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Abstract: The input-output decoupling problem for discrete-time nonlinear systems by
static output feedback is studied in this paper. The discrete-time nonlinear system is
described either by state equations or by high order input-output difference equations
(NARMA model). In both cases the necessary and sufficient conditions are given for
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1. INTRODUCTION

The input-output decoupling problem of discrete-
time nonlinear system by state feedback has been
studied extensively, see for instance (Nijmeijer
and van der Schaft, 1990) and the references given
there. When state is not available for measure-
ment, tw o approates are possible: the reconstruc-
tion of the state by means of an observer or the use
of output feedback. The first solution suffers from
the fact that the w ell-knovn separation theorem
for the combination of a static state feedback
with an observer in the linear case is no longer
valid in the nonlinear domain. In this contribution
w einvestigate the second solution, i. e. output
feedback. We limit ourselves to the case of the
static output feedback. The case of the dynamic
output feedback is left for the future studies.

The results for nonlinear system described by
state equations extend the known results in the
continuous-time case (P othin and Moog, 1998)
whereas the results for systems described by
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NARMA model have no continuous-time ana-
logues.

The paper is organized as follows. In the second
section we give a precise problem formulation for
input-output decoupling problem if the system is
described by state equations as well the necessary
and sufficient solv abilit yconditions. In the third
section w epresent the analogous results for the
system described by NARMA model. Futhermore,
w ewill givethe procedures to obtain the static
output feedback if the necessary and sufficient
solv abilit yconditions are satisfied. These proce-
dures are given in the sufficiency parts of the
proofs and are constructive up to finding the
integrating factors and integration of the one-
forms. Finally, this contribution ends with some
conclusions.

To our best knowledge there exists only a few pa-
pers that tackle nonlinear synthesis problems via
(static or dynamic) output feedback for discrete-
time nonlinear systems (P othin et al., 2000;
P othin and Moog, 2001). In the first the i/o lin-
earization problem and in the second disturbance
decoupling for the single-input single-output sys-



tem is studied both via static and dynamic feed-
back.

2. SYSTEMS DESCRIBED BY STATE
EQUATIONS

2.1 Definitions and Problem Statement

Consider a square invertible discrete-time nonlin-
ear system

z(t+1) = f(z(t),u(t)), t=0,1,..., (1)
y(t) = h(z(t))

where z(t) € R™,u(t) € R™,y(t) € R™, and
the maps f and h are supposed to be analytic
functions of their arguments. Let K denote the
field of meromorphic functions in a finite num-
ber of variables {z(t),u(t + k),k > 0}. The
forward-shift operator 6 : K — K is defined by

0p(a(t),u(t), ..., u(t+N)) = ¢(f(x(t),u(?)), u(t+
1),...,u(t + N + 1)). Denote by £ the K-vector
space spanned by

where a;, ¢; € K.

Definition 1. The relative degree r; of the output
y; is defined to be

r; = min{k € IN | AFdy;(t) ¢ spans{dz(t)}}.

If such an integer does not exist, set r; = oo.

Problem Statement: Consider an invertible sys-
tem of the form (1). Find if possible, a regular
static output feedback

da()] _
av—(t)] =m(2)

such that the closed loop system satisfies
(i) dy;[t + k] € spang{dx(t),
dvi(t),...,dvi(t +k —r;)},
Vi=1,...,mand Vk > r; (3)

(i) dy;[t + r;] & spang{dz(t)}

u(t) = a(y(t),v(t), rankg

(4)

where K is the field of meromorphic functions of
z(t), v(t) and a finite number of time shifts of
v(t). Note that we have used brackets [-] instead of
paranthesis (-) to make a clear distinction between
the outputs of the closed-loop, and the open-
loop system, respectively. Condition (i) represents

noninteraction whereas condition (ii) represents
the output controllability.

Define Q;, for each output y;(i = 1,...,m), by:

Q={wlt)e X |Vke N
AFw(t) € spany{da(t), dy; (t + 14),..., (5)
dy;(t +ri+k—1)}}

where X' = span,-{dz(t)}. The space ; is instru-
mental for solving the input-output decoupling
problem. The spaces (2; may be computed as the
limit of the following algorithm:

Q? = spang{dz(t)},
QT = {wt) e Qf | Awt) €Qf  (6)
+ span,{dy;(t +7:;)}}, k>0.

Lemma 2. The subspaces Q;, i = 1,...,m, are
invariant with respect to

(i) the state transformation (state space diffeo-
morphism) z(t) = ¢(z(t)),
(ii) the regular static output feedback u(t) =

a(y(t), v(t))

2.2 Main Result

Theorem 3. System (1) is input-output decoupable
by static output feedback if and only if

(i) ri<oo,i=1,...,m
.. Oyr(t+r1),. ., 0ym(t +1m) T_
(i) rankg < ult) =m
(iii) dy;(t+r;) € QiPspany{dy;(t), du(t), (for j =
]‘7"'7m7j # Z.)}
(iv) dw;i(t) A w;(t) Ady(t) =0.

where
w;(t) € spani{dy;(t),du(t),
(forj:]‘,""m’j#i)},

is such that dy;(t + r;) — w;(t) € Q.

Remark. Conditions (i) and (ii) are known to be
necessary and sufficient for the solvability of the
i/o decoupling problem via the regular static state
feedback (Nijmeijer and van der Schaft, 1990).

Proof. Necessity. It is enough to show the neces-
sity of (iii) and (iv). Assume the regular static
output feedback (2) decouples system (1). From
(2) one obtains

v=a"(y(t),u(t)). (7)

For the closed-loop system, (4) is fulfilled and one
has

dyi[t +ri] € Qi @ spang{dvi(t)}  (8)



where Q; is defined for the closed loop system
similarly to (5). By (7)

dv;(t) € spang{dy(t), du(t)}, 9)
or equivalently,
dv;(t) € spany{dy;(t)} ® span,{dy;(t), du(t),
(forj=1,...,m,j #1i)}. (10)
From (8) and (9),
dy;[t + r;] € Q; @ span,{dy;(t), du(t)
(forj=1,...,m,j #4)}. (11)
which yields (iii),
dyi(t + ;) € Q; & spany{dy;(t), du(t)

(for j=1,...,m,j #4)}. (12)

To show necessity of (iv), note that from (7), w;(t)
is uniquely defined by

wi<t>=£( > & g f )

J=1,j#1 k=

(13)

in which ¢ € K.

Sufficiency. When the condition (iii) is fulfilled,
one has:

dy;(t 4+ ri) = wo(t) + wi(t), (14)
where
wg(t) S Ql
wi(t) € spanyg{dy;(t),du(t), (15)
(forj=1,...,m,j #1i)}.

From (14) and dv;(t) € spani{dy(t),du
deduces:

(t)}, one

dyi(t + ;) € Q; + spang{dv;(¢)}.  (16)

The condition (iv) implies that there exists A € K
and p € K such that A(w;(t) + pdy;(t)) is exact.
Let,

dv;(t) = AMwi(t) + pdy;(t)) € spany{dy(t),
du(d), nay Spalldy (17)

so we get v;(t) = ¢;(dy(t),du(t)) by integrat-
ing the one-form A(w;(¢t) + pdy;(t)). By (i),
¢ = (¢1,...,0m,) is an invertible function. Thus,

u(t) = ¢~ (y(1), v(t)) = aly(t),v(t)). u

Ezample 4. Consider the system

r(t+1) == (t) + w1 (t) 1 ()23 (t)
Ta(t+1) = —a2(t)
CC(t+1)= ()+ 3()ua(t)
ralt+1) = wa(t)za(t) 18)
yi(t) = z1(2)
y2(t) = (1)
Compute

O = sp{dz1(t),dz2(t)}
Oy = spy{daa(t),das(t),dza(t)}

and

dyl(t+ 1) = 25[32( )dCCQ( ) +U,1( )561
uy (t)zs(t)de
dys(t+ 1) = day(t) +u

()dy> ()
1(#) + 1 (823 (1) dun (7)
2 (t)das(t) + 25 (t)dus(t).

+

Then from (iii)

w1 (t; = U1 Et)afg (t)dyg (t) + T (t)afg (t)du1 (t)

wg(t = I3

One can easily check that (iv) is satisfied and find
pr = ui(t)y2(t), M = 1, p2 = us(t), A2 = 1 s0
that for ¢ = 1,2 )\l(wl(t) + ,U,Zdyl(t)) = d’l}i(t) is
exact. Integrating dv;(t), i = 1,2, one obtains

vi(t) = ui(t)y1(t)y2(t)
v2(t) = ya(t)ua(t)

which yields the static output decoupling feedback

V1 (t) (%) (t)
y1(t)y2(t) y2(t)

(5% (t) = U2 (t) =

3. SYSTEMS DESCRIBED BY NARMA
MODELS

3.1 Definitions and Problem Statement

Consider a discrete-time nonlinear system with
the same number of inputs and outputs, described
by the set of input-output equations

uk(t),...,uk(t+sik), (19)
Jk=1,...,m)
t = 1,...,m, where the maps f;, ¢t = 1,...,m

are supposed to be analytic functions of their
arguments. We assume that the system is strictly
proper i. e. that s;, < ng, for i,k = 1,...,m.
Moreover, we assume system (19) to be in canoni-
cal form, which means that and n;; < min(n;,n;)
and nq + ...+ ny, := n is the order of the system.
The latter implies that whenever (19) admits a
Kalmanian realization, the indices n;, associated



to each output y;, ¢ = 1,...,m, are the observabil-
ity indices of any observable state-space realiza-
tion of order n. Moreover, being in canonical form
also means that system (19) generically satisfies
the condition

afi(")
— Z(. (20)
Ay(t),u(t))
The form (19) is an extension of the echelon
canonical matrix fraction description introduced
in (Popov, 1969) for linear systems.

Given a NARMA model (19), it is always possi-
ble to transform it into an extended state-space
realization. Specifically, this representation is ob-
tained from equations (19) by taking z(t) as the
following state vector, involving both past outputs
and past inputs:

27(t) = (y;(t), ..., y;(t +mn; — 1),
up(t), .., up(t+s),5,k=1,...,m)

where s = max{sy,i,k = 1,...,m}. Note
that this extended state vector is of dimension
n1 + ...+ ngy +m(s + 1) and the extended state-
space model may be written down directely from
the input-output model (19) as:

Zi71(t + ].) = Zi72(t)

Zima(E+1) = 240, (1)
Zimz'(t +1) = fi(2(1), i=1,....m (

21
Zmtji(t +1) = zmyj2(t) )

Zmtgs(t+1) = Zmjetr(t)
Zm+j7s+l(t + 1) = w](t)) .7 = ]-> cee, M.

The disadvantage of the extended state-space re-
alization is that it is nonminimal, and therefore
either non-controllable or non-observable or both.
In (Kotta, 1998) the necessary and sufficient con-
ditions were given when the input-output equa-
tions of the form (19), or equivalently (21), can be
transformed into the observable and controllable
state-space form. Since every NARMA model can-
not be described in the minimal state space form,
it is worth to study the input-output decoupling
problem for the system described by the input-
output model(19).

Let K. denote the field of meromorphic func-
tions in a finite number of variables {z(t), w(t +
k),k > 0}. The forward-shift operator o, : K. —
K. is defined by d.¢(2(t),w(t),...,w(t + N)) =
H(f. (1), w(B)), w(t+1), ..., w(t+ N +1)), where
fe denotes the state transition map of the ex-
tended system (21). Denote by &, the K.-vector
space spanned by {d¢ | ¢ € K.}. The operator d,
induces a forward-shift operator A, : &, — & by

A, (Z atd¢z> — Z(Seaiddegi)i:

where a;, ¢; € K.

Definition 5. The relative degree r; of the output
y; is defined to be (for equations in the canonical
form)

ri =n; —max{sy,k=1,...,m}:=n; —s;

If all s;; = 0, then set r; = oco.

Problem statement. Consider a nonlinear sys-
tem of the form (19). Find, if possible, a regular
static output feedback

u(t) = a(y(t),v(t)),

rankg, da(y(t),v(t)) _ - (22)

au(t)

such that the closed-loop system satisfies
(i) dys[t+ k] € spany_{dy;[t], ..., dy[t +n; — 1],
dv;(t),...,dvi(t + s;),...,dvi(t + k —r;)}
(23)
Vi=1,...,mand Vk > n;
(i) dys[t+ni] & spang {dyi[t], ..., dyi[t+n;—1]}.
(24)

Condition (i) represents noninteraction whereas
(ii) represents the output controllability.

3.2 Main result

Theorem 6. System (19) is input-output decoup-
lable by static output feedback if and only if

(i) ry<oo,i=1,....m
N Ay;(t + ny)
ky —2—— 2 —
(i) rankg, du, (t + 51) m
(i) dy;(t+ ng) € spang_{wi, A w;, ...,
A=%w;} @spang {dy;(t),...,dy;(t+n;—1)}
(iv) dw;(t) Aw;(t) Ady(t+0;) =0

where

ofi(-
wi=Y_ le)dyj(t +0i)+

—_ 9fi()
Z md“k(t + Ui).

k=1

and o; = max{k € IN such that

afi()
Oy;(t+k),j # i,u(t +k))

# 0}



Proof. Sufficiency. Condition (iii) guarantees that
by differentiating (19) we should get

n;—1

= Z apdy;(t + k)
0 (25)
+ ) boyp ATTwi(t + 0y)

r=0

dy;(t + n;)

Obviously, o; > s;. Conditions (i) and (iii) yield
wi & sp{dy(t + 0;)} and o; = s;. Condition (iv)
will imply that there exist A € K, and u € K,
such that A(w;(t + s;) + pdy;(t + s;)) is exact. Let

doi(t 4 s5i) = Mwi(t + s;) + pdy;(t + s4)) €
spang_{dy(t + s;),du(t + s;)},
so we get v;(t) 2 oi(y(t),u(t)) by integrating the

one-form A(w;(t + s;) + pdy;(t + s;)) and shifting
the result backwards s; steps.

Now, we can rewrite (25) as

n;—1
dys(t+ni) = Y agdy;(t + k)+
k=0
Zbgl_r “Tdei(y(t + oi), u(t + 0y)).

By (ii), the decoupling matrix of the system (19)
has a full rank which will imply the invertibility
of ¢ = (¢1,...,0m)T. Thus

which yields the closed loop system

vi(t), ..., vi(t + s;)) (26)

Necessity. Assume the regular static output feecback

(22) decouples system (19). From (22) one obtains
v(t) = a7 (y(1), u(t). (27)

For the closed-loop system, (i) and (ii) are fulfilled
and one has

n;—1

Z aidyi [t + k?]

0 (28)
+ Zﬂrdvi (t+r)

r=0

dyi [t + nz] =

By (27)

dvi(t) € spang_{dy(t),du(t)}

and so one can rewrite (28) as follows

n;—1

dy;(t +n;) = Za;dyi(t+k:)
k=0

+ Zﬁsz { av; Y
Do, i#£]

+ a—du(t+r)]

(t+r) (29

Now, comparing (29) and (19) necessarily, in the
open-loop system

wi = Bo {28

ou

(t+s)+a—du(t+s)
J#i J

(30)

Thus (iii) is fulfilled, and from the structure of
(30) it is obvious that

dw; A w; A dyi(t + Sl) =0.
So, also (iv) is fulfilled.

Ezample 7. Consider the i/o difference equations

yi(t+2) = yi(t+1)
— w1 (t)y1 (t)y=(t) (31)
Y2t +2) = y2(t + D)ya(t)
+ ya(t + Dus(t + 1) — 3 (t)ua(t)
Compute

wi(t+1) = u(t+ 1y (t + 1)dya(t + 1)
+ yi(t + Dy2(t + 1)duy (t + 1) (32)

The conditions of Theorem 6 are satisfied for (31)
and (32) and integrating the one forms

wi(t+1) + wi(t+ Dy2(t + Ddys (t+ 1)
wo(t +1) + ua(t+ 1)dya(t + 1)

and shifting the result backwards we get

vi(t) = ui(t)y1(t)y2(t)
v2(t) = ya(t)ua(t).

Note that the classical state space realization of
(31) is (18) and that the i/o decoupling output
feedbacks coincide for (31) and (18).

4. CONCLUSIONS

A disadvantage of the known solution to the i/o
decoupling problem is that one has to measure
the whole state in general, but in many industrial
applications this is impossible. Therefore, it is nat-
ural to pose the problem of what can be achieved,



if the control law may depend only on the outputs.
The necessary and sufficient solvability conditions
are given both in cases if the system is described
by state or i/o equations.

An open problem is to extend the solution to
the case of dynamic output feedback. Further re-
search is also required to treat the i/o decoupling
problem by measured output feedback when the
measured outputs are different from the controlled
outputs. Moreover, if the system is realizable in
the state space form it would be interesting to
theoretically prove that the results in Section 2
and 3 coincide.
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