
1. INTRODUCTION

Planned navigation is very common in mobile
robotics (Latombe, 1991). This approach is well
suited to situations where the mobile robot has (or is
able to build up) an accurate enough representation of
the environment and also and an accurate position
estimation. Then, high accuracy in path tracking can
be achieved.

On the other hand, reactive navigation approaches
have been proposed to deal with complex and
uncertain environments where models are not
available nor reliable. Furthermore, fuzzy logic has
been widely applied to mobile robot control due to its
inherent capabilities to deal with imprecise
information and the flexibility of nonlinear control
laws (Sugeno and Nishida, 1985; Saffiotti, 1997;
Ollero et al., 1999b; Song and Sheen, 2000; Cuesta et
al., 2002). However, reactive issues usually exhibit
worse dynamic properties (such as oscillations) than
the planned methods (Koren and Borenstein, 1991).

It should be pointed out that reactive navigation has a
strong dependency on the sensed data, and, at the
same time, the ability to perceive fast enough is very
important in order to react properly. Furthermore,
these elements play a significant role in the stability
of the reactive navigation as will be shown in this
paper. In this way, stability conditions taking into
account the own reactive navigation parameters will
be derived.

In the next section a brief description of the fuzzy
reactive control is performed. In Section 3, stability of
the fuzzy reactive navigation is analyzed. Thus,
stability conditions in terms of the own reactive
navigation parameters are obtained, making an easier
task their qualitative interpretation. Section 4 presents
some experiments devoted to validate the stability
results and to show the influence of the time delays in
the reactive navigation performance. The paper closes
with the conclusions and references.

2. FUZZY REACTIVE NAVIGATION

In this section, a brief overview of the fuzzy reactive
navigation technique under consideration is
introduced (the method is fully explained by the
authors in Cuesta et al. (2002)).

The perception technique used in this paper is an
extension of the so-called general perception vector
(Braunstingl et al., 1995). This method aims at
constructing a so-called general perception of the
surroundings of the mobile robot from the measuring
data provided by all the sensors. It is represented as a
vector called general perception vector, which
provides a fuzzy description of the environment.
Special attention has been paid to take into account
the sensorial limitations and the nonholonomic
kinematic constraints of ROMEO-3R (see Fig.1)
(Ollero et al., 1999a).
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The distance measurement (ds) of each ultrasonic
sensor (u) (see Fig.2) is transformed into a virtual
perception vector pi, and then all of them are
combined yielding the general perception vector p.
The length of each vector is calculated in the range
[0-1] by means of a perception function defined as
(Cuesta et al., 2002)

(1)

where  is a positive number greater than 1,  is the
perception angle, and  is the minimum distance
that can be perceived. Thus, an object detected in
front of the vehicle, i.e. with a perception angle

, at the minimum distance , will get the
highest perception length , while one detected
at the maximum distance  will get the lowest
perception. Thus, an ellipsoidal perception area, as
shown in Fig.3, is obtained, resulting in the curves of
constant perception being ellipses of eccentricity 
( ).

Perception vector can be considered by means of
fuzzy logic using linguistic terms to describe the
perception angle and the perception length as shown
in Fig.3. Thus, a fuzzy description of the environment
is obtained (e.g., the obstacle is located left-front and
to a certain distance, between 0 and 1). This
description of the environment, using the perception
vector, can be used easily as input to a fuzzy
controller in order to perform reactive navigation.
Furthermore, it is also possible to compute different
perception vectors and to use them to implement
fuzzy controllers or behaviors which perform specific
tasks. The combination of the different behaviors can
be also easily done by means of fuzzy logic, thanks to
the information provided by the perception vectors.

In case of left wall following, a left hand perception
vector is built, yielding a left perception angle ( ),
together with a left perception length ( ). The goal
of this behavior is to keep the left perception vector at
a medium value and pointing to left center. This is
achieved by fuzzy rules that use  and  as inputs
and the control commands for steering angle and
linear velocity as outputs. The left wall following
fuzzy logic controller is a conventional Mamdani one
composed of fuzzy rules such as

 IF  IS LEFT_BACK AND  IS HIGH THEN MAKE

steer CENTER;

Table 1 shows the whole rule base controlling the
robot’s direction of motion by means of the steering

angle, where , for example, is described by the

linguistic terms LF (Left_Front), LC (Left_Center),
and LB (Left_Back).Fig.4 presents the results of a
real experiment with ROMEO-3R. The robot
performs a wall following mission with a maximum
speed of 0.9 m/s.

Fig. 1: ROMEO-3R, mobile robot.
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Table 1. Rule base controlling steering angle.
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3. STABILITY ANALYSIS OF REACTIVE 
NAVIGATION

3.1 Problem Statement

A stability analysis of general reactive navigation is
rather complicated due to the nonlinear character of
the elements involved. So, it could be seen like
stability analysis of a vehicle (with its own kinematics
and dynamic constraints), moving around an
unknown environment that has to be perceived by
using an arbitrary set of sensors placed at different
locations, and with a control system (probably
nonlinear) that guides the vehicle based on the system
information.

For the sake of tractability, some assumptions have to
be made for each element involved. Thus, from the
point of view of the vehicle, a model considering its
kinematics

(2)

(where  is the vehicle curvature,  is
the steering angle, and l is the distance between axis)
together with the dynamic of the steering system

(3)

will be used (  is the time-constant of the steering
system). Constant velocity  is also assumed.

On the other hand, the control problem will be to
stabilize the vehicle to reactively follow a wall, large
enough, at a given distance. Thus, environment
perception will be performed using the perception
vector and the control law is given by the Mamdani
fuzzy controller introduced in Section 2. Fig.5 shows
the nonlinear closed-loop under analysis.

3.2 Equilibrium points

Since it is a nonlinear system, the first step in the
stability analysis will be to determine the equilibrium
points. Then, by considering the model of the vehicle,
the closed-loop equations are given by

(4)

where  is a nonlinear element including all
the blocks out of the vehicle (that is, see Fig.5, fuzzy
perception, fuzzy control, steering angle to curvature
conversion, and control action saturation

).

Thus, system equilibria are given by the values
, such that . In this way,

system (4), becomes

. (5)

From (5) it is easy to see that

(6)

and, therefore, third equation in (5) provides the
following condition

. (7)

In spite of the nonlinear character of (7), this equation
can be easily solved by means of its graphical plot.
So, for even values of , i.e. ,
solutions of (7) are parametrized in , by means of

, which graphical plot is shown in
Fig.6 for , ,  and

. Thus, for  even, the only solution
corresponds to .

On the other hand, equation (7) evaluated for odd
values of , i.e. , yields
3.8 for any value of  (which corresponds with the
maximum curvature).

Therefore, system equilibria are given by

(8)

but only the origin will be considered .
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Local stability of the origin can be determined by
means of the linearized system at the equilibrium
point. Two cases will be considered, depending on the
existence, or not, of time delays in the system.

3.3 System without time delays

If no delays are considered in the system, the
linearized system can be obtained form the Jacobian
of (4), yielding

(9)

where  and . 

Stability of (9), is given by its characteristic
polynomial

(10)

Then, by means of the Routh Hurwitz criteria, the
following necessary and sufficient conditions for the
local stability of the origin can be derived:

(11)

3.4 System with time delays

Nevertheless, time delays exists in reactive navigation
(these delays arises from different sources: sensor
readings, computation of control action,...), and,
therefore, they can not be neglected. So, by
considering a time delay , system (4) becomes

(12)

and the linearized system is

(13)

where the corresponding Jacobians are

(14)

Stability of the equilibrium point can be analyzed by
means of its characteristic quasi-polynomial

. (15)

It can be shown that the condition for the asymptotic

stability of solutions of linear equations with delayed

arguments is that the real parts of all roots of the

characteristic quasi-polynomial be negative. Then,

applying stability condition  to (15), and

taking into account that , it

is obtained that

, (16)

from where it is easy to obtain two equations giving
the stability limits

(17)

Furthermore, making a change of variable ,
and some algebraic operations in (17), the following
conditions on  and  can also be obtained

, (18)

(19)

In this way, is easy to see that as the velocity or the
time delay grows, the maximum allowable values for
the gains in the control action (  and ) decrease.
This result is agree with one could expect. In fact, it is
well known that time delays reduce the gain margin
of a system, and, on the other hand, a hard turn while
driving at high speed could bring the vehicle out of
control and, therefore, the control action, i.e. steering
action, should be smoother.
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3.5 Relation with the parameters of reactive
navigation

Finally, in order to better understand the previous
stability results, they will be recalled in terms of the
own reactive navigation parameters. To do that, firstly
the fuzzy controller will be approximated by its
partial linearization at the origin, yielding that the
control law is approximately:

(20)

where  is given in , and  in .

Assuming that the system is working close to the
equilibrium, perception function will not saturate and,
therefore,  will be given by

. (21)

Substituting (21) in (20), together with 
and , yields

(22)

Furthermore, since , ,

and , it is obtained that

(23)

where can be appreciated the strong nonlinear
dependency with respect to  and .

Thus, from (23), the values for  and  can be
obtained as

(24)

Again, a qualitative interpretation of (24) is
straightforward. In this way, for instance, the gain 
could be large as the sensor range, ,
becomes larger, and vice versa, a smaller sensorial
capacity will imply a lower control action. On the
other hand, recalling stability conditions (11) in terms
of  and , it is obtained that

(25)

where can be observed that the ellipsoidal perception
function ( ) allows the system to be stable even
for some negative values of . Also, can be seen
that, for a given controller, the maximum velocity will
be higher as the sensor range grows, as one could
expect. Similar conclusions can be drawn from
system (18)-(19).

4. SIMULATION EXPERIMENTS

This section is devoted to validate the stability
conditions derived in the previous section.
Simulations will be used for the sake of repeatability.
To that end, parameters from the actual fuzzy control
system of ROMEO-3R mobile robot will be used,
namely, the perception parameters are ,

,  and ; the time delay
is ; and from the fuzzy controller:

 and  (i.e., 
and  from (24)). Fig.7 shows a simulation
experiment at , with an equivalent
behavior to the real experiment with ROMEO-3R
shown in Fig.4, performing a stable navigation as it
was expected.

In the following stability conditions will be used to
show the influence of time delay in the navigation and
to compute the maximum allowable stable velocity. 

So, by keeping the perception and controller
parameters, the maximum stable velocity with

, can be obtained by solving equations (18)-
(19). This can be easily accomplished by means of
their graphic representation, as shown in Fig.8. From
this figure, the maximum stable velocity is
approximately , at which the vehicle
will navigate showing oscillations at a frequency

 (i.e, a period of 3.07s, approximately).
This result can be verified by showing the vehicle
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behavior navigating at velocities below and above of
this limit, as shown in Fig.9, where a stable and an
unstable oscillatory behavior are obtained,
respectively.

Similarly, influence of the time delay can be also
shown. So, solving equations (18)-(19) with a larger
time delay ( ), the maximum stable velocity

becomes drastically reduced to 
( ), as shown in Fig.10 and Fig.11.

5. CONCLUSIONS

Reactive navigation approaches are emerging as an
alternative to (or in combination with) planned
schemes. However, they usually present worse
dynamic performance, such as oscillations. On the
other hand, reactive techniques have a strong
dependency on the sensed information and demand
fast response in order to properly react to the
environment. In this paper, stability of reactive
navigation has been analysed. Stability conditions, in
terms of the own reactive navigation parameters (such
as sensor range, computation time, control gains,...)
have been obtained. Furthermore, influence of the
time delay in the reactive navigation performance has
been also pointed out by means of experiments.
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Fig. 8: Graphical plot of V from (18) (red), and (19) 
(blue), with T=0.1s.

Fig. 9: Stable vehicle response at V=2.1m/s (red), and 
unstable at V=2.2 m/s (blue), with T=0.1s.

Fig. 10: Graphical plot of V from (18) (red), and (19) 
(blue), with T=0.5s.

Fig. 11: Stable vehicle response at V=0.85m/s (red), 
and unstable at V=0.95 m/s (blue), with T=0.5s.

T 0.5s=

V 0.92m/s≈
ω 0.94rad/s≈


