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Abstract: The CONtinuous-Time System IDentification (CONTSID) toolbox methods
are first applied to three real-life SISO and MIMO processes selected from thermal
and electro-mechanical fields to illustrate their possibilities. The application results
to an industrial distillation column demonstrate in a second part that continuous-
time model based system identification techniques included in the CONTSID Matlab
toolbox are now mature enough to be applied to industrial processes.
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1. INTRODUCTION

Interest in con tinuous-time(CT) approaches to
system identification has been growing in the very
recen tyears. A large amount of publications re-
flects the intensiv e effort dewted to the develop-
ment of theory for such techniques (Johansson
et al., 1999), (Garnier et al., 2000), (Pintelon
et al., 2000), (S'oderstoim and Mossberg, 2000),
(Bastogne et al., 2001).

How ev er although the iterest of the system iden-
tification communit y has been increasing, no soft-
w are tool to perform model idetification directly
in the CT domain was available until the very
recent development of a Matlab toolbox called the
CONTSID (CONtinuous-Time System IDentifica-
tion) toolbox (Garnier and Mensler, 2000). It con-
tains most of the identification methods found in
the literature that make it the parameter estima-
tion of CT models for linear time-invariant (LTT)
systems possible, directly from discrete-time (DT)

data. The toolbox has been used recently to com-
pare the performances of most of the implemented
methods (Mensler et al., 2000).

The purpose of the current paper is firstly to

present the application results of some of the

CONTSID toolbox methods on real-life SISO

and MIMO processes selected from thermal and

electro-mechanical fields. This first part illus-

trates the available functions that identify directly

con tinuous-time transfer function and state-space
models from sampled data. Secondly, the results

of the practical application to an industrial binary

distillation column are described.

This paper is organized as follows. A brief
overview of the corten ts of the CONTSID toolba
is given in section 2. Section 3 is dev oted tothe
presentation of the application results obtained on
three practical examples. In section 4, the identi-
fication of a con tinuous-timelinear model of an
industrial distillation column is described.



2. OVERVIEW OF THE CONTSID TOOLBOX

The CONTSID Matlab toolbox contains time-
domain identification methods of CT parametric
models for LTT SISO and MIMO systems opera-
ting in open-loop from sampled data (Garnier and
Mensler, 2000). It is freely available for academic
researchers and can be downloaded from:

http://www.cran.uhp-nancy.fr/cran/i2s/contsid /contsid.html

The general scheme for direct CT model identifi-
cation can be divided into two distinct stages:

e the first stage is specific to CT model iden-
tification. It consists in applying to the
input/output data a linear transformation
(LT) in order to avoid the differential issue.

e the second stage concerns the parameter esti-
mation where most algorithms developed for
DT model identification can be used.

There are a multitude of choice for the LT re-
quired in the primary stage. The toolbox con-
tains most of the LT methods developed over the
last thirty years. From the comparative studies
recently presented (Mensler et al., 2000), methods
which can be considered as those having the best
performances are based on linear filtering: the Ge-
neralized Poisson Moment Functionals (GPMF)
and State-Variable Filter (SVF) approaches, on
Fourier and Hartley modulating functions (FMF
and HMF), and on the two particular types of
integral methods: the Linear Integral Filter (LIF)
and Reinitialized Partial Moment (RPM) tech-
niques. Parameter estimation techniques imple-
mented in the toolbox can be subdivided into the
following two families:

(1) Transfer function model estimation schemes
to identify SISO or MISO systems.

(2) State-space model estimation schemes to
identify MIMO systems.

2.1 Schemes for transfer function identification

The implemented schemes consider both Equa-
tion Error (EE) and Output Error (OE) model
structure-based methods.

Several parameter estimation algorithms using all
implemented LT are available for the EE ap-
proach. First, conventional LS-based LT algo-
rithms have been completed. In order to over-
come the bias problem associated with LS-based
estimation in presence of noisy data, a boot-
strap estimator of Instrumental Variable (IV)
type where the IV are constructed using an
auxiliary model has also been coupled with
all available LT. A recently implemented ap-
proach concerns the iterative Simplified Refined

Instrumental Variable for Continuous-time model
identification (SRIVC) proposed by (Young and
Jakeman, 1980). The SRIVC method was first
available in the CAPTAIN Matlab toolbox (see
http://www.es.lancs.ac.uk/cres/captain/). Its application
results to a SISO thermal process are described in
section 3.1.

In the case of OE model structure-based ap-
proach, a function to estimate the parameters
of MISO models has been implemented using
the Levenberg-Marquardt algorithm via sensiti-
vity functions. The application results of the lat-
ter algorithm to an industrial binary distillation
column are presented in section 4.

2.2 Schemes for state-space model identification

A first methodology is based on the a pri-
ori knowledge of structural indices, and con-
siders the estimation of CT canonical state-
space models. It consists first in transforming
the canonical state-space model into an equiva-
lent input/output polynomial description which
is linear-in-its-parameters and therefore more sui-
table for the parameter estimation problem. A
LT method may then be used to convert the
differential equation into a set of linear algebraic
equations. The unknown model parameters can
finally be estimated by LS or IV-based algorithms
(Garnier et al., 1995). The application results to a
SIMO pilot crane process are presented in section
3.2.

A second class of multivariable system identifi-
cation schemes is based on subspace estimation
methods. The most commonly known subspace
methods were developed for DT model identifi-
cation (Van Overschee and De Moor, 1996). The
association of the more efficient LT methods with
subspace methods for CT model identification has
been recently developed (Johansson et al., 1999),
(Bastogne et al., 2001). The successful application
of one of these algorithms to a winding process is
described in section 3.3.

3. LABORATORY PROCESS
IDENTIFICATION RESULTS

In this section, identification results for three
laboratory processes selected from thermal and
electro-mechanical fields are summarized. They
illustrate the use of the CONTSID toolbox rou-
tines to identify both transfer function and state-
space models. To ensure maximal reproducibility,
the data files have been included as parts of the
demonstration program of the CONTSID toolbox
(see idedemo.m program).
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Fig. 1. Cross-validation results for the dryer
3.1 Dryer identification

Process description. This SISO laboratory set-up
is a bench-scale hot air-flow device. It has been
used many times to illustrate the performances
of other identification methods. Air is pulled by
a fan into a 30 cm tube through a valve and
heated by a mesh of resistor wires at the inlet. The
output is the voltage delivered by a thermocouple
proportional to the air temperature at the outlet
of the tube. The input is the voltage over the
heating device. The relevant files are idcdemo8.m
and dryer.mat.

Ezxperiment design. The input signal was chosen
to be a Pseudo Random Binary Signal (PRBS)
of maximum length. The sampling period was set
to 100 ms. Two data sets of 1905 measurements
collected in the same conditions were used to per-
form the model estimation and validation. Mean
and linear trend of the signals were removed.

Model structure selection. The CONTSID toolbox
includes a routine which allows the user to auto-
matically search over a range of different orders
(Young, 2002). A simple first order model plus
time-delay was selected (see idedemo8.m).

Identification results. The process identification
is performed with the SRIVC algorithm srive.m
(Young and Jakeman, 1980), (Young, 2002). The
identification result is given as a transfer function
model. To evaluate the model quality, the coeffi-
cient of determination R% will be considered as a
performance index in all application results:

2 Eiil (ymeaS(i) - ysim(i))2
=1- 5 1
Zéil (ymeas ('L) - gmeas) ( )

where Ymeas and ysim represent respectively the
measured and simulated outputs, #meas iS the
mean of Ymeas, NV is the number of data.

Cross-validation results are displayed on figure 1
where it may be noticed that the simulated output
matches quite well to the measured one.

3.2 Pilot crane identification

Pilot description. The pilot is a simplified version
of a real trolley crane since hoisting is not consi-
dered. It consists of a trolley which can be moved
along a metal guiding bar. A pendulum rod with
a weight at its end is fixed to the trolley. The
trolley is driven via a flexible transmission belt
by a current controlled DC-motor. The system
input is the voltage of the DC-motor. The mea-
sured outputs are the trolley velocity and the load
angle. The process is described in more detail in
(Garnier et al., 1996). The relevant Matlab files
are idcdemob.m and crane.mat.

Ezxperiment design. The input was chosen to be
a PRBS repeatedly sent five times to the system.
The sampling interval is 10 ms. From a careful
data analysis, data corresponding to the third and
fourth PRBS response were selected for building
a model while data corresponding to the fifth
PRBS response were chosen for model validation
purpose. Mean values of the signals were removed.
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Fig. 2. Pilot crane cross-validation results

Model structure selection. The physical modeling
indicates that the global order of the process is 3.
The structural index for the trolley velocity is 1
while that for the load angle is equal to 2.

Identification results. The process identification is
performed with the State-Space IV-based GPMF
algorithm ssivgpmf.m (Garnier et al., 1995). The
identification result is given as a CT canonical
state-space model. Cross-validation results are
displayed on figure 2 which shows that despite the
presence of friction that introduces non-linearities,
there is a relatively good agreement between the
measured and the simulated model outputs.
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Fig. 3. Cross-validation results for the winding process

3.3 Winding process identification

Pilot description. The main part of this MIMO
pilot plant is a winding process composed of a
plastic web and three reels. Each reel is coupled
with a direct-current motor via gear reduction.
The angular speed of each reel (S;, Ss, S3) is
measured by a tachometer while the tensions bet-
ween the reels (T, T3) are measured by tension
meters. At a second level, each motor is driven
by a local controller. Two PI control loops adjust
the motor currents (I;) and (I3) and a double PI
control loop drives the angular speed (Ss). The
set-points of the local controllers (I7, S5, I3) cons-
titute the manipulated inputs of the winding sys-
tem wu(t) = [IF(t) S3(t) I3(t)]". Driving a win-
ding process essentially comes down to controlling
the web linear velocity and the web tensions (77)
and (7T5) around a given operating point. Conse-
quently, the output variables of the winding sys-
tem are y(t) = [T1(t) Ts(t) 52(t)]T. The process
is described in more detail in (Bastogne et al.,
2001). The relevant Matlab files are idedemo?.m
and winding.mat.

Experiment design. Discrete-time internal binary
sequences were used as excitation signals. The
sampling period is set to 10 ms. Mean and linear
trend of the signals were removed.

Model structure selection. The system order has
been previously estimated and set to n = 3. Note
however that the algorithm makes it possible to
estimate the system order along with the model
parameters if it is not known a priori.

SIdentification results. The process identification
is performed with the 4SID-based GPMF algo-
rithm sidgpmf.m. The identification result is given
as a CT state-space model which can be used to
obtain the simulated outputs.

Cross-validation results are plotted on figure 3
where it may be observed that there is a very
good agreement with quite high values for the
coefficient of determination.

4. INDUSTRIAL DISTILLATION COLUMN
IDENTIFICATION

4.1 Column description

Figure 4 shows a schematic description of the in-
dustrial binary distillation column. It is equipped
with 48 trays, a steam-heated reboiler and a total
condenser. The column is fed in at the 18" tray
with a binary mixture of carbonate components.
The separation of components takes place under
controlled pressure. The objectives are to control
the impurity of the top product or distillate X;
and the impurity of the bottom product or residue
X, with respect to changes on reflux flow F;. and
heating power () while preventing influence of
changes on feed flow Fr and feed composition. The
distillate and residue X; and X} are measured by
means of analyzers and expressed in volume per
million (vpm). The process is described in more
detail in (Defranoux et al., 2000).

4.2 Experiment design

Two kinds of experiment were carried out while
respecting constraints imposed by the industrial
company. These constraints were first to not per-
turb the production, since the top composition is
a finished product; and secondly to manipulate
the inputs separately for security and productivity
reasons. This latter constraint has imposed that
the inputs were perturbed separately and that
MISO identification was utilized. The sampling
time was set to 10 s. The two experiments, there-
fore, consisted of manipulating separately the set-
points of the reflux flow, F;., and of the tempera-
ture of tray 40, Tyo, around their normal operating
point; the other variables being locally controlled.
The experiment lasted between 5 and 17 hours.
The manipulated variables were chosen as zero-
mean Random Binary Signals (RBS). Two RBS
with a magnitude of 0.3 t/h and of 1.5°C" were
separately applied to the reflux flow Fj. and to
the temperature Tyo, respectively, as illustrated
in Figure 5. Before executing the estimation pro-
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Fig. 4. Schematic description of the column

cedure, a classical data pre-processing was carried
out on the raw data sets.

4.3 Model structure selection

From an acute data analysis, it turns out that
the temperature measurement of the sensitive
tray Ti»> could be considered as a continuous
image of the distillate X; that reacts quickly
towards changes. This sensitive tray temperature
Ti> has, therefore, been considered as an output
variable instead of the distillate. No temperature
tray could however represent a continuous image
of the residue X}, which constitutes the second
output of the model. Classically the reflux flow F;.
and heating power represented by the controlled
temperature Tyo are used as input variables for the
system. The most important disturbance entering
this distillation column is a change in the feed flow
rate. The feed flow rate Fy being measured, it has
therefore been included as a third input variable
for the model. The multivariable coupling in the
process can be then be described by the following
model:

F(s)
Ti2(s)\ _ [ Hii1(s) Hi2(s) Hia(s)
<Xb(3)> - <H21(s) sz(s) H23(3)> (?}?é:))) (2)

where s denotes the Laplace variable.

4.4 Identification results

The data used here are real measurements on
a real industrial commercial production plant.
Unfortunately we were not allowed to include the
data sets in the CONTSID toolbox. The process
identification is performed with the OE structure-
based algorithm named coe.m.
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Fig. 5. RBS excitation signals

The measured reflux flow and tray 40 temperature
and not the set-points for these variables were
considered in the identification procedure. Time
delays from input to output variables were pre-
viously estimated from step responses. During the
experiment, the feed flow changes did not disturb
explicitly the bottom product composition of the
column. The distant position of the feed tray
(figure 4) in respect to the bottom of the column
probably explains this phenomenon. The transfer
function H»3 was not, therefore, considered in the
estimation procedure and was set to zero. Fur-
thermore, no coupling between the reflux flow F).
and the residue X could be demonstrated. Con-
sequently, the transfer function Hs; was also set
to zero and was not considered in the estimation
procedure. This explains why there is no cross-
validation plot for X3 in the case of excitation on
the reflux flow set-point. Cross-validation results
are presented in figures 6 and 7. They are of
identical quality to those obtained by using an
indirect approach consisting first of estimating a
discrete-time model by a prediction error method
and then converting it into a continuous-time one
(Defranoux et al., 2000).

5. CONCLUSION

This paper first presents a brief overview of
continuous-time approaches to system identifica-
tion implemented in the CONTSID toolbox. The
toolbox contains a set of Matlab functions which
implement most of the continuous-time model
identification techniques from discrete-time data.
These Matlab functions are easy to use and en-
hance the understanding as well as the applica-
bility of the algorithms. The paper then demons-
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trates the efficiency of the CONTSID identifica-
tion algorithms on three sets of laboratory pro-
cess data. These practical examples can be easily
reproduced by running the demonstration pro-
grams available in the toolbox. One application of
the algorithms to an industrial binary distillation
column has been further presented. This latter
application of the CONTSID toolbox techniques
demonstrates that continuous-time models based
system identification techniques are now mature
enough to be applied to industrial processes.
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