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Abstract: The paper addresses the problem of model-based fault detection. Synthesis
techniques for the design of fault detection filters are developed. Fault sensitivity objectives
and time-domain constraints are handled in the design procedure, while guaranteeing
robustness to noise, disturbances and modeling errors. The design method involves linear
matrix inequality (LMI) optimization techniques and the generalized structured singular
value µg. The approach is applied to a 3-Tanks system and experimental results demonstrate
the potential of the proposed method.
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1. INTRODUCTION

Fault Detection and Isolation (FDI) is an essential part
in intelligent control of dynamic systems and has been
a very active research field during the last twenty years
(see (Chen and Patton, 1999; Frank et al., 2000) for
surveys). FDI schemes may be thought of two stages:
generation of a fault accentuated signal (residual) and
evaluation of this residual, i.e. decision making. The
main objective of the FDI process is the achievement
of a low missed-alarm and a low false-alarm rates. So
robustness to all unknown inputs and modeling errors
and sensitivity to faults are required in both residual
generation and residual evaluation stages.
Recently, �∞-filtering techniques have been devel-
oped, both in FDI scenario (Edelmayer et al., 1997;
Mangoubi, 1998) and robust estimation framework
(Shaked and Theodor, 1992; Huaizhong and Minyue,
1997). The main idea consists in designing a filter
so that the filtering error remains robust against dis-
turbance and modeling errors, within a prespecified
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�∞ attenuation level. In (Chen and Patton, 1999) the
problem of maximizing sensitivity to additive faults
while guaranteeing robustness constraints, is consid-
ered within an�∞ /�� setting. The method is based
on a observer-based FDI scheme and involves LMI
(Linear Matrix Inequality) optimization techniques.
Maximizing the sensitivity to parametric faults is also
discussed in (Stoustrup and Niemann, 1999). It is
shown that the problem can be formulated into a µ
optimization problem. Unfortunately, the solution of-
ten leads to a high order filter, because of the use of
scaling matrices within the optimization procedure.
Furthermore, whereas the developed approaches han-
dle frequency-domain objectives, the design proce-
dures do not account for time-domain specifications.
As an improvement, an observer-based approach has
been described in (Chen and Patton, 1999). The ap-
proach is based on a FDI observer combined with a
residual weighting matrix. Different indices are set up
for the design of the observer gain and the residual
weighting factor. The solution involves eigenstructure
assignment with a genetic algorithm. However, the
developed method does not account for a large class
of uncertainties (e.g. nonlinear parametric uncertainty
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and neglected dynamics). To overcome this problem,
a FDI filter design method is proposed in (Henry et
al., 2001). The main idea is to restrict the filter dy-
namics to some specific regions, while guaranteeing
simultaneously sensitivity to additive faults and ro-
bustness to a large class of uncertainty. The design
procedure involves robust regional poles assignment
within an LMI setting and the generalized structured
singular value µg.

The goal of this paper is to present an improvement
of the method proposed in (Henry et al., 2001). More
precisely, we are interesting to design a fault detection
filter which takes into account multiple FDI objec-
tives. The considered objectives are robustness against
external disturbances, normal variations of system pa-
rameters and neglected dynamics, fault sensitivity ob-
jectives and time-domain constraints on the residual
(e.g. peak amplitudes, settling time).
The two important advantages of the approach devel-
opped in this paper, are:

� First, it provides a framework where a large class
of uncertainty surrounding the system model and
a large set of possible additive faults modes can
be included,

� Second, a constraint regarding the peak ampli-
tude of the residual is taking into account within
the design procedure. This feature becomes very
important from a decision making point of view,
as the residual is generally processed by an eval-
uation test to make a final decision about the
fault.

The design procedure can be summarized as follows.
First, a FDI filter is designed which satisfies the ro-
bustness constraints and a set of time-domain speci-
fications on the residual. It is shown that the problem
can be formulated into a LMI optimization problem. It
is obvious that both sensitivity to faults and insensitiv-
ity to disturbances cannot be achieved if they manifest
themselves at same frequencies. Faults having very
similar frequency characteristics as those of uncertain-
ties might not be detected. Second, the generalized
structured singular value µg is used to check robust
fault sensitivity. The procedure is iterative and stops
when all achieved performances indeed objectives are
judged satisfactory.

Notations

The notations are fairly standard. In dealing with vec-
tors, the Euclidean norm is always used and is written
without a subscript; for example �x�. Similarly, in
the matrix case, ��M�� is used to denote the induced
vector norm, i.e. ��M�� � σ�M� ,where σ�M� denotes
the maximum singular value of M (σ�M� represents
the minimum singular value of M). M � 0 �M � 0�
indicates that the matrix M is negative (positive) defi-
nite. M�N denotes the Kronecker product of matrices
M by N. Signals, for example w�t� or w, are assumed

to be of bounded energy, and their norm is denoted

by �w�2, i.e. �w�2 �
�� ∞
�∞ ��w�t���

2dt
�1�2

� ∞. Linear
models, for example, P�s� or simply P, are assumed
to be in R�∞, real rational functions with ��P�s���∞ �
supω σ�P� jω��� ∞.
Uncertain systems are represented by the linear frac-
tional representation of the matrix ∆ posed on P,
which is referred to as the star product �∆ � P�. ∆
is modeled, without lost of generality, by a block
diagonal structure and represents multiple perturba-
tions. ∆ describes the set of all perturbations of a pre-
scribed structure as ∆ � �block diag�δ r

1 Ik1
� ����δr

mr
Ikmr

,

δc
1 Ikmr�1

�δc
mc

Ikmr�mc
�∆C

1 � ����∆
C
mC

�, δr
i �R�δc

i �C� ∆C
i �

C� where δr
i Iki

� i � 1� ����mr , δc
j Ikmr� j

� j � 1� ����mc

and ∆C
l � l � 1� ����mC are known respectively as the

"repeated real scalar" blocks, the "repeated complex
scalar" blocks and the "full complex" blocks.
Consider the feedback interconnection defined by w�
M̃v and v � ∆̃w, where M̃ and ∆̃ are partitioned ac-

cording to ∆̃ � diag�∆J�∆K�, M̃ �

�
M̃JJ M̃JK
M̃KJ M̃KK

�
,

��∆J��∞ 	 1, ��∆K ��∞ 
 1 and where ∆̃ is defined like
∆. The positive real-valued function µg is defined by
(Newlin and Smith, 1998)

µ
g∆̃�M̃�

�
� max
�v��1

�
γ :

�vj�γ	 �wj��� j � J
�vk� 
 �wk�γ��k� K

�

M̃ � dom�µg� iff M̃KKvK � 0� vK � 0.

2. PROBLEM SETTING

Consider a general representation of the system as
depicted on figure 1. y is the measured output, z �
Mx is a subset of states to be estimated. For full
state estimation M � I . We assume that all internal
plant uncertainty (i.e. parametric uncertainties and
neglected dynamics) is represented by ∆ so that

∆ � ∆ : ��∆��∞ 	 1 (1)

F , whose output is ẑ, an estimation of z, is the detec-
tion filter to be designed. The error signal defined as

e� z ẑ (2)

is taken as the residual signal. d and f represent re-
spectively exogenous disturbances and additive faults.
The signals η and ε are internal to the model. As the
control input u does not affect the filter dynamics, u
will be ignored from now on.

The FDI filtering problem can be formulated as fol-
lows: Assume that the transfer between the fault f and
the system output y has no transmission zeros �∆� ∆,
i.e. detectability of the considered faults is guaranteed,
see (Chen and Patton, 1999) for more details. The goal
is to design a dynamical stable filter F

F :

�
ẋF � AFxF �BFy
ẑ�CFxF

(3)
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Fig. 1. The structure of fault detection filtering prob-
lem.

so that the following specifications are satisfied:
(S.1) In fault free situation, ��Ted��∞ 	 β1, for all per-
turbation model ∆.

(S.2) The poles of the filter F lie in a region� of the
left-half complex plane, for all perturbation model ∆.

(S.3) The peak residual amplitude should be kept
below a certain level β3 in fault free situation.

(S.4) σ
�

Te f� jω�
�

 β2 in a prespecified frequency

range Ω, for all perturbation model ∆.

3. LMI SOLUTION OF THE MULTI-OBJECTIVE
ESTIMATION PROBLEM.

Consider the estimation problem in the fault free
case (i.e. f � 0) with robustness objectives and time-
domain constraints (i.e. specifications (S.1) to (S.3)).

The robust estimation problem can be addressed
within an�∞ setting (Appleby, 1990). If there exists
a solution to a Riccatti equation, then a filter F ex-
ists that satisfies (S.1). The author has extended the
method within a µ-framework, which is particularly
appealing as it accounts for block structured perturba-
tions. However, no systematic method was developed
to account for estimation error dynamics specifica-
tions. As an improvement, the problem of �∞ filter-
ing design with regional filter poles constraints was
investigated in (Palhares and Peres, 2000). However,
the method is restricted to polytope type uncertainties.
Here, we propose to solve the problem for any model
perturbation type ∆� ∆, using LMI optimization tech-
niques. In the interest of brevity, the focus of this sec-
tion lies wholly with the main results and assumptions
used.

A general state space representation of P�s� (see figure
1) is

P :

	

�


�

ẋ� Ax�B1η �B2d
ε �C1x�D11η �D12d
e� Mx ẑ
y�C2x�D21η �D22d

(4)

Using equations (3) and (4), the filtering error dynam-
ics is given by
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�

ẋe �� xe��

�
η
d

�

ε � �1xe��1

�
η
d

�

e� �2xe

(5)

where xe �

�
x

xF

�
. The state space matrices are de-

fined according to

� �

�
A 0

BFC2 AF

�
�� �

�
B1 B2

BFD21 BFD22

�

�1 �
�

C1 0
�
� �2 �

�
M CF

�
�1 �

�
D11 D12

� (6)

This state space representation defines the closed-loop
transfer Ted.
Now introduce two fictitious signals e∞ and eg so that:

e∞ � w∞e� ��w∞��� 1�β1 (7)

eg � wge� ��wg��� 1�β3 (8)

w∞ and wg are also two weights which are designed
in order to achieve the specifications (S.1) and (S.3).
Including w∞ and wg into Ted leads to the set up
depicted in figure 2.

∆

d

εη

R(s) eg

e∞

Fig. 2. The structure of multi-objective filter design.

3.1 LMI formulation for�∞ specifications.

Consider the transfer R∞�s� � L∞R�s�K∞, where the
matrices L∞ and K∞ are defined to select the channels�

η
d

�
�

�
ε
e∞

�
, and let us denote ��∞��∞��∞��∞�

the associated state space representation. Note that, by
construction,�∞ �� where� is defined as in (6).

By virtue of the Bounded Real Lemma (Boyd et
al., 1994), R∞ is stable (and so F is a stable filter) and
��R∞��∞ 	 γ, for all ∆ satisfying relation (1) if and only
if there exists a symmetric matrix X∞ � 0 so that

��
T

∞ X∞ �X∞�∞ X∞�∞ �
T
∞

�
T
∞X∞ γI �

T
∞

�∞ �∞ γI

�
�� 0 (9)

This formulation does not account for block structured
perturbations. Consequently, as it has been already
noted in (Scherer et al., 1997), the resulting estimator
might be too conservative. The structured singular
value µ (Doyle, 1982) can be used to test the degree
of conservatism of the resulting filter F . If necessary,
the weight w∞ can be tuned to obtain less conservative
solution.



3.2 LMI formulation for residual peak amplitude
objective.

In addition to the �∞-norm specification considered
in the above section, it is desirable to keep the peak
amplitude of the estimation error signal e�t� below
a certain level (see specification (S.3)). If the distur-
bances d are quantified by their energy, this leads to
considering the so-called generalized �2-norm, de-
noted ��Ted��g, which measures the peak amplitude of
the signal e�t� over all unity-energy bounded distur-
bances.

Consider the transfer Rg�s� � LgR�s�Kg, where the
matrices Lg and Kg are defined to select the chan-
nel d � eg, and let us denote ��g��g��g��g� the
associated state space representation. Note that, by
construction,�g �� where� is defined as in (6).

It is shown in (Scherer et al., 1997) that a necessary
condition for the norm bound ��Rg��

2
g � α to hold, is

the existence of a symmetric matrix Xg � 0 satisfying
�
�

T
g Xg�Xg�g Xg�g

�
T
g Xg I

�
� 0 (10)

�
Xg �

T
g

�g α I

�
� 0� �g � 0 (11)

It is important to outline that, due to the definition
of the matrices Lg and Kg, there is no guarantee that
��Rg��

2
g � α yields for all ∆ satisfying (1).

3.3 LMI region for robust pole placement.

Consider an LMI region� formed by the intersection
of N elementary LMI regions � i (i.e. � ��1� ����
�N) characterized by their characteristic functions

f
�i
�χ� � Li � χMi � χ �MT

i � 0

Mi � MT
1iM2i

(12)

where M1i and M2i have full column rank (such factor-
ization can be easily obtained from the SVD of Mi).

In (Chilali et al., 1999), it is shown that a sufficient
condition for all eigenvalues of � (see equation (6))
lying in the region � for all ∆ satisfying equation
(1), is the existence, for each region � i , of a pair of
matrices �Xi �Pi� so that

�
��
�
�i
�� �Xi � MT

1i � �Xi�� �MT
2iPi���

T

M1i � ��TXi� �Pi� I Pi��
T

�PiM2i��� Pi�� �Pi� I

�
��� 0

Pi � 0� Xi � 0� i � 1� ����N

(13)

where

�
�i
�� �Xi� :� Li �Xi �Mi � �Xi� �� ���

����MT
i � �� TXi�� i � 1� ����N

(14)

� �

�
�1
�2

�
� � �

�
�1
0

�
(15)

The matrices � ����1��2 and �1 are also defined in
(6).

Coming back to the expression of the matrix � , it is
clear that the set of its eigenvalues are equal to the
set of the eigenvalues of A (see (4)) and AF (see (3)).
Thus, the inequalities (13) and (14) correspond to a
robust regional poles assignment of the filter F .

Remark 1. LMI Feasibility: (Scherer et al., 1997)
have demonstrated that for feasibility problems, one
must jointly solve all inequalities (9), (10), (11) and
(13) by imposing

X � X∞ � Xg � X1 � ���� XN
Pi � I � i � 1� ����N

(16)

This leads to a more conservative filter F because of
the requirement of a single matrix X satisfying all
constraints. Furthermore, it is obvious that the inequal-
ities are not affine in the filter realization matrices
AF �BF �CF (which are the solution we are looking
for) and in X. To overcome this problem, (Scherer et
al., 1997) have defined changes of variables that allow
all inequalities to be transformed into LMIs.

4. ROBUST FAULT SENSITIVITY
PERFORMANCES.

Consider f �� 0. The main problem is now to satisfy
the robust fault sensitivity objectives (see specification
(S.4)). To proceed, include the filter F into the model
R∞ defined in section 3.1. This leads to the set up
described by the block diagram shown on figure 3,
where ∆e�Cdim�d��dim�e� : ��∆e��∞ 	 1 is an introduced
fictitious uncertainty block. ef is a fictitious estimation
error signal, weighted by wf :

ef � wf e� ��wf ��� 1�β2 (17)

f

∆
∆η ε

d

N(s)

e
e∞

ef

Fig. 3. The generic structure of robust detection per-
formance problem.

In contrast to the robust performance problem consid-
ered in section 3, the robust fault detection sensitivity
problem is essentially a robust minimum gain prob-
lem, over a prespecified frequency grid. This problem
is also equivalent to

σ
�
∆�N

�

 1� �ω�Ω� �∆

∆ � diag�∆�∆e�
(18)

The solution is based on the recently developed gen-
eralized structured singular value (denoted µg), which



was first introduced in (Newlin and Smith, 1998). µg

can be see as a measure of the stability degree of
closed-loop structures so-called "M  ∆", like illus-
trated on figures 2 and 3. In contrast to the robust
performance problem, some elements of the perturba-
tion structure ∆ are bounded from above and some are
bounded from below (Henry et al., 2002). Like the µ-
function, µg is particularly appealing as it accounts for
block structured perturbations ∆.
The following theorem, which is an adaptation of
the theorem 5 in (Newlin and Smith, 1998) for our
purpose, gives the solution of the robust sensitivity
problem. The proof is omitted here, as it can be found
in (Newlin and Smith, 1998).

Theorem 2.Let N be robustly stable, ∆̃ �

�
∆ 0
0 ∆̂

�

where ∆ is defined by (18) and N � dom�µg�. ∆̂ �

Cdim� f ��dim�e� is a fictitious uncertainty block. Then

min
∆�∆

σ�∆��1

σ�∆�N�
 1 iff µ
g∆̃�N� jω��� 1 �ω�Ω

The constraint N � dom�µg� is equivalent to a non-
trivial solution, i.e. the maximization part in the µg

problem is finite. The robust stability condition of N
is strictly equivalent to the robust stability condition
of P, as the filter F does not affect the state of the
system.
Using the above theorem, the robust sensitivity per-
formance can be tested by calculating the µg function
of N over the block structure ∆̃, at those frequencies
where the energy of the fault is likely to be concen-
trated.

5. APPLICATION TO A THREE-TANKS SYSTEM

The experimental study is based on a pilot three-tank
system. The plant consists of three cylinders con-
nected serially with one another cylindrical pipes. The
out-flowing liquid is collected in a reservoir, which
supplies two pumps. The three water levels are also
measured. For the purpose of simulating clogging and
operating errors, the connecting pipes are equipped
with manually adjustable ball valves, which allow
the corresponding pipe to be closed. A simple Pro-
portional Integral controller was implemented, as the
control performance was not of prime interest in this
work.

The FDI objective is to detect a leak affecting the first,
the second and the third tank.

According to the strategy depicted in the previous
sections, a detection filter F is designed. The method
must be thought as follows:

� Step 1:The interconnection system model shown in
figure 2 is constructed with M � I3. The uncertainty
block ∆ is given by

∆ � diag�δ1�δ2�δ3�∆T� (19)

δk � R : �δk� 	 1�k � 1�2�3 represent parametric un-
certainties related to outflow coefficient, and ∆T �
C3�3 : ��∆T ��∞ 	 1 models actuators neglected dynam-
ics. The weighting functions WT associated with ∆T is
experimentally determined as

WT�s� � 0�2
1�3�35s

1�s
I3 (20)

The exogenous disturbance d consists here in the mea-
surement noise. Based on a power spectral analysis of
the input/output data, a weighting function Wn for the
measurement noise is determined as

Wn�s� � 0�087
1�0�2s

1�0�125s
I3 (21)

The interested reader can refer to (Henry et al., 2002)
for more details on modeling the hydraulic system.

� Step 2:The inequalities (9), (10) and (11) are solved
in order to determine the filter matrices AF , BF and
CF .

� Step 3:Finally, according to theorem 2, the robust
sensitivity performance is tested by evaluating the µg-
function. If the level of achieved sensitivity is not con-
sidered satisfactory (i.e. if the µg-test fails), go to step
1 and reshape the weights w∞, wg and wf (see relations
(7), (8) and (17)). If both desired robustness level and
detection performance are not achievable, the distur-
bance robustness requirement should be relaxed. A
new filter F is then designed with an increased dis-
turbance sensitivity bound. The procedure stops when
a reasonable balance between fault sensitivity and ro-
bustness performance is achieved.

Experimental results.

The weights w∞, wg and wf were computed so that
��R∞��∞ and ��Rg��g are minimized and σ�Te f� is max-
imized over the frequency range �0�01rd�s�0�05rd�s�
(which is the frequency range where the energy of the
fault is concentrated). Figure 4 illustrates synthesis re-
sults. The obtained�∞ performance is approximately
β1 � 0�08 and the LMI optimization on α (see (10)
and (11)) yields a generalized �2-norm lower than
β3 � 0�12. Furthermore, as it can be seen on figure
4, the fault sensitivity specifications are met (see the
µg behavior). The achieved sensitivity performance is
approximately β2 � 0�021 for the first leak, β2 � 0�032
for the second and β2 � 0�022 for the third. As it can
be seen on figures 5, the designed procedure succeeds
as all faults are detected.

For comparison, a pure �∞-based design was per-
formed. The achieved optimal �∞ performance was



approximately the same. However, in contrast with
the multi-objective approach, the fault sensitivity level
achieved by the detection filter is much lower (the µg-
test gives β2 � 0�0027 for the first leak, β2 � 0�005 for
the second and β2 � 0�003 for the third).
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Fig. 4. Detection filter synthesis results.
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Fig. 5. Behavior of e�t� � z�t� ẑ�t�.

6. CONCLUSIONS.

In this paper, we have presented an approach for
designing FDI filters. The most important advantage
of the proposed scheme is that it provides a frame-
work where many FDI objectives (robustness and fault
sensitivity objectives, frequency-domain and regional
filter pole placement constraints) can be included.
Moreover, the method allows to include time-domain
constraints on the residual behavior (for instance the
peak amplitude of the residual), which is particularly
appealing from a decision making point of view, as the
residual is generally processed by a threshold-based
evaluation stage.
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