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Abstract: Stringent CAFÉ regulations along with technological advances in materials, 
high-pressure fuel injection and complex turbo charging systems have rekindled interest 
in the area of Diesel engines for passenger vehicle applications.  A modern Diesel engine 
is not only clean and quiet but also allows comparable drivability relative to gasoline 
engines with considerable improvements in fuel economy. However the current 
generation diesel engine is a complex system.  It is not uncommon to find features like 
Variable Geometry Turbo charging (VGT), Exhaust Gas Recirculation (EGR) and High 
Pressure Common Rail (HPCR) fuel injection.  In this paper we discuss the design of a 
multivariable controller for the VGT-EGR system for intake flow regulation.  Control 
design is carried out under the sliding mode framework.  Copyright © 2002 IFAC  
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1. INTRODUCTION 

 
The presence of both the VGT and EGR in the intake 
airflow path introduces varying degrees of 
complexities in the overall plant behaviour.  The 
natural feedback established by the VGT is 
compromised with the presence of the high pressure 
EGR loop.  For example an inverse response type 
behaviour for the compressed air flow rate in the 
presence of step changes in EGR position have been 
reported by several researchers (Kolmanovsky, et al., 
1997 and Upadhyay et al., 2001).  Another 
interesting feature that has come to light is the 
varying nature of the intake charge flow response to 
fuelling step changes under the influence of EGR 
(Stefanpoulou et al., 1998 Upadhyay et al., 2001).  
To make matters worse the diesel engine model is 
highly non-linear.  It is no surprise therefore that the 
coordinated control of VGT and EGR is a difficult 
problem and has been so far been handled by only a 
few researchers (Jankovich et al., 1998 and Van 
Nieuwstadt et al., 2000).  In (Jankovich et al., 1998) 
the authors use output redefinition to circumvent the 
nonminimum phase problem and use the domination 
redesign technique to design the coordinated control 

with good success.  In this paper we cast the VGT-
EGR control problem in the sliding mode framework.  
We begin with a reduced order model of the plant 
and perform control design.  The controller 
performance is then evaluated with respect to the full 
order model.             
 
1.1 Plant model  
 
It is possible to identify a reduced order (3state) 
model for the intake flow loop based on the 
simplifying assumptions that all thermodynamic 
properties are referenced to air and the intake and 
exhaust manifold temperature dynamics are 
insignificant.  This approach has been adopted 
previously by (Utkin et al., and 2000, Jankovich et 
al., 1998) solely for the purpose of convenience of 
control design.  Further modifications can be made 
by redefining the control inputs as the EGR flow rate 
and the turbine flow rate as opposed to the EGR and 
VGT actuator positions.    The intake and exhaust 
pressures and the compressor power define the 3 
states of the reduced order model and are as follows:   
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Hence U1 = Wegr  and U2 = W2T are the two control 
inputs and are modelled based on standard orifice 
flow equations.  The third input Wf  is assumed to be 
available from a separate fuel controller.  For 
detailed analysis of the derivations of the full order 
and the reduced order models the reader is referred to 
(Kolmanovsky et al., 1997, Upadhyay et al., 2001) 
 
1.2 Control objectives.  
 
The control objective is to regulate the AFR and the 
EGR flow fraction to the desired levels as determined 
from an optimised engine static calibration. These 
static maps are generated based on a trade-off 
between maximal fuel economy and minimal NOX 
generation, without violating the instantaneous in 
time constraint on zero smoke. Hence while the set 
point for AFR determines the engine response and 
prevents smoke, the EGR flow fraction seeks to 
minimize in cylinder NOX generation. If the fuelling 
rate is known (from driver pedal position) then the 
set point for AFR can be transformed into a set point 
for compressor flow rate Wd

c as: 
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Similarly, the set point for EGR flow fraction can be 
expressed in terms of the desired quantities Wd

egr and 
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This allows us to transform the system outputs for 
regulation such that the control objective can be 
redefined as the regulation of the desired flow rates 
Wd

egr  and Wc
d.  This approach has been used 

previously, without details of the derivation, in 
(Jankovich et al., 1998, Utkin et al., 2000).  
Derivation details are outlined in (Upadhyay, 2001). 
Since real time implementation of the controller 
would make sense only if the controller was able to 
perform satisfactorily when tested on the full order 
model, the controller performance on the full order 
model was also was evaluated.  An obvious draw 
back of this approach lies in the necessity to invert 
the flow model to obtain the EGR valve position (α) 
and the VGT vane position (β) commands that are 
the control inputs to the full order model.  This 

inversion makes the inputs very sensitive to flow 
transients especially in the region where the pressure 
ratio across the valve approaches unity.      
  

2. CONTROL DESIGN 
 
As outlined in the previous section the model for the 
plant can be written as: 
 
States 
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Outputs as set point regulation errors 
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u1= Wegr, u2 = W2T 

 

 The output regulation errors as defined in (5) are 
based on the definition of the control objectives.  It 
must be pointed out that this model has a singularity 
at P1=Pa, however this problem can be circumvented 
based on the fact that it can be shown that the space 

( ){ }0;,:,, 2121 >>>=Ψ caac PPPPPPPP  is an 

invariant subspace; hence all state trajectories 
originating in Ψ  stay in ott >∀Ψ . 

 
3. CONTROL DESIGN WITH SLIDING MODE 
 
A technique that is often used in sliding mode   
control design is the Regular Form approach.  (Utkin, 
1992).  Unfortunately it turns out that for the model 
introduced in Section 1 the integrability conditions  
for the corresponding Pfaff system are not satisfied, 
hence the regular form approach cannot be easily 
applied to this system.  It was therefore decided to 
use an alternate design approach in which we extend 
the Input -Output (IO) linearization technique to 
sliding mode control design. 
 
3.1 IO Linearization for Sliding mode  
 
We begin with an IO linearization of the VGT-EGR 
plant intake flow model.  Recall that the output 
vector was defined as: 
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for this output definition following the standard IO 
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tiscisTm ηηηη =*  

hence the vector relative degree is (1 0) and the total 
relative degree for the plant is 1, this implies that the  
internal dynamics are of the second order, note that a 
and b are defined in Ψ . Input-output linearization 
decomposes the dynamics of a non-linear system into 
two parts; an externa l (input-output) part and an 
internal (“ unobservable”) part (Slotine et al., 1991). 
Stability of the internal dynamics is essential for 
meaningful control design.  One way of analysing 
the internal dynamics of a system is by looking at its 
zero dynamics.   The zero-dynamics is defined to be 
the internal dynamics of a system when the system 
output is constrained to zero by the input. It turns out 
that the states forming the zero dynamics can be 
written as:   
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stability of the zero dynamics is easily established by 
looking at the stability of the equilibrium points.  For 
the system in (7), the equilibrium points are: 
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It can be shown through a Jacobi linearization of (8) 
that the equilibrium is unstable and that P2e is the 
unstable mode, this conclusion was also shown in 
Jankovich et al., (1998).  Hence as stressed above 
control design is not meaningful for the system 
defined by (4) and (5).  It is possible to circumvent 
this problem through output redefinition .  
Consider a new set of outputs as defined below 
where we replace the EGR flow rate by the exhaust 
manifold pressure P2.  
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with this output definition the IO linearization yields: 
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giving a vector relative degree of (1,1) and a zero 
dynamics of the first order. The corresponding 
internal dynamics for the system is represented by 
the state P1 as follows: 
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To establish the stability of the internal dynamics we 
examine the zero dynamics of the system as follows: 
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with 
tiscisTm ηηηη =*  

the zero dynamics for the system is then established 
by substituting u1z into (10) as follows: 
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substituting the appropriate values for the variables 

eoozz Pbauu 221 ;;;; , yields the following equation 

for the stable zero dynamics: 
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3.2 Extension of IO Linearization to Sliding mode 
 
In this section we present the extension of input 
output linearizability to the Sliding mode technique 
for MIMO non- linear systems.   Consider a non-
linear system of the form: 
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where each Si  can be defined as a function of the 
derivatives of the ith output yi  upto the ( )th
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where ri is the equivalent linearizability index of the 
ith output channel, hence, 
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easy to see that if we wish to tackle a tracking 
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[ ]

∑

∑∑

=

−
−

=
−

=
− −−=

m

k
ki

r
fgkri

r

j
i

i
fji

r

j

j
idjii

uhLL

hLyS

i

i

ii

1

1
1,

0
1,

0
1,

))((

)(

α

αα&

         (12) 

for, i =1 … m we can write (11) in a compact form 
as: 
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where, Lf(h) and Lg(L f(h)) are the Lie derivatives. 
We can now define the attractiveness condition for 
each surface such that  

0<iiSS&   

a simple choice would be 
miSsignS iiii ...1,0),( =>−= λλ& , this condition 

can be written as: 
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                   (15) 
based on equation (15) it is guaranteed that sliding 
mode will be enforced on all surfaces Si= 0, in finite 
time.  Hence from equations (13) and (15) and 
assuming 1−ψ exists we get: 

{ })()(1 xLSMYU d −+= −ψ            (16) 

the existence of 1−ψ is a necessary condition for I/O 
linearization.   
 
3.3 The VGT-EGR control design problem 
 
Based on the discussion outlined so far we now 
illustrate this design process via the VGT-EGR 
problem at hand with the output redefinition as 
outlined earlier.  Recall the output vector was 
defined as:  









−=
−=

=
e

d
cc

PPy

WWy
y

222

111  
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following the technique illustrated earlier we can 
now define the sliding surfaces as:  
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where, “a” and “b” are as defined previously and 
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Next we define the attractiveness condition as the 
constant rate reaching law:  
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after some algebraic manipulations we get: 
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with the variables iλ to be selected such that sliding 

mode is enforced in the manifold of interest.  
 
3.4 Observer design 
 
The controller designed relies on measurements of 
the intake manifold pressure P1, the compressor flow 
rate Wc1 and the exhaust manifold pressure P2.  The 
compressor power Pc can be determined from the 
compressed air flow rate provided the compressor 
efficiency cisη  is known.  Normally the exhaust 

manifold pressure is not available as a standard 
measurement hence we have to design an observer 
for the exhaust manifold pressure, this accomplished 
as follows: 
Consider the compressor power state equation: 
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next select a sliding surface, 
cPS = , with  -l3> 0, 
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where ueq, the equivalent control is available from a 

first order filter with time constant fτ as shown: 
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4. SIMULATION RESULTS 

 
During the course of this work several facts came to 
light after careful observation.   

1. The flow through the EGR valve is dictated 
by the pressure ratio P1/P2 over the valve, as 
should be obvious from the standard orifice 
flow model. 

2. The intake manifold pressure P1 dynamics 
are slower than those of the exhaust 
manifold pressure P2, due to TC influence 
(turbolag). 

3. An open EGR valve couples the dynamics 
of the intake and exhaust manifold 
pressures.  

Therefore it came as no surprise that regulation of 
the EGR flow rate to desired flow rates was in 
general a more difficult task.  A conclusion was 
reached that for satisfactory regulation of the EGR 
flow rate it was essential to monitor the behaviour of 
the pressure ratio, a smooth trajectory being 
desirable.    Figure 1 shows the desired flow profiles 
for the EGR flow rate and the compressed air flow 
rate that was to be achieved via the coordinated 
control of EGR and VGT.  The fuelling command 
was assumed to be available via a separate controller.  
Figure 2 shows the flow response for the reduce 
order model and Figure 3 shows the intake and 
exhaust manifold pressure profiles, the inset in 
Figure 3 depicts the pressure ratio trajectory, notice 
the satisfactory EGR flow regulation that is achieved 
as well as the smooth pressure ratio profile.  The 
same controller was then implemented on the full 
order model; recall that the inputs to the full order 
model are the EGR valve position α and the VGT 
vane position β.  Inverting the controller outputs, 
which are the respective flow rates, generated these 
inputs.   Figure 4 shows satisfactory regulation of the 
desired flow rates though the EGR flow rate shows a 
non-monotonic behaviour.  This is attributable to the 
direct influence of the manifold pressures on flow 
regulation for the full order model as was explained 
earlier.    
 

 
 

Figure 1: Reference values for regulation 
 

 
 

Figure 2: Reduced model response with MV SM 
control implementation 

 

 
 
Figure 3: Manifold pressure response for the reduced 

model. 
 
Figure 5 shows the manifold pressures along with the 
pressure ratio trajectory.  Notice the correlation 
between the EGR flow response and the pressure 
ratio profile.  Figure 6 shows the EGR valve and the 
VGT vane position response, while the vane behaves 
in a satisfactory manner the EGR valve response 
shows as much as 20% overshoot/undershoot.  Again 
this is attributable to the model inversion approach 
that was used to estimate the EGR valve position and 
its sensitivity to the manifold pressure ratio. 



     

 
 
 

Figure 4:  Response with MV SM control 
implementation on full order model 

 

 
 
 
Figure 5: Manifold pressure response for full order 

model 
 

 
Figure 6: Valve position response for full order 

model 
 

5. CONCLUSIONS 
 
In this paper we presented the process for the design 
of a sliding mode controller for the coordinated 
control of VGT and EGR for a modern Diesel 
engine.  The nonconformity of the plant model to the 
regular form design approach prompted us to extend 
the IO linearization technique to sliding mode 
control design.  This allowed a systematic approach 
for the selection of the sliding surface as a simple 
extension of the IO linearization technique.  

Simulation results showed the complex nature of the 
plant and the influence of the manifold pressures on 
the intake flow regulation process.  It was noticed 
that the exact regulation of the EGR valve was the 
more difficult task.  At this point we are unable to 
present experimental results from real time 
implementation of the proposed control algorithm.  
However, experimental verification of the controller 
performance will be taken up in the near future.      
 

NOTATION 
 

Px = pressure;  Pc = compressor power 
Tx = temperature; Wxx = mass flow rate   
Cp = sp. heat capacity; Ra = gas constant for air  
N = engine rpm; V = volume. 
Greek letters and symbols 
η = efficiency; τ = time constant;  
α = EGR valve position ; β  = VGT vane position  
Subscripts and Superscripts 
1 = referenced to intake; 2 = referenced to exhaust  
a = atmospheric; C1=from compressor to intake 
2T = from exhaust manifold to turbine 
TC = turbocharger; egr = exhaust gas recirculation 
f = fuel; c = compressor; cis = isentropic for 
compressor; tis = isentropic efficiency for turbine  
tm = turbine mechanical; v = volumetric  
D = displacement; d = desired value 
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