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Abstract: On the base of the least-squares technique the universal method of 
regularized identification is developed. For any given input and output in the 
presence of the worst-case bounded noise it provides the convergent parameter 
estimate when the order of stable model is increased. This implies that even in the 
case when available information is not sufficient to identify the system it is possible 
to evaluate an approximate model using the approach offered in the paper. The 
recurrent form of regularized least-squares algorithm with adaptive regularization 
depending on incoming data is constructed. Copyright © 2002 IFAC 
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1. INTRODUCTION 

 
The least-squares (LS) algorithm is one of the most 
widely used algorithms in identification problems. It 
injoys optimal estimate in the class of linear unbiased 
estimates and converges under stochastic 
assumptions about exogenous noise (Hyotyniemi, 
1996; Ljung, 1987). The classic question concerning 
singular matrix inversion also is successfully solved 
using ridge estimates, truncated estimates, principal 
component regression, Marquardt estimates etc. 
 
While solving the LS identification problem under 
the worst-case noise there are new problems. By 
Akcay and Khargonekar (1993) it is shown that this 
method robustly converges for estimating of the 
finite impulse response (FIR) models of systems. The 
result which demonstrates a divergence of LS ∞H -
identification of the infinite impulse response (IIR) 
models under the bounded noise, was obtained by 
Akcay and Hjalmarson (1994). In other words it is 
impossible to use LS identification for IIR-models, 
as the problem is ill-posed irrespective of its matrix 
conditionality. By Gubarev and Panova (1999) the 
regularized LS transfer function estimate of the FIR 
systems was offered. It eliminates ill-conditionality 

and ∞H -converges as the order of the stable system 
is increased, in the presence of the worst-case noise 
for pseudo-random binary (PRB) input. 
 
In the present paper on the base of the LS technique 
the universal regularized method of identification is 
developed. It provides the convergent worst-case 
error of the transfer function when passaging to 
approximated IIR-model for any given input 
sequence including not enough informative. The 
main idea of proposed regularization method is 
similar to stable summation of Fourier series where 
the coefficients are summarized with the specially 
selected weights. It provides both convergence and 
matrix invertibility for any input signal. Structure of 
regularizing matrix and constraints to be satisfied in 
order to guarantee the convergence of identification 
algorithm are obtained in section 2.1. In sections 2.2 
and 2.3 some specific algorithms addressed to certain 
class of systems are constructed and convergence 
condition are obtained. 
 
Section 3 contains a recurrent form of one algorithm 
under consideration. The worth and distinction of the 
suggested recurrent algorithm consist in its ability to 
refine a current estimate by selecting the optimal 
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regularization parameter for new recurring step. The 
results of computational experiment with proposed 
recurrent algorithm are given in section 4. 
 
 

2. IDENTIFICATION PROBLEM 
 
We will consider a SISO BIBO linear time invariant 
discrete system 
 
 iii vuqGy += ),( θ , (1) 
 
where the transfer function ),( θqG  is the function of 

unit delay operator 1−q  and parameter vector θ , iy  
is the output, iu  is the input, iv  is a bounded 
disturbance 

 ε≤iv , i∀ . (2) 
 
We will consider nonparametric identification of 
stable plants (1) decomposable in series 
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where { }kg  are unknown parameters. To estimate 
them we will approximate a system (1) by FIR model 
with finite order n  and will pass to limit as ∞→n . 
Then for [ ] 1

10 ,,, +ℜ∈= n
nn ggg Kθ  we have 
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where ju , Nnj += ,,1K . For a solvability of (4) 
there must be at least nN >  and informative input 
sequence. Then the LS estimate is 
 

 NNN SRθ 1ˆ −= . (5) 
 

where N
T
NNN FFR 1= , N

T
NNN YFS 1= . Here NF  is 

the ( )1+× nN  matrix composed of inputs =T
NF  

[ ]NUU ,,1 K= , [ ]ini
T
i uu ,,K+=U , vector N

N ℜ∈Y  

is composed of outputs [ ]Nnn
T
N yy ++= ,,1 KY . If the 

input is informative the matrix NR  is invertible and 
solution (5) exists and is unique. 
 
The identification algorithm with the performance 
measured by the worst-case identification error 

∞≤
−=

∞

GGe N
v

N
ˆsup

ε
 is convergent if 

 
 0limlimlim

0
=

∞→→∞→ NNn
e

ε
. (6) 

 

Here ( )ω
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= max  denotes the uniform 

norm for the discrete-time transfer function G .  
 
 

2. GENERALIZED ESTIMATES 
 
The ill-posedness of the problem (4) under the 

condition (3) is irrespective to properties of matrix 

NR  and is caused by worst-case noise )(tv . Matrix 

NR  may be also ill-conditioned or singular because 
of noninformative input sequence: due to shortage of 
data or if the input sequence is not permanently 
exciting. Therefore it is desirable to construct the 
estimates which ensure both ∞H -convergence of 
algorithm as ∞→n  and invertibility of improved 
matrix NR . 
 
 
2.1. General case 
 
It is offered in order to ensure both ∞H -convergence 
and invertibility to multiply an estimate (5) by matrix 
C  and like in ridge-estimates instead of NR  to 

invert matrix KRR += NN
~  where K  provides 

well-conditionality. Then a general class of universal 
linear estimates is 
 

 NNN SRCθ 1~ˆ −= . (7) 
 
For new estimate (7) let's write down a function 
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where ( ) ( )nNnN
n
NG θθWθ −= ˆˆ~ , ( )ωω jnj

n ee −−= K1W . 

As convergence of n
Ne  is followed by convergence 

of Ne  for all proposed algorithms bound of error n
Ne  

instead of bound of error Ne  will be calculated. 
 
Theorem 1. Let the true system be an n -th order FIR 
system, C  is an ( ) ( )11 +×+ nn  arbitrary nonsingular 
matrix, and K  is an ( ) ( )11 +×+ nn  arbitrary positive 

definite matrix guaranteeing invertibility of NR~ . 
Then worst-case identification error (8) of algorithm 
(7) is bounded as 
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E  is ( ) ( )11 +×+ nn  identity matrix. 
 
Proof. Consider the parameter estimation error 
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where N
T
NNNnG VFRCW 11

1
~ −= , ( ) nnG θCEW −−=2 , 

nNnG KθRCW 1
3

~ −−= . Let us estimate separately the 

∞H -norms of 1G , 2G  and 3G . 
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Denote NNN FKF 211 −= . 21−K  exists since matrix 

K  is square, symmetric and positive definite. So 
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where it was taken in account that 
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Here the inequality ( ) 1
2

1
≤+

−EFF N
T
N  was used. 

As ε
ε
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2
sup N
v

V  we come to the final result. ▲ 

 
The estimate (9) does not depend on number of data 
N  and holds true as ∞→N . Each of its terms must 
be restricted as ∞→n . For the first term it is enough 
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Let's consider an asymptotic behavior of 2M  
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So ( )11 OM =  is followed by ( )12 OM = . For stable 

plants ∞<=∑
∞

=0
1

k
kgθ  and therefore the second 

term is restricted as ∞→n . ( )11 O=θ  as ∞→n  

is followed by ( )12 O=θ . As to the third term one 
must require  
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Finally we have ∞H -convergence conditions for 
stable plants 
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Sequence ( )∑
=
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0
C  must be square summable, 

for example 
( )α+−= 5,0jc j , α>0; j

jc ρ= , 0<ρ<1. 

The diagonal matrix { }11 ,,2,1,1 −−= nKdiagC  meets 
the given requirements. The second and third terms 
of (19) can be fulfilled with matrix EK k=  by 
means of fitting scalar coefficient 0>k . 
 
 
2.2. Nonsingular case 
 
Let us consider a typical case when the finite 
problem (4) is well-posed. Then for existent matrix 

1−
NR  we’ll define the class of regularized estimates 

 

 NNN SCRθ 1ˆ −= . (20) 
 
Theorem 2. Let the true system be an n -th order FIR 
system, C  is an ( ) ( )11 +×+ nn  arbitrary nonsingular 
matrix. Then worst-case error of the identification 
algorithm (20) is bounded as 
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Proof. The error of the transfer function estimate is 
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The bound of 

∞2G  coincides with (14). As far as 
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Each term of (21) must be restricted as ∞→n . For 
any fixed n  and bounded input the convergence is 
ensured if 
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where 0>a  depends on n  in general. Then the 
finiteness of the first term is achieved when 
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The second term converges if ( )12 OM =  and matrix 
C  is selected like in algorithm (7). So for ∞H -
convergence of the algorithm (20) it is required 
 

 ( )1Oa = , ( )11 OM = , ( )12 OM =  as ∞→n . (26) 
 
 
2.3. ∞H - convergent ridge estimates 
 
Let's assume that in the estimate (7) C  is identity 
matrix and define the conditions which guarantee the 

∞H -convergence and correctness when data is not 
completely informative. In this case (7) is reduced to 
 

 NNN SRθ 1~ˆ −= . (27) 
 
For stable plants the ∞H -convergence condition for 
(27) can be obtained as a corollary of the theorem 1. 
 
Corollary 1. Let the true system be an n -th order 
FIR system, K  is an ( ) ( )11 +×+ nn  arbitrary positive 
semidefinite matrix that provides the invertibility of 

NR~ . Then for any 0>ε  the worst-case 
identification error of algorithm (27) is bounded as  
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and ∞H -converges as ∞→n  if it is fulfilled 
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The first term in (30) means that matrix 21−K  is 
similar to the matrix C  from (7) and (20) and meets 
the same requirement. For diagonal matrix 

{ }nkkk ,,, 10 Kdiag=K , 0>ik  it is enough to put 

( )jok j = , ∞→j , for example α+= 1jk j , α>0; or 
j

jk −= ρ , 0<ρ<1. The second term in (30) restricts 
the class of identifiable systems up to the systems 
with bounded weighted norm 
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So if α+= 1jk j , 10 << α , j∀  then method (27) is 

admissible for strictly stable plants: ∞<∑
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3. RECURRENT LS ALGORITHM (RLSA) WITH 

ADAPTIVE REGULARIZATION 
 
There are recurrent forms of regularized LS 
algorithms (see e.g. Arnold, 1972) but they don't 
adapt regularization parameters to entry of new data. 
In this section a generalized RLSA with adaptive to 
incoming data regularization is described. Let us 
consider the following estimate  
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Proof. Let's divide matrix NF  and vector NY  as 
follows 
 

 [ ]N
T
N

T
N xFF M1−= , [ ]N

T
N

T
N yM1−= YY , (37) 

 

where 1−NF  is ( ) ( )11 +×− nN  matrix, 1+ℜ∈ n
Nx , 

1
1

−
− ℜ∈ N

NY . Then the matrix 1−
NP  may be written as 

 

 
( )
.1

1

1
1

1
1

ΞxxP

ΞxxPP

N
T
NNN

NN
T
NNNN

δ

δδ

∆++

=−++=

−
−

−
−

−
−

 

 
Hence, we have 
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Theorem 3. The vector ( ){ 2minargˆ θFYθ NNN −=
θ

δ  

}ΞθθT
Nδ+  and matrix NP  obey the recurrences 
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Proof. Diagonal matrix Ξ  may be represented as a 
sum of vector products 
 

 ∑
=

=
n

m
m

T
mm

0
IIΞ ξ . (41) 
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inversion lemma 
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Then we calculate 
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and substitute (46) and (42) in (35). ▲ 
 

Complete recurrence of matrix NP  can be written as 
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The expression (47) shows that the revising of the 
regularization parameter Nδ  when N  increases has 
resulted in complication of recurrent algorithm. If 

1−= NN δδ  and 1,1 −− = NnN PP  the standard RLSA 
with regularization (Arnold, 1972) is obtained. The 
offered recurrent procedure on step N  contains 

2+n  identical embedded procedures. For diagonal 
matrix Ξ  owing to expansion (41) it is possible to 
reduce computational burden up to ( )21+n  

operations. For comparison ( )31+n  operations are 
required in nonrecurrent algorithm. 
 
The parameter Nδ  is sensitive to data entry only 
when we have a shortage of them. When available 
data approach to informative ones the regularization 
parameter Nδ  varies slowly and asymptotically 
verges towards steady-state value. Then standard 
RLSA can be used. It is the way to spare 
computational resource at the large N  and to obtain 
good enough estimates at small N . 
 
When first 1+n  inputs are accumulated and 
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parameter vector δ
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the following theorem. 
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The matrix NP  for all N  is symmetric and positive 
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The additional term 00

1

1
θ̂ΞΞxx δδ
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
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
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distinguishes the obtained recurrent estimate δ
Nθ̂  

from a nonrecurrent one. It is recommended to select 
small 0δ  and arbitrary 0θ̂  with small norm or to 

select 0θ̂ =0. 
 
 

4. EXAMPLE 
 
The method of section 3 was computationally tested. 
The estimation errors of regularized RLSA with 
constant and varying regularization parameter were 
compared. The table 1 holds the outcome of such 
experiment. The model of second order 

( ) ( )( )6.09.0
4737.08.0
−−

+=
zz

zzG  is selected. The first 1+n  

=81 coefficients of expansion in series (3) were 
evaluated by standard regularized RLSA and by 
proposed regularized RLSA for optimal and 
quasioptimal regularization parameters (Tichonov 
and Arsenin, 1977) and for quasioptimal stabilizer 

8.0=β  (Gubarev and Panova, 1999). The noise 

ii yv sign⋅= ε , Nnnni +++= ,,2,1 K , 5.0=ε , 
pseudorandom binary inputs of degree 8=p  and the 
measuring data are used. For sequence N = 50, 60, 
70, 80 the Euclidean norms of parameter estimation 
errors N

N
δθ̂  at varying regularization parameter and 

δ
Nθ̂  at constant one are obtained 

 

2
0

ˆmax)( nN
NN θθ −= δσ , 

2
1

ˆmax)( nNN θθ −= δσ .(53) 

 
The tables show that optimal parameter oδ  
diminishes when data renew. The optimal parameter 

oδ  is properly approximated by quasioptimal 
parameter q.oδ . Hence having selected a fixed 
parameter δ  (even quasioptimal) for initial 0NN =  
the subsequent comes out worth than for algorithm 
(32). The proposed adaptive algorithm yields in 
experiments tenfold decrease of the estimation error 
in comparison with standard regularized RLSA. 
 

 Table 1. )(0 Nσ  for q.oδ , oδ  and )(1 Nσ  for 
753 10,10,10 −−−=δ  

 
 N=50 N=60 N=70 N=80 

310−=δ  0.743 0.645 0.616 0.577 
510−=δ  0.828 0.608 0.536 0.532 
710−=δ  1.088 0.795 0.608 0.564 

q.oδ  0.828 0.608 0.550 0.516 

oδ  0.743 0.602 0.536 0.516 
 

 Table 2. q.oδ  and oδ  for N=50,60,70,80 
 
 N=50 N=60 N=70 N=80 

q.oδlg  -5 -5 -6 -6 

oδlg  -3 -4 -5 -6 
 
 
 

5. CONCLUSION 
 
In the present paper using regularization methods the 
generalized LS algorithms are obtained and their 
properties are investigated. It was shown how the LS 
technique should be generally modified in order that 
the approximate IIR-models may be identified even 
in the case of data lack and in addition ∞H -
convergence under bounded unknown noise should 
be provided. Regularized recurrent identification 
with adaptive regularization parameter is apparently 
general and effective method which is indifferent to 
whether the problem under consideration is well-
posed or not. Automatically we obtain trivial 
regularization parameter when available information 
provides correctness of the problem setting. 
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