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Abstract: This paper deals with the discrete-time H∞ fixed-lag smoothing problem. Con-
ventionally, this problem is solved by reducing it to a standard H∞ filtering problem for
a higher order system that includes not only the actual system dynamics but also the delay
caused by the smoothing lag. As the smoothing lag gets larger, such an approach may
suffer from computational problems, especially due to the fact that a high dimensional
Discrete Algebraic Riccati Equation (DARE) is to be solved. To overcome this disadvan-
tage, in this paper, a new solution to this problem is derived in terms of one DARE of the
same dimensions as the actual system dynamics. Copyright c© 2002 IFAC
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1 INTRODUCTION

In this paper, the problem of the discrete-time
fixed-lag smoothing over an infinite horizon is
studied. The problem is to estimate, on the basis
of measurements available up to time k, a linear
combination of the system states at time k− r, for
a given r > 0, so called the smoothing lag. This
problem appears in many signal processing and
communication applications, where a certain de-
lay in the estimate is allowed in order to achieve
more accurate results.

Various solutions to this problem are available in
the literature, both in the context of the H2 and
the H∞ optimizations. Yet, while the solution and
the properties of the H2 - optimal smoothers are
well understood (Anderson and Moore, 1979),
the case of designing smoothers to achieve an
estimation error less than a required level (i.e.,
the H∞ optimization) is still under investiga-
tion. Various methods have been used to find
a solution to this latter problem: Grimble (1991,
1996) solved the problem by using the poly-
nomial H2 embedding approach, Theodor and
Shaked (1994) dealt with the time-varying finite-
horizon case using game theory methods, while
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in (Zhang et al., 2000) the Krein space polynomial
approach has been used. The main idea in all
these works is to incorporate the delay resulting
from the smoothing lag into the transfer function
of the process. This reduces the smoothing prob-
lem to a filtering one which, in turn, can be solved
using known methods. However, in all these ap-
proaches, the dimension of the equivalent filter-
ing problem to be solved increases rapidly as the
smoothing lag gets larger. This may lead to com-
putational burden and may induce errors in the
computation of the smoother. In addition, the
structure of the problem is lost and the affect of
the lag on the final solution is not clear.

In this respect, (Colaneri et al., 1998) have devel-
oped a solution to the H∞ discrete-time fixed-
lag smoothing problem without making any ficti-
tious augmentation of the state space dimension,
by using the J-spectral factorization approach.
This solution, however, requires three discrete al-
gebraic Riccati equations (DARE’s) and two itera-
tive procedures that eliminate the non-minimum
phase and the infinite zeros from the J-spectral
factor. Consequently, it may suffer the same com-
putational problems as the afore mentioned solu-
tions.

In this paper a different approach is used. It
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is also based on the solution to the H∞ filter-
ing problem. However, the solution is given in
terms of one H∞ DARE of the same dimension
as the original process dynamics — the same H∞

DARE that has to be solved in the filtering prob-
lem. By using this solution, the amount of com-
putations required to solve this problem is con-
siderably reduced and more accurate solutions
can be obtained. Furthermore, the effect of the
smoothing lag on the solution can be traced back.

The paper is organized as follows. In Section 2
some preliminary results on the discrete algebraic
Riccati equation are collected. In Section 3 the
discrete-time H∞ fixed-lag smoothing problem is
formulated and solved. Finally, some concluding
remarks are presented in Section 4.

The notation throughout the paper is fairly stan-
dard. M ′ means the transpose of a matrix M.
σ(M) is the spectrum of a square matrix M. As
usual, D denotes the open unit disk and Rn de-
notes the n-dimensional Euclidean space. The

compact block notation
[

A B

C D

]

denotes transfer

functions in the z domain in terms of their state-
space realization.

2 PRELIMINARIES

This section assembles the mathematical back-
ground required in the sequel. First, we review
some basic notions and notations concerning the
discrete algebraic Riccati equation (DARE). Then,
an important relation is established between the
stabilizing solution to the H∞ DARE associated

with the system
[ ¯�

1(z)
¯�
2(z)

]

and that of the H∞ DARE

associated with
[

z−1 ¯�
1(z)

¯�
2(z)

]

. This relation is a cru-

cial step in the derivation of the new solution to
the discrete-time H∞ fixed-lag smoothing prob-
lem.

Let J = J ′ be a square matrix of the same dimen-
sion as the input dimension of the discrete-time

LTI plant Ḡ(z) =
[

A B

C D

]

and associate with Ḡ the

following operator:

RḠ(Y)
.
= AYA ′ − Y + BJB ′ − L

(

CYC ′ + DJD ′
)

L ′,

where

L
.
= −

(

AYC ′ + BJD ′
)(

CYC ′ + DJD ′
)−1

.

The operator RḠ(Y) is said to be the discrete-time
Riccati operator and the equation

RḠ(Y) = 0 (1)

is the well known filtering DARE, and finding
its stabilizing solution is a crucial step in solving
various discrete-time control and filtering prob-
lems, such as H2 (J = I) and H∞ (J =

[

I 0

0−I

]

) op-
timizations (Chen and Francis, 1995; Zhou et al.,

1995). This equation is extensively investigated
in the literature (Lancaster and Rodman, 1995)
and the necessary and sufficient conditions for
the existence of its stabilizing solution are well
understood (Ionescu and Weiss, 1992).

The matrix Y ∈ Cn is said to be a solution to
DARE (1) if CYC ′ + DJD ′ is invertible and Y sat-
isfies (1). It is known (Van Dooren, 1981) that the
solutions to DARE (1) are strongly related to the
following generalized eigenvalue problem:

∆ − λΛ
.
=





A ′ 0 C ′

−BJB ′ I −BJD ′

DJB ′ 0 DJD ′



 − λ





I 0 0

0 A 0

0 −C 0



 ,

and can be computed directly from the deflating
subspaces of

{
Λ, ∆

}
. Indeed, DARE (1) has so-

lutions only if this pencil is regular. In this case,
in order to compute all the Y’s satisfying (1), one
just has to find vector bases of the form

[

I Y ′ L
]

′

to all the deflating subspaces of
{
Λ, ∆

}
having

the rank equal to the dimension of the main coef-
ficient A. Then, any of those Y’s is a solution to
DARE (1).

If Y = Y ′ ∈ Rn, where n
.
= dim A, is a solution to

DARE (1) and, in addition, AL
.
= A+LC is asymp-

totically stable (i.e., all the eigenvalues are inside
the unit disk), then Y is said to be a stabilizing
solution to DARE (1) and L is its associated stabi-
lizing matrix gain. It was proved in (Ionescu and
Weiss, 1992) that if the DARE (1) has a stabilizing
solution, then it is unique. The computation of
the stabilizing solution to the DARE (1) is based
on the fact that

{
Λ, ∆

}
is an extended symplec-

tic pencil (ESP). That is, it satisfies the following
three conditions:

1. det(∆ − λΛ) 6≡ 0,

2. If λ 6∈ {0, ∞} is an eigenvalue of ∆ − λΛ of
multiplicity r, then so is 1/λ,

3. If 0 is an eigenvalue of ∆ of multiplicity r,
then it is an eigenvalue of Λ of multiplicity
r + m, where m is the input dimension of Ḡ.

An ESP is said to be dichotomic if it has no eigen-
values on the unit circle. If

{
Λ, ∆

}
is dichotomic,

it has n eigenvalues inside D and n eigenvalues
outside it. Consider the n-dimensional deflating
subspace YD

{
Λ, ∆

}
corresponding to the eigen-

values inside D. Clearly,

YD

{
Λ, ∆

}
= Im





y1

y2

y3



,

where y1, y2 ∈ Rn×n, y3 ∈ Rm×n, and

∆





y1

y2

y3



 = Λ





y1

y2

y3



Ast, σ(Ast) ∈ D. (2)



A dichotomic ESP is said to be disconjugate if
the matrix y1 is non singular. If

{
Λ, ∆

}
is dis-

conjugate, it is possible to set Y = y2y−1
1 and

L ′ = y3y−1
1 . It can be proved (Van Dooren, 1981)

that the DARE (1) has a unique stabilizing solu-
tion if and only if the ESP

{
Λ, ∆

}
is disconjugate.

Moreover, in this case, Y is its unique stabilizing
solution and L is its associated stabilizing matrix
gain.

The following Lemma is crucial for the reasoning
to follow. It assumes that the H∞ DARE’s associ-
ated with the systems

[ ¯�
1 � z �

¯�
2 � z �

]

=





A B

C1 D1

C2 D2



 (3)

and
[

z−1 ¯�
1 � z �

¯�
2 � z �

]

=









A 0 B

C1 0 D1

0 I 0

C2 0 D2









(4)

have stabilizing solutions and establishes a rela-
tion between them.

Lemma 1. Let P =

[

P11 P12

P ′

12 P22

]

be the stabilizing so-

lution to the H∞ DARE associated with (4):

P =
[

A 0

C1 0

]

P
[

A ′ C ′

1
0 0

]

+
[

B

D1

]

[

B ′ D ′

1

]

−LPRPL ′

P , (5)

with

LP =
[

L11 L21

L12 L22

]

.
= −

(

[

A 0

C1 0

]

P
[

0 C ′

2
I 0

]

+
[

B

D1

]

[

0 D ′

2

]

)

R−1
P

and

RP =
[

0

D2

]

[

0 D ′

2

]

+
[

0 I

C2 0

]

P
[

0 C ′

2
I 0

]

− γ2
[

I 0

0 0

]

,

such that

|γ2I − P22| 6= 0, (6a)

and

|D2D ′

2 + C2YC ′

2| 6= 0, (6b)

where Y
.
= P11 + P12(γ2I − P22)−1P ′

12. Then,

P =
[

A

C1

]

Y
[

A ′ C ′

1

]

+
[

B

D1

]

[

B ′ D ′

1

]

−
([

B

D1

]

D ′

2 +
[

A

C1

]

YC ′

2

)

× (D2D ′

2 + C2YC ′

2)−1

×
([

B

D1

]

D ′

2 +
[

A

C1

]

YC ′

2

)

′

,

L21 = −(AYC ′

2 + BD ′

2)(C2YC ′

2 + D2D ′

2)−1,

L22 = (C1YC ′

2 + D1D ′

2)(C2YC ′

2 + D2D ′

2)−1,

and Y is the the stabilizing solution to the H∞ DARE
associated with (3):

Y = AYA ′ + BB ′ − LYRYL ′

Y , (7a)

with

LY = −
[

AYC ′

1 + BD ′

1 AYC ′

2 + BD ′

2

]

R−1
Y (7b)

and

RY =
[

D1D ′

1
+ C1YC ′

1
− γ2I D1D ′

2
+ C1YC ′

2
D2D ′

1 + C2YC ′

1 D2D ′

2 + C2YC ′

2

]

. (7c)

Proof. The proof of this Lemma is based on rela-
tion (2), written explicitly for the DARE (5), i.e.:
















A ′ C ′

1 0 0 0 C ′

2

0 0 0 0 I 0
� BB ′ � BD ′

1 I 0 0 � BD ′

2� D1B ′ � D1D ′

1 0 I 0 � D1D ′

2

0 0 0 0 � γ2I 0

D2B ′ D2D ′

1 0 0 0 D2D ′

2

































I 0

0 I

P11 P12

P ′

12 P22

L ′

11 L ′

12

L ′

21 L ′

22

















=

















I 0 0 0 0 0

0 I 0 0 0 0

0 0 A 0 0 0

0 0 C1 0 0 0

0 0 0 � I 0 0

0 0 � C2 0 0 0

































I 0

0 I

P11 P12

P ′

12 P22

L ′

11 L ′

12

L ′

21 L ′

22

















[

A11
st A12

st

A21
st A22

st

]

. (8)

From the first two block rows of this equation we
find that

Ast =

[

A ′ � C ′

2L ′

21 C ′

1
� C ′

2L ′

22

L ′

11 L ′

12

]

.

By using row 5 of (8) and by assuming that (6a)
holds true, we get

L ′

11 = (γ2I − P22)−1P ′

12(A ′ + C ′

2L ′

21)

and

L ′

12 = (γ2I − P22)−1P ′

12(C ′

1 + C ′

2L ′

22).

Hence
[

P11 P12

]

Ast = Y
[

A ′ + C ′

2L ′

21 C ′

1 + C ′

2L ′

22

]

.

The formulae of P, L21 and L2 follow then by sub-
stituting this relation into the 3rd, 4th, and the last
block rows of (8), respectively.

To prove that Y satisfies the H∞ DARE associated
with (3), consider the matrix RY in (7). This ma-
trix is invertible since (D2D ′

2 + C2YC ′

2) and its
Schur complement (P22 − γ2I) were assumed to
be non-singular. Hence, LY exists. Simple matrix
manipulations yield that

LYRYL ′

Y = P12(P22−γ2I)−1P ′

12+(AYC ′

2+BD ′

2)

× (D2D ′

2 + C2YC ′

2)−1(AYC ′

2 + BD ′

2) ′.

Add this relation to the formula of P11 in terms of
Y to get that Y is a solution to (7). The proof that
Y is the stabilizing solution to (7) follows from the
fact that the ESP’s associated with (3) and (4) have
the same eigenvalues (only the multiplicity of the
eigenvalues λ = 0, ∞ is different).



In the next section, this Lemma will be applied
recursively in order to solve the discrete-time H∞

fixed-lag smoothing problem.

3 PROBLEM FORMULATION AND
SOLUTION

The purpose of this paper is to solve the follow-
ing design problem:

SPr: Given
[ ¯�

1(z)
¯�
2(z)

]

, (3), and a positive number

γ, determine whether a strictly proper and
stable filter K̄r(z) which guarantees

||z−rḠ1(z) − K̄(z)Ḡ2(z)||∞ < γ

exists. In this case, find such a filter.

Note that SP0 is the standard a-priori filtering
problem for system (3). Its solution is well-
known (Hassibi et al., 1999):

Theorem 1. Assume that

(A1): The pair (A, C2) is detectable;

(A2): The matrix
[

A � ejθI B

C2 D2

]

is right invertible

∀θ ∈ [0, 2π).

Then, there exists a filter K̄0(z) which solves SP0 if
and only if the DARE (7) has a stabilizing solution
Y ≥ 0 such that

D1D ′

1 + C1YC ′

1 < γ2I. (9)

If so, one possible solution to SP0 is

K̄0(z) =

[

A + L2C2 −L2

C1 0

]

,

where LY
.
=

[

L1 L2

]

is the stabilizing matrix gain as-
sociated with Y.

Clearly, if the backward shift operator z−r is ab-
sorbed into the transfer matrix Ḡ1(z), SPr can be
solved by using Theorem 1, since SPr is just the
standard a-priori filtering problem for the system

[

z−rḠ1

Ḡ2

]

.
=





Ã B̃

C̃1 D̃1

C̃2 D̃2





=



























A 0 . . . . . . 0 B

C1 0 . . . . . . 0 D1

0 I
. . .

... 0

...
. . .

. . .
. . .

...
...

0 . . . 0 I 0 0

0 0 . . . 0 I 0

C2 0 . . . . . . 0 D2































� r

� 1

�

ro
w

s

. (10)

Such an approach, however, may suffer from
computational problems as the smoothing lag r

gets larger, especially due to the fact that a higher
dimensional DARE is to be solved.

Our goal is to find the solution to SPr in terms of
the parameters of Ḡ1(z) and Ḡ2(z). To this end,
we assume that the following difference Riccati
equation admits a solution:

Pj+1 = APjA
′ + BB ′ − (APjC

′

2 + BD ′

2)

× (C2PjC
′

2 + D2D ′

2)−1

× (APjC
′

2 + BD ′

2) ′, (11a)

where j = 1, . . . , r and where P1 = Y is the stabi-
lizing solution to the H∞ DARE (7). The follow-
ing expressions are also required in the sequel:

Rj+1 = APjC
′

1 + BD ′

1 − (APjC
′

2 + BD ′

2)

× (C2PjC
′

2 + D2D ′

2)−1

× (C1PjC
′

2 + D1D ′

2) ′, (11b)
Hj = −(APjC

′

2 + BD ′

2)

× (C2PjC
′

2 + D2D ′

2)−1. (11c)

We are now in the position to state the main result
of this paper.

Theorem 2. Assume that (A1), (A2) hold true and
that recursion (11) admits a solution. Then, there
exists a filter K̄r(z) which solves SPr if and only if
DARE (7) has a stabilizing solution Y such that the
matrix A + HrC2 is Schur and such that Mr < γ2I,
where

M0 = D1D ′

1 + C1YC ′

1,

M1 = M0 − (D1D ′

2 + C1YC ′

2)

(D2D ′

2 + C2YC ′

2)−1(D1D ′

2 + C1YC ′

2) ′,

M2 = M1 − R ′

2C ′

2(D2D ′

2 + C2P2C ′

2)−1C2R2,

Mj = Mj−1 − Q ′

j(D2D ′

2 + C2PjC
′

2)−1Qj, j > 2,

and where

Qj
.
= C2

j−1∏

i=2

(A + HiC2) R2 .

If so, one possible solution to SPr is

K̄r(z) = −z−r
[

A + L2,1C2 L2,1

C1 0

]

−

r∑

j=1

z−jL2,r+2−j −
[

A + L2,1C2 L2,1

C2 I

]

, (12)

where

L2,1 = Hr, (13a)
L2,2 = −(C1PrC

′

2 + D1D ′

2)

× (C2PrC
′

2 + D2D ′

2)−1, (13b)

L2,j = −S ′

j(C2PrC
′

2 + D2D ′

2)−1, (13c)



and where

Sj
.
= C2

j−1∏

i=3

(A + HiC2) Rr+3−j, j = 3, . . . , r + 1.

Proof. The first part of the proof is based on the
afore mentioned fact that SPr can be treated as a
priori filtering problem for the system (10). Thus,
we start by applying step-by-step Theorem 1 to
the system (10) and we simplify the result as
much as possible.

First, note that assumptions (A1) and (A2) in The-
orem 1 (the detectability and the absence of unit
circle zeros for Ḡ2(z)) are not affected by r since
Ḡ2(z) is common to all SPr. Then, assume for
the moment that the H∞ DARE associated with
(10) has a stabilizing solution Ỹ, denote its stabi-
lizing matrix gain by L̃

.
=

[

L̃1 L̃2

]

and let L̃2 be
of the form L̃2 =

[

L ′

2,1 L ′

2,2 . . . L ′

2,r+1

] ′. The condi-
tion Ỹ ≥ 0 is equivalent to the requirement σ(Ã +

L̃2C̃2) ∈ D (see (Hassibi et al., 1999) for a proof).
This in turn, is equivalent to σ(A + L2,1C2) ∈ D,
due to the particular forms of Ã and C̃2. It will
be shown in the sequel that L2,1 = Hr. Hence,
the condition Ỹ ≥ 0 can be replaced with the
requirement σ(A + HrC2) ∈ D which is much
easier to check. Condition (9) can also be sim-
plified. By using the particular forms of D̃1 and
C̃1 it is found that this condition is equivalent to
Ỹr+1,r+1 < γ2I, where Ỹr+1,r+1 is the last matrix
block of Ỹ. It will be shown in the sequel that
Ỹr+1,r+1 is equal to Mr. Finally, we simplify the
expression of K̄r(z). According to Theorem 1

K̄r(z) =

[

Ã + L̃2C̃2 −L̃2

C̃1 0

]

.

By substituting the particular forms of Ã, C̃1, C̃2

and the partition of L̃2 into this formula, (12) fol-
lows.

In order to complete the proof, we only have

1. to find a simpler form to the requirement
that the H∞ DARE associated with (10) has
a stabilizing solution, and

2. to calculate Ỹr+1,r+1 and L2,j, j � 1, . . . , r � 1.

This is accomplished by applying Lemma 1 recur-
sively, r times.

First, consider the case r = 1 and note that con-
dition (6b) holds true since we assumed that re-
cursion (11) admits a solution. Also note that
the solvability of SPr requires that Ỹ2,2 < γ2I.
Hence, we are interested only in the case where
|γ2I − Ỹ2,2| 6= 0. Consequently, Lemma 1 can be
applied. Under these assumptions, according to
this lemma, the H∞ DARE associated with (10)

has a stabilizing solution Ỹ if and only if so has
DARE (7). The expressions for L2,1 and L2,2 in
(13) and the fact that Ỹ2,2 = M1 (for the case
r = 1) follow directly from Lemma 1.

So far we have completed the proof for the case
r = 1 only. This was done by applying the solu-

tion for the case r = 0 to the system
[

z−1 ¯�
1 � z �

¯�
2 � z �

]

and exploiting Lemma 1 to simplify it. By apply-
ing the solution for the case r = 1 to the same
system, it is possible to find a solution to the case
r = 2. By following the same reasoning as before,
we find that Lemma 1 can be used to simplify this
solution in the same manner. By continuing this
procedure several times, the solution to the gen-
eral case presented in this theorem is proved by
induction.

Remark. It is worth mentioning that Pr is the first
matrix block of Ỹ. Since Ỹ = Ỹ ′ ≥ 0 is a necessary
condition for the solvability of SPr, so is Pr ≥ 0.

Remark. Note that the value of Mr is monotoni-
cally non increasing as a function of the smooth-
ing lag r. Thus, as expected, the smoother has the
potential to achieve a better performance level
γ than the a priori filter, and the larger is the
smoothing lag, a better estimate can be obtained.

Remark. Also note that the solution presented in
Theorem 2 is based on the assumption that the
difference Riccati equation (11) admits a solu-
tion. This condition is not necessary for the solv-
ability of SPr and represents a small disadvan-
tage of the solution presented in this paper. It is
known, (Hassibi et al., 1999), that there exist situa-
tions in which the difference Riccati equation (11)
presents a finite escape point. In those cases there
exist a certain value of r for which the H∞ DARE
associated with the system (10) does not have a
stabilizing solution. Clearly, for this certain value
of the smoothing lag, SPr has no solution. How-
ever, for larger values of r SPr might have a so-
lution and Theorem 2 can not be used to find it.
These singular cases can be circumvented by in-
troducing a small change in the required perfor-
mance level γ. By doing so the difference Riccati
equation (11) will admit a solution which, in turn,
will enable the use of Theorem 2.

4 CONCLUSIONS

In this paper, the problem of the discrete-time H∞

fixed-lag smoothing over an infinite horizon has
been studied. In contrast to other solutions avail-
able in the literature, the solution presented in
this paper is based on one DARE of the same di-
mensions as the original system dynamics. Con-
sequently, the amount of computations required
to solve this problem is considerably reduced and
more accurate solutions can be obtained.



It is worth mentioning that the solution to the
discrete-time H∞ smoothing problem is still more
complicated and less transparent than the cor-
responding continuous-time solution in (Mirkin,
2001). We believe that a more elegant discrete-
time solution exists as well. The derivation of
such a solution is the subject of the current re-
search.

REFERENCES

Anderson, B. and J. Moore (1979). Optimal Filtering,
Prentice-Hall, Englewood Cliffs, NJ.

Chen, T. and B. A. Francis (1995). Optimal Sampled-Data
Control Systems, Springer-Verlag, London.

Colaneri, P., M. Maroni, and U. Shaked (1998). “H∞

prediction and smoothing for discrete-time systems:
a j-spectral factorization approach,” in Proceedings
of the 37th IEEE Conference on Decision and Control,
Tampa, Florida USA, pp. 2836–2842.

Grimble, M. J. (1991). “H∞ fixed-lag smoothing filter
for scalar systems,” IEEE Transactions on Signal Pro-
cessing, 39, no. 9, pp. 1955–1963.

Grimble, M. J. (1996). “H∞ optimal multichannel linear
deconvolution filters, predictors and smoothers,”
International Journal of Control, 63, no. 3, pp. 519–533.

Hassibi, B., A. Sayed, and T. Kailath (1999). Indefinite
Quadratic Estimation and Control: A Unified Approach
to H2 and H∞ Theories, SIAM, Philadelphia.

Ionescu, V. and M. Weiss (1992). “On computing
the stabilizing solution of the discrete-time Riccati
equation,” Linear Algebra and its Applications, 174,
pp. 229–238.

Lancaster, P. and L. Rodman (1995). Algebraic Riccati
Equations, Clarendon Press, Oxford, UK.

Mirkin, L. (2001). “Continuous-time fixed-lag smooth-
ing in an H∞ setting,” in Proc. 40th, Orlando, FL, pp.
3512–3517.

Theodor, Y. and U. Shaked (1994). “Game theory ap-
proach to H∞-optimal discrete-time fixed-point and
fixed-lag smoothing,” IEEE Transactions on Auto-
matic Control, 39, no. 9, pp. 1944–1948.

Van Dooren, P. (1981). “A generalized eigenvalue ap-
proach for solving Riccati equations,” SIAM Jour-
nal on Scientific and Statistical Computing, 2, no. 2,
pp. 121–135.

Zhang, H., L. Xie, and Y. Soh (2000). “H∞ deconvo-
lution filtering, prediction and smoothing: A Krein
space polynomial approach,” IEEE Transactions on
Signal Processing, 48, no. 3, pp. 888–892.

Zhou, K., J. C. Doyle, and K. Glover (1995). Robust and
Optimal Control, Prentice-Hall, Englewood Cliffs, NJ.


