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ABSTRACT: A simple and effective fuzzy clustering approach is presented for fuzzy 
modeling from industrial data. In this approach, fuzzy clustering is implemented in two 
phases: data compression by a self-organizing network, and fuzzy partitioning via  fuzzy c-
means clustering associated with a proposed cluster validity measure. The approach is used 
to extract fuzzy models from data and find out the optimal number of fuzzy rules. The 
simulation results show that the proposed approach has good clustering performance with 
noise-contaminated data and high-dimensional industrial data.    Copyright © 2002 IFAC 
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1. INTRODUCTION 
 
Cluster analysis has been playing an important role in 
solving problems in many engineering applications, 
such as data mining, pattern recognition, image 
processing and extraction of fuzzy rules from data. The 
basic objective of cluster analysis is to partition the N 
unlabeled data points into c clusters in an optimal 
fashion. In various developed clustering algorithms, the 
fuzzy c-means (FCM) algorithm is the most commonly 
used algorithm due to its efficacy and simplicity. 
However, FCM suffers from two challenging 
problems: unknown number of clusters and noise 
contaminated data. The first is that the number c of 
clusters must be pre-defined and the resulting structure 
for the specified number of clusters is assumed to be 
the best. This is seldom the case in practice. Thus, the 
difficult problem encountered is the cluster validity 
which is required to evaluate the quality of the c-
partitions resulting from the algorithms. The second is 
that the FCM algorithm is sensitive to noise in the data. 
When noise is present in the data set, the FCM 
algorithm can give distorted results or even fail 
completely. To improve the performance of clustering, 
various clustering algorithms have been proposed for 
dealing with either unknown number of clusters or 
noise data problems. However, most of the clustering 
algorithms focusing on improving robustness or 
extending the function of FCM (Kirshnapuram and 
Keller 1993, Dave 1993, Pedrycz 1996, Nasraoui and 
Krishnapuram 1996), are computationally intensive. 
Little attention has been paid to improving the 

computational efficiency of the algorithms. In this 
paper, a hierarchical fuzzy clustering (HFC) approach 
associated with a simple and effective cluster validity 
criterion is presented. The clustering procedure is 
implemented by two hierarchically connected 
networks: a self-organizing clustering network and a 
FCM -based fuzzy clustering network. The structure of 
the hierarchical clustering network proposed in 
(Linkens & Ch en 1998) and corresponding clustering 
algorithms associated with a new cluster validity 
criterion will be presented in Section 2. In Section 3, 
the comparison among different validity indices is 
given to demonstrate the effectiveness of the proposed 
validity measure. Application to fuzzy modeling for 
material property prediction are provided in Section 4. 
Finally, concluding remarks are given in Section 5.  
 

2. HIERARCHICAL FUZZY CLUSTERING 
 
Given a set of unlabeled data X={x1, x2, …, xn}, the 
objective of fuzzy clustering is to find the best partition 
of n entities into c clusters. In contrast to most existing 
clustering algorithms which generate c clusters directly 
from raw data, the proposed approach consists of two 
hierarchical stages: generating a relatively small 
number of p<<n initial sub-clusters via a competitive 
network, and then partitioning p sub-clusters into c 
clusters by a fuzzy clustering network under the 
proposed partition validity criterion. The structure of 
the hierarchical clustering network is depicted in Fig. 
1. The procedure of the hierarchical clustering is 
discussed in the following subsections. 

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain



  

x1i

x2i

xni

Clustering
layer

Input
layer

u11

u21

ucp

.

.

.

.

.

.

.

.

.

v1

v2

vc

Competitive
layer

.

.

.

y1

y2

yp

xi

Input
layer

w11

w21

wpn

wp1

Self-organising network Fuzzy clustering  network

 
Fig.1 The structure of the hierarchical 

clustering network 
 

2.1  Data compression using self-organizing network  
 
The self-organizing network (Kohonen 1995) is 
introduced to form the first hierarchy so as to produce 
the sub-clusters based on the given data set. The 
purpose of this phase is to classify the given training 
data into a small number, say p<<n, clusters using 
competitive learning. It is known that FCM algorithms 
deal with p × n partition matrices based on raw data, 
where p is the number of clusters and n is the number 
of input vectors. In practical problems n may be 103  or 
larger, so that computation of partition matrices 
becomes overwhelming. The first hierarchy is used as a 
pre-processor to perform fuzzy classification with the 
dual objectives of providing more representative 
information and reducing the total number of training 
instances for the subsequent FCM algorithms. The 
number of clusters is determined by the classification 
stage. Since both the competitive network and FCM 
algorithm lack good noise rejection ability, a data 
density based noise-removing rule is introduced in the 
algorithms. The modified self-organizing algorithm is 
presented as follows: 
Step 1. Network initialization 
Given unlabelled data set X={x1, x2, …, xn} sR⊂ . 
Process the first input pattern x1=(x11, x21,  ... , xs1), set 
the iteratio n number l=1. Let the first weight vector be 
W1

1=x1, i.e. w xi i1
1

1= , i=1, 2, ..., n. Specify the valid 
radius δ for all neurons. Set the number of neurons 
Nt=1, and the activation number of node 1 NS1=1;  
Step 2. For the lth input, Find the node J which has the 
minimum distance to the current input pattern xl by 
D W xJ

l
l( , ) = | | ||W xJ

l
l− =min || ||

i i
l

lW x− , i=1,2,..., Nt.   

The distance is defined as  
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    If J is the winner, modify the weight vector of unit J 
to: 
   W W x WJ

l
J
l

l J
l= + −−1 α || || , where α is the learning 

rate which is determined by  
    α= α0 1/ ( )NSJ + , where α0 0 1∈[ , ] is the initial rate;  
NSJ =NSJ +1; l=l+1. 
    If creating a new unit, then the weight vector is 
given by    W xn

l
lt

= ,  Nt=Nt+1;  
    If l<n,  go to step 2, otherwise set p=Nt and go to 
next  step. 
Step  4. Output selection 
    Set Nm=max{NS1, NS2, ... , NSp} in the competitive 
layer, remove the nodes whose activation number  
NSj<rNn, where r∈(0, 1) is a constant factor, j∈{1,2,..., 
p}. Reset p=p-Nr, where Nr denotes the number of 
removed nodes. The activation value of an output node 
is defined as: yj=Wl; j=1, 2, ..., p, where Wj=(wj1, wj2, ..., 
wjn) represents the prototype of the jth fuzzy cluster in 
input-output space. 
    Obviously, the clusters with low point density (i.e. 
with low values of Ns) will be removed through step 4. 
This means that noise-corrupted points will be rejected 
in forming the sub-clusters because of their random 
distribution. The created sub-clusters will represent the 
data structure well.  
     Once the unsupervised learning is completed, a 
collection of p fuzzy clusters Y={y1, y2, ..., yp} 
represented by the p nodes in the competitive layer is 
produced. 
    Based on the p sub-clusters, the second hierarchy, 
i.e. the fuzzy clustering, involves two tasks: 1) to 
decide the optimal number c of clusters; 2) to find out 
the best partition of c clusters. The former is related to 
the cluster validity problem and the latter refers to the 
fuzzy clustering problem. We will discuss these 
problems in the following two subsections.  
 
2.2 Cluster Validity 
 
The problem of partition validation is to find the best 
number of clusters under certain cluster validity 
criterion. It is noted that in the case of rule extraction 
from data, an effective partition in input-output space 
can lead to reducing the number of rules and thus 
improving the computational efficiency and 
interpretability of the fuzzy model. Numerous 
clustering algorithms have been developed. The mo st 
widely used algorithm is the fuzzy c-means (FCM) due 
to its efficacy and simplicity. However, the number c  
of clusters is required to be pre-determined. The FCM 
algorithm partitions a collection of n data points 
(X={x1, x2, …, xn}) into c fuzzy clusters such that the 
following objective function is minimized.  
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Since Jm monotonically decreases with c, an efficient 
criterion for evaluating the performance is required. 
Many cluster-validity criteria have been proposed to 
measure the effectiveness of the clustering. The first 
fuzzy cluster-validity criteria associated with the FCM 
introduced by Bezdek are the partition coefficient (PC) 
and the partition entropy (PE) (Bezdek 1974, 1981). 
Their main advantage is their simplicity but the main 
disadvantage is their monotonic evolution tendency 
with respect to c. Fukayama & Sugeno (1993) and Xie 
& Beni (1992) have introduced new fuzzy validity 
criteria for evaluating fuzzy c-partitions, which are 
commonly used as fuzzy cluster validity measures. 
They combine, with a unique function, the properties 
of the fuzzy membership degrees and the structure of 
the data. These criteria provide useful tools for cluster 
validation, each of which has developed its own set of 
partially successful validation schemes although they 
would lose their ability to validate partitions from FCM 
for large m. In this study, a simple and effective 
alternative fuzzy partition measure is proposed as a 
cluster validity criterion associated with the FCM 
algorithm, which is defined as follows: 
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 It can be seen that the cluster validity measure Vp is 
composed of two items. The first item reflects the 
compactness within a cluster. The closer the kth pattern 
xk is to a fuzzy cluster centre, the closer the maximum 
membership degrees max(uik) is to the value 1. Hence, 
the fuzzy set ma x(u ik) is considered as a good indicator 
of the clustering quality for each pattern xk. This 
quality indicates how closely the objects are assigned 
to the fuzzy cluster centres. Thus, a large value of the 
first item indicates the data patterns are well classified. 
On the other hand, the second item indicates that the 
separation between clusters. Here, the intersection of 
two fuzzy sets is used to evaluate a fuzzy separation 
between clusters vi and vj. In fact, if xk is close to the 
fuzzy cluster centre of vi, min(uik, ujk) comes close to 0, 
and consequently the fuzzy sets Ui and Uj are clearly 

separated. On the other hand, if min(uik, ujk) is close to 
1/c, xk belongs to all clusters with equal value and the 
fuzziest separation is obtained. The new validity Vp 
criterion combines information about fuzzy 
compactness and separation. It tends to indicate a good 
cohesion within clusters and a small overlap between 
pairs of clusters. It is worth noting that the proposed 
index Vp is computationally simple as it involves only 
maximum and minimum values of the partition matrix 
U. In contrast to the indexes PC and PE, Vp is 
independent of c, which can be seen in its limiting 
behavior. 
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It is clear that the Vp overcomes the main shortcoming 
of PC and PE, wh ich have monotonic evolution 
tendency with respect to c.  However, as the value of 
Vp converge to a constant when the fuzzy exponent m is 
very close to one or very large (towards infinity), it 
would lose its ability to discriminate between various 
values of c.  According to experimental results, the 
proposed validity index Vp works very well in the range 
of m ∈ [1.5, 5]. Fortunately, the values of m<5 are very 
usual in practice, and m=2 is so far the most common 
choice.  
 
2.3 Fuzzy clustering procedure 
 
FCM clustering is performed via a clustering network 
as shown in Fig. 1. It is noted that the training data of 
the FCM clustering are prototypes of the p sub-clusters 
generated by the self-organizing network instead of the 
raw data set if the number of raw data is very large. 
The clustering network based on a FCM algorithm 
attempts to classify the given set of data points into a 
certain number of clusters by searching for local 
minima of Jm. The procedure of the fuzzy clustering 
algorithm associated with the validity measure (2) is 
carried out through an iterative optimization of Jm 
according to the following steps: 
Step 1. Choose the maximum cluster number cmax, 
iteration limit T, weighting exponent m, and 
termination criterion ε>0.   
Step 2.  With c=2, 3, ..., cmax;  initialize the position of 
cluster centres:V0=(v10, v20, ..., vc0);  
Step 3 . With the iteration number t=1,2,...,T;   
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If ||Vt−Vt-1||<ε, go to next step, otherwise repeat step 3. 
Step 4. Calculate Vp(c) by (2); if c<cmax, repeat from 
Step 2.  Otherwise, stop the program and set the 
optimal cluster number c=cm, where c m meets the 
following condition: 

Vp(cm )=max{Vp(c )}, c=2, 3, ..., cmax; 
Based on cluster validation, both the number of rules 

and the prototypes of the clusters vj=(vj1, vj2, ..., vjs, 
vj,s+1) can be obtained, where j=1, 2, ..., c.  
    It is easy to see that the computational complexity of 
the FCM algorithm in the second level of the hierarchy, 
in which the main computations are related to 
calculating uik  and vi represented by Eq. (3) and (4), is 
higher than that of the self-organizing network in the 
first level of the hierarchy, in which the most complex 
computation is just related to distance calculation. 
Suppose t* is the number of iterations for termination. 
In FCM algorithms, its complexity corresponding to 
uik  computation is O(t*n), where n is the number of 
data points, while in HFC algorithms the computational 
complexity related to uik  is O(t*p) because all 
computations are based on the p representative 
prototype points instead of n data points, (heuristically, 

n p≤ <<n). Thus, the computational cost in the HFC 
algorithms is decreased drastically. 
 

3. COMPARISON OF DIFFERENT CLUSTER 
VALIDITY INDICES 

 
To demonstrate the effectiveness of the proposed 
clustering approach, we compared the clustering 
performance associated with different validity criteria 
to the proposed clustering approach.  
   To test the performance of different validity criteria, 
400 data points consisting of four Gaussian clusters 
with 100 points per cluster, were generated as shown in 
Fig.2(a). Five validity indexes: Partition Entropy PE, 
Partition Coefficient PC, Xie-Beni validity index VXB, 
Fukayama-Sugeno index VFS and the proposed validity 
index Vp were used to partition the given data set. 
Table 1 displays the validation results of the five 
cluster validity indexes for c=2 to 10 with different 
values of the fuzzy exponent m, which is considered to 
influence the validation.  The highlighted cell values in  
the table refer to the optima detected by the 
corresponding indexes. It can be seen that all indexes 
point to the correct choice c=4 when m=2.  As the 
value of  m  increased to 5,  only the proposed index Vp 

 
 
 
 
 
 
 
 
 
 
       (a)         (b) 

Fig. 2.  Four Gaussian clusters. 
(a) without noise data; (b) with 200 noise data 

 
Table 1.  Comparis on of clustering results for different 

partition validity  (without noise data) 
Index PE PC VXB VFS Vp 

m=1.4 
C=2 0.033 0.988 0.266 -0.613 0.988 
C=3 0.060 0.975 0.321 -0.979 0.980 
C=4 0.028 0.987 0.082 -1.585 0.991 
C=5 0.074 0.960 0.179 -1.585 0.972 
C=6 0.091 0.951 0.179 -1.592 0.965 
C=7 0.157 0.911 0.297 -1.562 0.936 
C=8 0.205 0.883 0.241 -1.562 0.918 
C=9 0.213 0.882 0.154 -1.581 0.916 

C=10 0.244 0.865 0.172 -1.570 0.909 
m=2 

C=2 0.310 0.830 0.240 -0.451 0.806 
C=3 0.339 0.833 0.146 -1.048 0.860 
C=4 0.302 0.858 0.070 -1.395 0.897 
C=5 0.439 0.789 0.161 -1.293 0.844 
C=6 0.581 0.711 0.185 -1.191 0.781 
C=7 0.657 0.686 0.142 -1.144 0.767 
C=8 0.747 0.642 0.150 -1.094 0.733 
C=9 0.784 0.631 0.131 -1.075 0.727 

C=10 0.846 0.611 0.101 -1.044 0.715 
m=5 

C=2 0.693 0.500 3.300 0.111 0.005 
C=3 0.993 0.408 0.011 -0.070 0.313 
C=4 1.236 0.336 0.004 -0.058 0.323 
C=5 1.569 0.216 0.046 -0.001 0.110 
C=6 1.786 0.169 0.026 0.001 0.042 
C=7 1.934 0.147 0.006 0.0005 0.049 
C=8 2.074 0.126 0.013 0.0004 0.031 
C=9 2.191 0.113 0.003 0.0002 0.031 

C=10 2.291 0.102 0.005 0.0001 0.035 
 

selected the correct number of clusters while all others 
failed. When the value of m was decreased to 1.4, PC  
and VFS were out of working order. Fig.2(b) shows the 
four Gaussian clusters contaminated by 200 randomly 
distributed noise data. The cluster validation results for 
the five validity indexes are listed in Table 2. It is seen 
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that all validity indexes except the proposed validity 
index Vp, failed to find the correct number c=4 when  
much noise is present in the data. It is clear that the 
proposed validity measure is more robust to random 
noise. 
 

Table 2.  Comparison of Clustering performance for 
different partition validity (with 200 noise data) 
m=2 PE PC VXB VFS Vp 
C=2 0.365 0.779 0.407 -0.021 0.711 
C=3 0.495 0.733 0.296 -0.624 0.745 
C=4 0.534 0.731 0.203 -1.003 0.771 
C=5 0.673 0.670 0.347 -0.956 0.727 
C=6 0.715 0.666 0.259 -1.080 0.736 
C=7 0.807 0.635 0.179 -1.044 0.720 
C=8 0.922 0.582 0.301 -0.963 0.677 
C=9 0.955 0.575 0.338 -1.034 0.673 
C=10 1.036 0.541 0.301 -0.970 0.645 

 
4. FUZZY MODELING FOR MATERIAL 

PROPERTY PREDICTION 
 
The problem in modeling the properties of hot-rolled 
alloy steels can be broadly stated as: given a certain 
material which undergoes a specified set of 
manufacturing processes, what are the final properties 
of this material? Typical final mechanical properties in 
which we are interested are strength and toughness. In 
this study, the hierarchical clustering approach was 
applied to extract fuzzy rule-based models from 
industrial data for tensile strength prediction of heat-
treated structural steels. Based on a collection of N 
input/output data points P(x, y), a number of p clusters 
can be generated using the proposed clustering 
approach. Each cluster center ci (i=1,2,…,p) is in 
essence a prototypical data point that exemplifies a 
characteristic input/output behavior of the system we 
wish to model. Hence each cluster center can be used 
as the basis of a rule that describes the system 
behavior. Each vector ci can be decomposed into two 

component vectors: ci=( xi
*

 yi
*), where 

xi
* =( x x xi i in1 2

* * *, , ,L ). Thus, each cluster center can be 
viewed as a fuzzy rule that describes the system’s local 
behavior. Intuitively, cluster center ci represents the 
rule "IF input is around xi

*  THEN output is around 

yi
*". Hence, the fuzzy rule-base consisting of p rules is 

created by the fuzzy clustering. The deviation 
parameter of cluster i, σi=σji, can be decided by using 
the average distance to the nearest m-cluster centers:  

    σi=(
j

m

=1
Σ ||ci−cj||/m)1/2          (9) 

where cj is the centre of the jth cluster near to the 
cluster i. The obtained p prototypes can be used to 
construct the parameters of the fuzzy rule -base. 

Therefore, the rule -base which is composed of p fuzzy 
rules can be represented as 
Rj: If x1 is Aj1 and x2 is Aj2 ... and xn  is Ajn  Then  y is zj  
where Rj denotes the jth rule, j=1,2,..., p; Aji is the 
fuzzy set defined by the Gaussian membership 
function; zj is the jth rule output with respect to the 
fuzzy model. All model parameters can be optimized 
by gradient-descent based learning algorithm.  
    Using the clustering-based fuzzy modeling 
approach, we have developed Tensile Strength (TS) 
prediction models for heat-treated structural steels. 
3804 industrial data from carbon-manganese-nickel 
alloyed steels have been used to train and test the fuzzy 
model, which relates the chemical compositions and 
process conditions to the mechanical properties. Nine 
inputs (C, Si, Mn, Ni, Cr, Mo, V, Gauge and 
Tempering Temperature) were selected from the 19 
possible input variables. To determine the number of 
fuzzy rules, the proposed fuzzy clustering method was 
applied to find out the data structure and the optimal 
number of clusters. Different cluster validity measures 
have been used on this data set for comparison and the 
corresponding clustering results are listed in Table 3. It 
can be seen that PE and PC tend to the maximum and 
minimum number of clusters, i.e. c=2 and c=10, while 
VFS chooses c=9. Only VXB and the proposed index Vp 
select c=5, which is consistent with expert 
recommendation and experimental results. It is shown 
that the Vp is quite reliable on high dimensional data. 
 

Table 3. Clustering results for industrial data 
m=2 PE PC VXB VFS Vp 
C=2 0.691 0.500 23.545 0.110 0.006 
C=3 0.734 0.334 10.027 0.073 0.012 
C=4 0.698 0.250 8.262 0.055 0.011 
C=5 0.662 0.330 0.598 0.015 0.340 
C=6 0.609 0.167 17.354 0.037 0.011 
C=7 0.569 0.143 12.706 0.031 0.009 
C=8 0.536 0.125 23.550 0.027 0.010 
C=9 0.647 0.189 1.465 0.006 0.214 

C=10 0.476 0.100 9.306 0.022 0.008 
 
After rule -base generation and parameter learning, a 5-
rule fuzzy model was obtained. The distribution of the 
membership functions for each input variable is 
represented in Fig.3. It is worth noting that the obtained 
fuzzy rule -based model reveals relationships between 
composition-process condition and tensile strength, 
which are consistent with metallurgical knowledge. 
The modeling result with RMSE (Root-Mean-Square-
Error)=40.72 and 43.29 for training (1902 data) and 
testing (1902 data) respectively, is shown in Fig. 4. It 
can be been that the final fuzzy model has a simple 
structure and satisfactory accuracy with good 
interpretability.  
 



  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3  Fuzzy model for Tensile Strength prediction 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4  Model predicted TS versus measured TS 
 

5. CONCLUDING REMARKS 
 
A hierarchical fuzzy clustering approach associated 
with a cluster validity criterion has been proposed. This 
approach deals with both fuzzy clustering and cluster 
validity problems in a unified framework. The 
proposed fuzzy cluster validity index measures both 
compactness and separation of fuzzy c-partitions. 
Compared with several commonly used cluster validity 
indexes, the proposed validity criterion performs better 
in selecting the optimal number of clusters in a noisy 
environment. As the proposed validity measure is 
simply a function of the fuzzy partition matrix U, it is 
computationally simple but effective only in a limited 
range of m value (1.5 ≤ m ≤ 5). Since the sub-clusters 
(with much smaller number than the original data) 
generated by the self-organizing network provide more 
dense and representative information for the fuzzy 
clustering process, the computing burden of the 
subsequent fuzzy clustering is reduced dramatically, 
especially in the situation of a large number of data. 
Also, the performance of fuzzy clustering with noise-
contaminated data is improved due to the self-
organizing network. This approach has been 
successfully used in alloy material property prediction. 
This  is also a fast way to generate fuzzy models based 
on fuzzy clustering techniques.  
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