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Abstract: A configuration consisting of a star camera, four reaction wheels and magnetorquers
for momentum unloading has become standard for many spacecraft missions. This popularity
has motivated numerous agencies and private companies to initiate work on the design of an
imbedded attitude control system realized on an integrated circuit. This paper considers two
issues: slew maneuver with a feature of avoiding direct exposure of the camera’s CCD chip
to the Sun and optimal control torque distribution in a reaction wheel assembly. The attitude
controller is synthesized applying the energy shaping technique, where the desired potential
function is carefully designed using a physical insight into the nature of the problem. The
system stability is thoroughly analyzed and the control performance simulated.
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1. INTRODUCTION

A typical configuration of an attitude control system
considered for many of low earth orbit spacecraft, con-
sists of a star camera, four reaction wheels and mag-
netorquers for momentum unloading. The algorithms
developed in this paper address two control problems:
a slew maneuver and a control torque distribution. It is
assumed that full state information, i.e. the angular ve-
locity and the attitude, is available. The issues related
to the attitude determination with a star camera and
the momentum damping are not addressed, however
the interested reader may refer to standard textbooks
in the field (Sidi, 1997), (Wertz, 1990).

The algorithm presented in this paper provides an
ability to perform a controlled spacecraft maneuver
to the desired attitude without any restrictions on the
target attitude and to keep it stabilized in all three
axes. The Sun is the most dangerous point in the sky

1 This paper was partially supported by the Danish Research
Agency under the project Advanced Control Concepts for Precision
Pointing of Small Spacecrafts.

for many payloads, the controller therefore provides a
built-in safety mechanism for that. The control torque
is distributed among available reaction wheels such
that the resultant angular momentum of each reaction
wheel is kept nearest possible, in the Euclidean norm
sense, to the nominal value.

The algorithm presented in this work is based on the
energy shaping method. The advantage of this ap-
proach is that it provides a physical insight into the de-
sign. Stabilization by the energy shaping of a Hamil-
tonian system was first proposed in mid eighties, (van
der Schaft, 1986). The control action was the sum of
the gradient of potential energy and the dissipation
force. Such a control law made the system uniformly
asymptotically stable to the desired reference point -
the point of minimal potential energy, (Nijmeijer and
van der Schaft, 1990).Later, the concept was gener-
alized to a coordinate-free setting on a Riemannian
manifold, (Koditschek, 1989). In this paper the energy
shaping method is applied to the attitude control prob-
lem.
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The paper is organized as follows. A canonical form
for motion of a rigid spacecraft is derived in Section 2.
The control synthesis is addressed in Section 3. An al-
gorithm for control torque distribution in the reaction
wheel assembly is provided in Section 4. A simulation
case study comprises the final part of this paper.

2. CANONICAL FORM FOR A RIGID BODY

To apply the energy shaping as in (van der Schaft,
1986) the rigid body motion is expressed in the canon-
ical form. The standard approach is to use a coordinate
neighbourhood, e.g. Euler angles and their conjugate
momenta. In this work a global approach is chosen.
The rotational motion of a rigid body is parameterized
by the unit quaternionq =

�
q1 q2 q3 q4

�T
and the

conjugate momentap =
�
p1 p2 p3 p4

�T
. The idea

adopted in this section was addressed earlier in ce-
lestial mechanics, (Cid and Saturio, 1988), (Morton,
1994). The authors studied a canonical transformation
y = f (x) of the state spacey 2 R2n to x 2 R2m with
m > n. The motion of the rigid body is a special case
of this transformation form= 4; n= 3. In other words
the rigid body motion is no longer described locally in
a 3 dimensional Euclidean space but rather globally
in 4 dimensions. Following this idea the body angular
velocity vector gets also an extra dimension, which
is trivially 0 only on the unit sphereS3 = fq 2 R4 :
qTq = 1g.

The kinetic energy of a rigid body rotation is a func-
tion of the instant angular velocityω

T =
1
2

ωTJω; (1)

whereJ is the inertia tensor. The angular velocity vec-
tor may be regarded as an element of the quaternion

vector space. DefiningΩ :=
�
ωT 0

�T
Eq. (1) becomes

T =
1
2

ΩTJ�Ω; (2)

whereJ� is a block diagonal matrix

J� =
�
J 0
0 J0

�
: (3)

The elementJ0 takes in general an arbitrary nonsingu-
lar value. Using the standard quaternion parameteriza-
tions of kinematics

q̇ =
1
2

Q(q)Ω; (4)

where

Q(q) =

2
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q4 �q3 q2 q1
q3 q4 �q1 q2

�q2 q1 q4 q3
�q1 �q2 �q3 q4
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the kinetic energy is

T = 2qTQ(q̇)J�QT(q̇)q: (5)

In general the Hamiltonian, (Goldstein, 1980) is de-
fined as

H(q;p) = hp; q̇i�L(q; q̇); (6)

where the LagrangianL = T (q; q̇)�U(q), and conju-
gate momentump is

p =
∂L
∂ q̇

=
∂T
∂ q̇

= 4q̇TQT(q)J�QT(q); (7)

The Hamiltonian for the rigid body motion is then

H(q;p) = pTq̇�L(q;p)

=
1
8

pTQ(q)J��1QT(q)p+U(q): (8)

Having Hamiltonian the canonical equations are cal-
culated

q̇ =
1
4

Q(q)J��1QT(q)p (9)

ṗ =�
1
4

Q(p)J��1QT(p)q�
∂U(q)

∂q
+M p;

whereM p is the generalized moment.

The spacecraft control torque is denoted byM c. To
find the correspondence between the generalized mo-
ment and the control torque, the invariance of the work
done by this two fields is used. It follows that the time
derivatives of the work done by the torqueM p andM c

are equal

q̇T(t)M p(t) = Ẇ (t) = ΩT(t)M c(t): (10)

Applying Eq. (4), the right hand side of Eq. (10)
becomes

q̇T(t)M p(t) = Ẇ (t) = 2q̇T(t)Q(q(t))M(t); (11)

whereM =
�
MT

c 0
�T

. It follows from Eq. (11) that

M p(t) = 2Q(q(t))M(t) (12)

or equivalently

M(t) =
1
2

QT(q(t))M p(t): (13)

3. ATTITUDE CONTROL

The energy shaping, (van der Schaft, 1986) suggests a
feedback control of the form

M p =�
∂V (q)

∂q
+Md ; (14)

where V (q) is a continuously differentiable scalar
valued function. The termM d is a dissipative force,
and the time derivative of its workẆ = MT

d q̇ is
negative definite. The control law (14) makes the
system asymptotically stable to the equilibrium point
(qe;0) if qe is the minimum of the sum of the potential
energiesU(q)+V(q) as in Fig. 1.
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Fig. 1. A control torque equal the negative gradient of
potential energy gives a contribution to the total
potential energy in the system.

3.1 Control Synthesis

The controller proposed in this paper is designed for
a spacecraft equipped with a star camera, which bore
axis shall never point to the Sun. This attitude is
denoted as forbidden. For simplicity of the exposition
we assume that the reference quaternion is the identity
quaternionqe = e, otherwise the quaternionq shall be
substituted byQ(qe)q in the subsequent formulas.

Forbidden attitudes in the slew maneuver problem are
not only a certain pointq f and its antipode�q f ,
but rather the whole geodesicsG f on the 3-sphere.
Having a forbidden attitudeq f the whole family can
be generated by a product with a rotation about the
bore axis. The control law proposed shall make use
of two orthogonal vectorsW 1;W2 2 R

4 normal to the
geodesicsG f . They are constructed in the following
procedure:

Procedure 1.

(1) Determine the unit vectorb in direction of the
bore axis and the unit vectors pointing towards
the Sun.

(2) Compute a quaternionq f corresponding to such

a rotationR f : R3 ! R
3 that b = R f (s). For

this purpose we employ a definition of a unit
quaternion, (Goldstein, 1980)

q f =
h
n1sin

ψ
2

n1sin
ψ
2

n3sin
ψ
2

cos
ψ
2

iT
;

(15)
where the triadn = [n1 n2 n3]

T is the unit vector
of the rotation axis andψ is the angle of rotation.
The vectorn is orthogonal tos andb, n = b�
s=jb�sj. The angleψ 2 [0;π] is computed using
the scalar product ofs andb, ψ = acos(sTb).

(3) Compute the geodesicsG f as the product ofq f
and quaternions corresponding to the rotations

n

s

b

�

�

Fig. 2.q f defines attitude quaternion rotating the sun
vectors to the bore axisb.

about the bore axisb

G f =

8>><
>>:

Q(q f )

2
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b1sinφ
b2sinφ
b3sinφ
cosφ

3
775 : φ 2 [�π;π)

9>>=
>>;

:

(16)
(4) Find two orthogonal vectorsW 3 andW4 both be-

longing to the geodesicsG f : W3 = [b1 b2 b3 0]T

andW4 = e. Now the wanted vectorsW1, W2 are
chosen such that together withW3 andW4 they
form orthonormal basis forR4. The unit vectors
W1, W2 have the following form

W1 = Q(q f )[c1 c2 c3 0]T; (17)

W2 = Q(q f )[d1 d2 d3 0]T; (18)

where the vectorsb, c, d form orthonormal basis
in R3.

The procedure above provides a definition of two or-
thonormal vectorsW1 andW2, which have a remark-
able feature that

q 2 Gf , (qTW1)
2+(qTW2)

2 = 0: (19)

A potential functionV (q) suggested for the feedback
is the function 1�q4, having the minimum forq = e,
combined with the feature in Eq. (19)

V (q) =
kp(1�q4)

(qTW1)
2+(qTW2)

2 ; (20)

where kp is a positive real serving as a design pa-
rameter. The expected performance is such that the
control torque conforming to Eqs. (13) and (14) will
be repellent to the geodesicsG f and the system is
globally asymptotically stable to the identitye. Using
Eq. (13) the explicit form for the proportional part of
the control torque is derived
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1
2

QT(q)
∂V (q)

∂q
(21)

=
QT(q)

�
(q̃2

1+ q̃2
2)e+2(1�q4)(q̃1W1+ q̃2W2)

�
�2

�
q̃2

1+ q̃2
2

�2

where ˜q j = qTW j.

The control torque is then

M c =

2
4Mg1

Mg2
Mg3

3
5+K dω; (22)

whereK d is a negative definite matrix. Notice that the
time derivative of the work done by the fieldK dω

Ẇ = ωTK dω (23)

is negative definite.

We wrap up this subsection by reformulating Eqs. (20)
and (21) for an arbitrary referenceq e. The nominator
of the potential energy is modified

V (q) = kp
1�eTQT(qe)q

(qTW1)
2+(qTW2)

2 : (24)

Then the controller is given by Eq. (22), where the

vector
�
Mg1 Mg2 Mg3 Mg4

�T
is

kpQT(q)
�
(q̃2

1+ q̃2
2)qe +2(1�qT

e q)(q̃1W1+ q̃2W2)
�

�2
�
q̃2

1+ q̃2
2

�2

3.2 Control Torque Command

To implement the control law in Eqs. (21) and (22)
for a spacecraft actuated by reaction wheels, an ad-
ditional computation has to be carried out. The term
ω� hw, wherehw is the angular momentum vector
contributing from all four reaction wheels, has to be
feed-forwarded by the controller. This is done in order
to incorporate the angular momentum of the wheels in
dynamics of the spacecraft. As the result, the torque
generated by the wheels is computed according to

Mw = M c +ω�hw: (25)

3.3 Control Algorithm

(1) Compute the damping term

MDamp = K d ω: (26)

(2) Compute the conservative term

MConserv =�K p [Mg1 Mg2 Mg3]
T; (27)

where the vector
�
Mg1 Mg2 Mg3 Mg4

�T
is

QT(q)
�
(q̃2

1+ q̃2
2)qe +2(1�qT

e q)(q̃1W1+ q̃2W2)
�

�2
�
q̃2

1+ q̃2
2

�2

(28)

(3) Compute the angular momentum compensation

MCompen = ω�hw: (29)

(4) Compute the control torque

MControl = MDamp +MConserv +MCompen: (30)

4. CONTROL TORQUE ALLOCATION

The problem of angular momentum distribution will
be formulated and subsequently solved in this sec-
tion. The control torque allocation provides ability to
allocate the control torque computed by the attitude
controller among the reaction wheels in tetrahedron
configuration.

The problem considered is to find minimum of the
functionJ

min
hw

J = min
hw

jjhw� h̄wjj (31)

subject to the constraint equation

Dhw = h; (32)

wherejj � jj denotes the standard Euclidean norm,hw

is the vector which i-th componenthi
w is the angular

momentum vector of i-th momentum wheel,̄hw is
the nominal value ofhw. We shall denote the prob-
lem (31), (32) as the Optimal Momentum Distribution
Problem (OMDP).

Knowing hw(k) at the time instanttk and a constant
value of the control torqueM c in the time interval
[tk; tk+1[ the increment of the angular momentum is
calculated∆hw = M cTs, whereTs = tk+1 � tk is the
sampling time in the discrete time implementation.

The difference between the present value of the an-
gular momentumhw(tk) and the nominal value is de-
noted by∆Hw = hw(tk)� h̄w. To formulate the OMDP
as one of the standard static optimization problems,
two vectors∆L w and∆L are defined

∆Lw = ∆hw +∆Hw

∆L = ∆h+D∆Hw: (33)

Now, the OMDP is expressed: Find∆L w such that

min
Lw

jjLwjj (34)

subject to
D∆Lw = ∆L : (35)

The optimization problem (34) and (35) has the solu-
tion (Griffel, 1989)

∆Lw = DR∆L ; (36)



whereDR = DT(DDT)�1 is the right pseudo-inverse
of D.

After substitution of Eq. (33) into Eq. (36), the solu-
tion to the OMDP is

∆hw = DR∆h� (E�DRD)∆Hw: (37)

Eq. (37) has an elegant geometric interpretation. The
image ofDR coincides with the image ofDT and the
image of(E�DRD) is the kernel ofD. Hence the two
terms on the right hand side of Eq. (37) are orthogonal
and∆hw satisfying minhw

jjhwjj subject toD∆hw = ∆h
is ∆hw = DR∆h. The second term in Eq. (37) is used
to remove the excess of the angular momentum in the
wheels from their nominal value.

Finally, Eq. (37) shall be rewritten using information
about the computed control torqueM c and the torque
generated by the wheelsM w. This can be done using
an observation that the control torque is constant be-
tween samples

Mw = DRM c � (E�DRD)
∆Hw

Ts
: (38)

5. SIMULATION VALIDATION

The control algorithm is validated by the simulation
test performed in Matlabr/ Simulinkr environment.
The spacecraft principal moments of inertia areIxx =
5; Iyy = 6; Izz = 7 kgm2; the proportional control gain
used in the test isK p = 2:16 10�3E, and the derivative
control gain isK d = �0:14E. When choosing the
control parameters, matricesK d andK p the following
considerations are taken into account:

� maximum torque produced by the reaction wheel
assembly,

� maximum allowable angular velocity of the reac-
tion wheel,

� largeK p gain contributes to quick initialization
of the spacecraft slew maneuver (fast slew ma-
neuver),

� large K d gain contributes to good disturbance
attenuation.

Two examples of a simulation tests are shown in Fig. 3
and Fig. 4. Fig. 3 depicts the test for the initial attitude
[0:5 0:5 0:5 �0:5]T, and the reference at the identity
quaternion. It is seen that the inclination angle be-
tween the bore axis of the star camera and the Sun vec-
tor increases to 125 deg. Afterwards, it is reduced to
45 deg, which is the inclination angle at the reference.
The simulation test for the initial attitude quaternion
[0 0 1 0]T, and the reference[0:16 0:32 0:48 0:80]T is
illustrated in Fig. 4. Again the inclination between the
star camera’s bore axis and the sun vector increases to
90 deg then converges to the value at the reference.

The control torque allocation is designed to keep the
angular momentum of the reaction wheels near their
nominal values. Figure 5 illustrates this functionality.
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Fig. 3. Slew maneuver for the initial attitude
[0:5 0:5 0:5 �0:5]T, and the referencee.
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Fig. 4. Slew maneuver for initial attitude
quaternion [0 0 1 0]T, and the reference
[0:32 0:48 0:80 0:16]T.

The slew maneuver controller is activated during 2000
sec. The initial angular momentum is[�140�140�
140 � 140]T. The algorithm distributes the control
torque such that the angular momentum converges
towards the nominal value[140 140 140 140]T.

6. CONCLUSIONS

The slew maneuver controller was proposed for a
spacecraft equipped with a star camera and four reac-
tion wheels in the tetrahedron configuration. The con-
troller development was based on the energy shaping
method. The desired potential function was carefully
designed using a physical insight into the nature of
the problem. The controller was designed to satisfy re-
quirement that during the maneuver the camera should
never be exposed to the Sun light. A second task
of the controller was to distribute the control torque
among the reaction wheels in such a way that the result
angular momentum of each wheel was nearest to its
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Fig. 5. The slew maneuver controller is activated dur-
ing 2000 sec. The algorithm distributes the con-
trol torque such that the angular momentum of
the wheels converges towards the nominal value
[140 140 140 140]T.

nominal value. A detailed simulation study showed
convincing results for entire envelope of spacecraft
operation.
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