automatica 36, 91–99.

Xu, J. X. (2002). The frontiers of iterative learning
control – part I. Journal of Systems, Control
and Information 46, 63–73.


