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Abstract: This paper describes an architecture for mobile robots that is suitable for 
teleoperation. The architecture is hybrid and has three levels: a reactive level, a 
deliberative level and an interface level. Reactive level is distributed and it is made up of 
sensor nodes and controllers. On the other hand, deliberative level establishes the 
knowledge and the reasoning capability to the robot. This deliberative level uses reactive 
level (sensor and actuator values) through the interface level. Interface level is made up of 
a communication system that allows local and remote access to the robot from any 
deliberative node. The architecture has been implemented as a case study in the YAIR 
robot, enabling its teleoperation from a remote node using Windows CE. 
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1. INTRODUCTION 
 
Teleoperation and remote changes in mobile robots 
behaviour is often necessary. For example, for 
changing the operation mode, status monitoring or 
manual control of the robot. Therefore, it is important 
to develop a system to allow easy runtime access to 
the robot. The goal of the work is to develop a 
multilevel architecture for mobile robots that is based 
on a communication system called SC (Posadas, 
1997) that allow transparent local and remote access 
to the robot from any node. The SC is a 
communication system used in various applications 
all related with distributed control with soft real-time 
constraints. The combination of the SC and a reactive 
local control in the robot allows an easy 
communication between  nodes accomplishing with 
real-time constraints. 
 

The architecture has been implemented and tested in 
YAIR1 (Gil, 1997; Blanes, 1998; Blanes, 2000), an 
autonomous robot with intelligent sensors that 
produces different measurements about the 
environment and its location within it. A case study 
for this robot teleoperation has been developed using 
an embedded PC running Windows CE in a real 
scenario.  
 
The development of the communication system is 
based on the concept of temporal firewall (Kopetz, 
1998). Therefore, the values of the sensors and 
actuators are labelled with the time of its acquisition. 
This time stamp is updated through the different 
levels and components of the architecture and 
communication system. When the requested values of 
                                                           
 
1 YAIR stands for Yet Another Intelligent Robot, and is currently 
being developed under CICYT grant TAP98-0333-C03-02 from 
the Spanish Government 
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the sensors arrive to their destination, the 
corresponding software can validate them according 
to the time elapsed since they were obtained.  
 
 
In the following sections, the developed work and the 
results obtained are described. First, the global 
architecture of YAIR is described. Then, the 
implemented communication system called SC is 
presented. Finally, the results of the tests carried out 
are presented. 
 

2. ROBOT ARCHITECTURE 
 
The distributed architecture is hybrid and it is 
composed by three levels: a reactive level that deals 
with real-time constraints, a deliberative level without 
real-time constraints (although good mean response 
time must be guaranteed as well as some processing 
distribution capabilities), and an interface level  
acting as a connection between the other two  levels. 
 
YAIR is an autonomous robot prototype (Figure 1) 
that has been built for the experimental study of 
reactive systems, sensor fusion and distributed 
computing.  
 

 
 

Fig.1: YAIR Robot Prototype  
 
The backbone of the YAIR’s reactive level is the 
CAN bus (Bosch, 1991), a fieldbus initially 
developed for the automotive industry that is actually 
being used in numerous technological areas, specially 
in mobile robotics, due mainly to its reliability and 
versatility. Its medium access mechanism, its 
multimaster capability, and the ability to detect 
transmission errors make it suitable for distributed 

real-time systems. Reactive level is made up of 
intelligent sensor modules and computing nodes that 
use the bus to share the sensory information. 
 
Reactive level of YAIR has mainly three sensory 
nodes: a motion controller and odometry reckoning 
node, an infrared node that supervises 16 IR detectors 
(it detects objects and estimates the distance from 
them and the robot within a range from 10 cm. to 1 
m.), and an ultrasonic sonar node that provides range 
information about environment objects up to 4 metres 
in distance. 
 
Sensory nodes have reckoning capability, meaning 
that they pre-process the information. This pre-
processed data (sensations) are shared through the 
bus, making it accessible to the remaining nodes. 
(i.e.: the speed vector computed by the motion 
controller can be used by the ultrasonic sonar module 
to point the sonar head towards the displacement 
direction). 
 
Communications between processes running in CAN 
nodes use shared variables. Processes use an uniform 
interface to access to the shared variables: Request 
Function (to read an specific variable) and Write 
Function (to write an specific variable). This interface 
uses CAN messages in a transparent way. When a 
process needs to know data from a sensor, it just only 
reads the corresponding variable or object. 
 
Deliberative level of YAIR has a local control node 
that manages the external communications and 
executes the main control application program. 
Deliberative level establishes the knowledge and the 
reasoning capability to the robot. It can be 
implemented by external nodes for distributed 
processing, remote controlling, status monitoring, and 
so on. Communications between these two levels and 
external nodes are possible using an interface level 
that it is described in the following section.   
 
 

3. COMMUNICATION SYSTEM 
Due to the different set of processes involved in robot 
sensor fusion and control, an heterogeneous and 
flexible framework has been designed to access all 
information with independence of the communication 
channel used. This is performed using common 
interface for all the channels (adapter) defined in the 
CAdapt C++ class. This class only defines a set of 
virtual functions ensuring the coherence for all 
derived class from this. Actually in the robot there are 
three different physical channels to obtain data:  the 
CAN bus, serial ports and Radio-Ethernet network. 
This last one is covered using an application interface 
layer called SC. With these assumptions three 
adapters have been developed: (CAdaptCAN, 
CAdaptCOM and CSCAdapt) with the same 
interface. 



With this approach, independence from channels is 
obtained, and the problems related with them (frame 
formats, bit or character oriented communication etc) 
are hidden in the adapter objects which resolve these 
details internally, offering a common access to all the 
information in all levels, to fused information from 
different sources. 
 
High-level access to distributed data has been 
provided by developing a system called 
Communication System (SC) (Posadas, 1997; 
Posadas, 2000) (see fig.2). This SC hides 
communication details behind an uniform bind-
notification interface. 
 
SC holds an internal representation of the data 
objects using a distributed blackboard (Penny, 1989). 
This data structure is continually updated with the 
changing values of the objects. SC needs also a 
program instance running in each node of the system. 
SC software establishes the required communications 
to ensure that all the copies of the distributed 
blackboard are consistent. 
 
Processes must only execute local accesses to contact 
with all the system. That is, when a process needs to 
obtain the value of a sensor (for example, the velocity 
of the motors) it must only to contact with the 
associated object, which is defined in the local SC 
that is executing in the computer where belongs the 
process. 
The system is Event Driven. So, it’s possible to 
associate the code execution with specific events (a 
change on the value of one object). 
 
Several C++ classes and interfaces to contact with the 
SC have been defined. In this form, processes 
connect with SC in similar way following these steps: 
 

1. First, processes have to instance an object 
from the CSCAdapt class. This class offers a 
common interface that permits local 
accesses with SC using Dynamic Data 
Exchange (DDE). 

 
class CAdaptSC : public CAdapt  
{ 
 ................................... 
 bool Init(); 
 bool Finish(); 
 bool RegisterSensor(CSensor* pSensor, char* pId); 
 bool UnregisterSens(CSensor* pSensor, char* pId); 
 int Write(char* pBuffer, int len, char* pId); 
 int Read(char* pBuffer, int len, char* pId); 
}; 
 

2. Second, processes have to implement an 
object from the parent class called CSensor, 
too. CSensor is a virtual class that defines a 
set of functions which have to be 

implemented to communicate with SC 
through CSCAdapt class. 

 
class CSensor: public CObject 
{ 
 public: 
  virtual bool OnInit(CAdapt* pAdapt)=0; 
  virtual bool OnFinish(CAdapt* pAdapt)=0; 
  virtual bool OnMessage(const char* pBuffer, int 
len, const char* pId) = 0; 
}; 
 

3. Third, processes register  its sensors objects 
calling RegisterSensor function from 
CSCAdapt. With this function, processes 
associate a sensor object (pSensor 
parameter) with an object (pID parameter) 
of the SC distributed blackboard ("pID” 
parameter is the name of the object in the 
blackboard). 

4. After that, when the value of the blackboard 
object changes, the CSCAdapt object 
instance executes the OnMessage function 
of the sensor object. In this way, a process 
receives new values from SC automatically 
(data is obtained from pBuffer parameter of 
OnMessage function). 

5. When a process wants to change the value of 
a blackboard object, it only has to execute 
the local Write function. This is the way that 
processes in the system can control the robot 
using the variables associated with the 
actuators. 

The distributed blackboard generated by the SC 
software is extensive to the data in the CAN network. 
The gateway software ISCCAN performs specific 
translations between CAN protocol and SC data (see 
fig.2). The ISCCAN gateway supports 
communication of the CAN raw data, as well as the 
mapped mode that consists of a bi-directional 
mirroring of CAN identifiers and objects in the 
distributed blackboard. The mapped mode allows 
processes running in every node into the IP network 
to have access to the CAN information through the 
SC software and the defined notification scheme. 
 
Two kind of problems arise in implementing the data 
chain that links low-level processes running in CAN 
nodes and high-level processes running in computer 
nodes: 
 
� Data format conversions and serialisation 

coherence. 
� Semantic guided data filtering. 
 
The ISCCAN gateway solves the data format 
conversion and serialisation using ASCII-Hex 
representation of CAN binary streams. SC distributes 
these streams for selective processing. Processes 
translate this information using a supplied object 



toolbox. The SC mapped mode allows the use of 
defined filtering by applying the SC general bind-
notification scheme. 
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Fig.2: Communication System 

 
The SC blackboard level is intended to provide 
communications for deliberative soft real-time 
processes. This kind of processes must manage 
communication overloads of 20ms introduced by the 
SC+ISCCAN system. 
 
Typically, deliberative processes are related to 
sensory integration, data fusion and map building. In 
this case, when temporal and spatial sensory fusion is 
essential, time properties must be attached to sensor 
data and control actions. The time property attached 
to each SC blackboard object is in the form of a time 
firewall (a register that accumulates all the 
communication overloads). To achive this, we attach 
a temporal counter reset at the moment of information 
generation, which is increased between stages in the 
same distributed node. If this information travels 
through the communication channel, the information 
time is increased using the maximum latencies of 
transmission and preset with this time in the reception 
instant. From this information, each process using 
data have available the tuse-tobservation difference and 
uses it in data integration tasks. 
 
In a recent paper (Han et al., 2001), a remote control 
architecture for robots is described. It is based on  the 
control of the internet time delay, and reduces the 
time difference between a real internet-based robot 
and a virtual one. On the other hand, this work 
distinguishes between communication time (where 
internet time delay is unavoidable) and processing 
time. That is, deliberative nodes communicate 
through Internet to send information and program 
code (with soft real-time restrictions) to reactive 
nodes, and then reactive nodes process this 
information and program code with hard real-time 
restrictions. 

 
Thus, it is not necessary to consider internet time 
delay to control obstacle avoidance. In reactive nodes 
are the processes that control automatically obstacle 
avoidance, and in deliberative nodes are only the 
processes which send to the robot information about 
the path to follow (objective). Reactive nodes receive 
this information (reception time delay is not critical) 
and compose it with the local information about 
obstacle avoidance. The result is a forward movement 
to the objective without crashing into obstacles. The 
next section describes the prototype implemented to 
test the architecture designed. 
 

4. PROTOTYPE 
 
Each deliberative node of YAIR uses SC to gain 
access to distributed CAN objects system through the 
gateway ISCCAN. Processes that provide YAIR a 
deliberative behaviour can be executed in every 
computer where a local SC instance exists. These 
computers are called homogeneous nodes because of 
they belong to the SC configuration (see fig.3). There 
are nodes where it is impossible to execute a SC 
instance (for example, an embedded PC where the 
operating system does not have the SC requirements 
or and Unix system), in these cases the processes 
have to communicate with a remote SC through a 
specific gateway application. These nodes are called 
heterogeneous nodes (see fig.3). For example, there is 
a socket gateway that permits every process in every 
heterogeneous node to connect with SC establishing a 
standard socket connection. Processes connect with 
the gateway and this communicates with SC. 
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Fig.3: Implemented prototype communications 

architecture. 
 
Each reactive node can execute basic behaviours 
using real-time distributed data on CAN. Control 
actions are obtained in each node using the behaviour 
composition model described in (Simo, 1997). This 
model is similar to Arkin’s model (Arkin, 1990) with 
the addition of the distributed behaviours selection 
system based on motivation concept. In agreement 



with this model, teleoperation can be considered as 
the execution of a behaviours set that contribute to 
control actions together with the executed behaviours 
in reactive nodes (i.e. obstacles avoidance). 
 
On the other hand, teleoperation can consist of the 
remote execution of a motivation tasks set that 
contribute to basic behaviour composition.  
 
In the last release there are three CSensor derived 
classes: CSensorIR, CSensorBrujula, CSensorHaz, 
CSensorTelemando and CSensMotores.  
The CSensorIR reads data from the IR sensor in the 
YAIR robot using the CAN bus adapter. The instance 
of this derived class holds a thread that periodically 
(50 milliseconds) reads a communication object in 
the CAN adapter. This involves sending a CAN 
message to the IR sensor modules which returns 
another one with data from sensors. This message is 
filtered (extracting the header), routed to the objects 
interested in this information (those registered) using 
OnMessage function. Once the information arrives to 
the CSensIR instance, a pre-processing is performed 
and data stored internally.  
The CSensMotores derived class works in a similar 
way, reading periodically (100 milliseconds) a 
communication object to obtain from motor encoders 
the information about odometry. This information is 
the base for location calculus and could be fused with 
the data from CSensorBrujula (compass) for position 
estimation. 

 
Fig.4:Graphical representation of the CSensorHaz 
after fusing the information obtained from CSensIR 
object. 
 
The CSensorHaz is an object that holds data fused 
from CSensIR information. To obtain that 
information, the CSensIR object offers a set of 
interface functions that return the value of reflected 
light and ambient light from a sensor in the ring. 
These values are transformed to distance units in the 
CSensorHaz object and fused to a ring representation 
using the distance values, the angle covering each 
sensor, robot position and time elapsed. This ring 
representation could be used to avoid obstacles in the 

environment. The graphical representation of the 
CSensorHaz is shown in Figure 4.  

  
Finally, the CSensorTelemando is a sensor that acts 
like a joystick using a graphical representation in a 
tactile panel. The data from the sensor (orientation, 
speed) is used to form a direction vector for the 
robot. This vector is sent to the robot using the 
CSCAdpat described in previous sections. 
 
Using these software components, a software module 
based on Windows CE for remote control of YAIR 
has been built to validate the communication system 
and the communications among SC and 
heterogeneous nodes through gateways. This module 
allows to send the speed for each wheel to the motion 
controller. 
 
Windows CE software is executed in an embedded 
PC (fig.4). The application establishes a radio 
Ethernet connection with a “socket gateway” that is 
running in the deliberative node of YAIR (fig.3). 
 
The “Socket gateway” sends to local SC the messages 
that it receives from Windows CE module. On the 
other hand, SC sends the received messages to 
ISCCAN gateway and, finally, ISCCAN sends them 
to reactive nodes through CAN bus. In this way, 
motion controller node can receive messages from the 
remote embedded PC and it can compose the 
corresponding control actions.  
 

 
 
Fig.5: Robot teleoperation using an embedded PC 
 
The Windows CE application has an easy graphical 
interface (fig.5) that allows to select the desired target 
direction of YAIR. Then, it is sent to motion 
controller node through a wireless IP network and the 
described SC+ISCCAN facilities. Composition of 
teleoperation orders (desired target direction) with 
reactive behaviour orders (obstacle avoidance) 
produces the suitable commands to be sent to the 
motion controller. The result is a friendly and robust 



teleoperation because of  operator has not to worry 
about robot collisions. 
 

 
5. CONCLUSIONS  

 
A communication system suitable for remote control 
and access to real-time systems with distributed 
sensory architecture is described. The main 
advantage of the system is that different type of 
computers (from a palmtop to main workstations in 
the network), could be linked to access the robot 
throught the distributed blackboard.  
 
This system has been implemented in the YAIR 
robot, an autonomous robot with intelligent sensors 
that produces different measurements about the 
environment and its position within it. 
 
The SC+ISCCAN combination solves the high-level 
data diffusion in the distributed blackboard system. 
Remote accesses to YAIR are possible from 
homogeneous SC nodes and from heterogeneous 
nodes using gateways. 
 
A Windows CE module is described for controlling 
the movements of YAIR. This application allows to 
send speed values to motion controller node through 
a wireless IP network and the described “Socket 
gateway” and SC+ISCCAN facilities. 
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