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Abstract: This paper explores training and initialization aspects of dynamic neural networks
when applied to the nonlinear system identification problem. A well known dynamic neural
network structure contains both output states and hidden states. Output states are related to
the outputs of the system represented by the network. Hidden states are particularly important
in allowing dynamic neural networks to approximate complex nonlinear dynamics. An
optimisation based method is proposed in this paper for properly initialising the hidden states
of a dynamic neural network, so as to avoid the introduction of bias in the network parameters
as a result of incorrect hidden state initialisation. Furthermore, a simple optimisation based
method is proposed to initialise the hidden states once the network has been trained. The
methods are illustrated with experimental data taken from a laboratory scale pressure plant.
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1. INTRODUCTION

Neural networks have become a standard tool for the
identification of dynamic systems. Many applications
use static neural networks to build nonlinear input–
output models of the plant. The use of neural networks
for dynamic system identification has been extensively
researched in the last two decades. The attention of
researchers was first focused on static networks such
as multilayer perceptrons (MLPs) (Rumelhart and Mc-
Clelland, 1986), (Churchlandet al., 1992), and radial
basis functions (Broomhead and Lowe, 1988). The
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inputs to these static networks are usually delayed val-
ues of the inputs and outputs of the plant. The neural
network is used to synthesise a nonlinear map. This
approach, however, has some disadvantages:� The input structure is not easy to choose.� The discrete time model requires re–training

when the sampling time is changed.� The problem of discrete time non–linear control
is not as well understood as that of continuous
time nonlinear control.

For the purposes of nonlinear system identification
dynamical systems, some of the most relevant ar-
chitectures that do not suffer from the above disad-
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vantagesare the continuoustime Hopfield networks
andtheir variations(Hopfield,1982),(Koiran,1994).
The first dynamicneuralnetworks (DNNs) were in-
troducedby Hopfield in the context of associative
memory(Hopfield,1984),(HopfieldandTank,1985),
(Hopfield and Tank, 1986), but later modifications
made them capableof approximatingmultivariable
dynamicsystems.Suchnetworks canbe represented
by a nonlinearstate spacemodel. The problem of
nonlineardynamicsystemapproximationrepresents
an extensionof the problemof approximatingtime
seriesandtrajectories(Funahashi,1989).Input affine
DNNs can approximateautonomousnonlinearsys-
tems(FunahashiandNakamura,1993),(Kimura and
Nakano,1998),systemslinearly coupledto the con-
trol for single-input single-output (SISO) systems
(Delgadoet al., 1995)aswell asmultivariablecontrol
affinesystems(Garcesetal., 1999),(Kambhampatiet
al., 2000)andfurthermoregeneralnonlinearsystems
(Garces,2000). Stability conditionsfor DNNs have
also beenanalysed(Matsuoka,1992), (Sanchezand
Perez,1999).

This paperexploresthe problemsof trainingandini-
tialization of dynamic neural networks. DNNs are
characterisedby having a numberof hiddenneurons,
eachof which possessesa dynamicstate.Once the
architectureof theDNN is definedin termsof number
of inputs,outputsandnumberof states,thenumberof
hiddenstatesis thedifferencebetweenthenumberof
statesand the numberof outputs.It is shown in this
paperthat it is importantto considerthe initial values
of the hiddenstatesof the DNNs both for network
traininganduse,andthatarbitraryinitializationof the
DNN’s hiddenstatesduring training introducesbias
in the parameters.Interestingly, in the literaturepub-
lishedsofaronDNNsappliedto systemidentification,
the initialisation of the network’s hidden stateshas
typically beendoneusingzeros.

The paperis organisedas follows. Section2 intro-
ducesdynamicneuralnetworks. Section3 describes
the problemof dynamicneuralnetwork training and
describestheeffectsof not including the initial states
of the hiddenneuronsin the decisionvector. Section
4 introducesa methodfor initialising dynamicneural
networks.Section5 describesa casestudyusingdata
from a pressurepilot plant. Section6 givesfinal re-
marksaboutthis work.

2. DYNAMIC NEURAL NETWORKS

Theintroductionof feedbackinto a feedforwardneu-
ral network architectureproducesa statespacedy-
namic model.Given suitableparametersfor the net-
work the orbits generatedby the statesconverge to
fixedequilibriumpoints.

Originally, recurrentnetworkswereintroducedin the
context of associative or contentaddressablemem-
ory (CAM) problems(Kohonen,1989)and(Hopfield,

Fig. 1. Diagramof a dynamicneuron

Fig. 2. Dynamicneuralnetwork

1984). The uncorruptedpattern is usedas a stable
equilibrium point andits noisy versionsshouldlie in
its basinof attraction.In thisway, adynamicalsystem
associatedwith a setof patternsis created.If sucha
CAM correctly partitions the whole working space,
then any initial condition (correspondingto a sam-
ple pattern)shouldhave a steady-statesolution cor-
respondingto the uncorruptedpattern.The dynamics
of suchaclassifierserveasa filter.

The model is definedby a one-dimensionalarray of
neurons;eachunit canbedescribedasfollows,

ẋi ��� βixi � n

∑
j � 1

ωi jσ 	 x j 
�� p

∑
j � 1

γi ju j (1)

whereβi , ωi j andγi j areadjustableweights,with 1 � βi

aspositive time constantand p  n, xi the activation
state of unit i, and u1 ��������� um the input signals as
seenin Figure 1. The function σ 	�� 
 is typically a
nonlinearsigmoid-typefunction like the hyperbolic
tangentfunction.TheDNN is formedby asinglelayer
of n units as in Equation(1). For convenience,the
outputof thenetwork is oftentakenasthefirst p units
of the statevector x, leaving n � p units as hidden
neurons.The network is definedin Equation(2) by
thevectorisedexpressionof Equation(1),

ẋ ��� βx � ωσ 	 x
�� γu
ŷ � Cnx

(2)

wherex � ℜn is a statevector, u � ℜm is the input
vector, ŷ � ℜp is theoutputvector, ω � ℜn � n, σ 	 x
���
σ 	 x1 
���������� σ 	 xn 
�� T , γ � ℜn � m, Cn � �

Ip � p /0p ��� n � p� � ,
and β � ℜn � n is a diagonal matrix with elements�
β1 ������� � βn � in thediagonal.

It is assumedthat n ! p, so that the network has
n � p hiddenunits.Hiddenunitsareusedto increase
the dynamicmappingpotentialof the network. Their
dynamicsallow DNN’s to discover andexploit regu-
laritiesin thesystem,suchassymmetriesor replicated
structure(Hinton,1986)and(Sejnowski et al., 1986).



The statevectorof the DNN canthusbe partitioned
into theoutputstatesxo andthehiddenstatesxh:

x � "
xo

xh # (3)

wherexo � ℜp andxh � ℜn � p.

3. TRAINING DYNAMIC NEURAL NETWORKS

Supposethat data have beencollected from a real
systemthat is to bemodelledby meansof a dynamic
neuralnetwork. Considera training dataset with N
input–outputpairsandsamplingtime Ts:

ZN � �
y 	 tk 
�� u 	 tk 
�� k� 1 $ N (4)

wherey � ℜp is the measuredoutput,u � ℜm is the
input variable,and k is a samplingindex. Then the
problemof training the DNN to learn the dynamics
from dataset ZN may be written as an optimisation
problem.

The PredictionError Method(Ljung, 1999)attempts
to find the estimatedparametervectorθ � ℜnθ such
that a lossfunction (typically the meansquareerror)
is minimised:

VN 	 θ � ZN 
%� 1
2N

N

∑
k� 1

�
y 	 tk 
&� ŷ 	 tk ' θ 
(� 2 (5)

wherey 	 tk ' θ 
 is theoutputvectorof thenetwork (2) at
time tk giventhedecisionvectorθ.

If the samplingtime is short comparedwith the dy-
namicsof the systemthat generatedthe data to be
fitted, then the loss function VN may be written as
follows:

VN 	 θ � ZN 
�� 1
2Nh ) tN

t1

�
y 	 t 
&� ŷ 	 t ' θ 
�� 2dt (6)

wherethe integral sign denotesnumericalquadrature
using a fixed stepsize algorithm, and h � Ts is the
integrationstepused.

A nonlinearidentificationproblemcan be castas a
nonlinearunconstrainedoptimisationproblem:

min
θ

VN 	 θ � ZN 

The optimisation is typically carried out using un-
constrainedQuasi–Newton methodsor genetic al-
gorithms.The optimisationproblemassociatedwith
trainingusuallyexhibits localminima,soseveralruns
from different(possiblyrandom)initial decisionvari-
ablesshouldbe made,noting that geneticalgorithms
are lesssensitive to the initial valuesof the decision
variablesthanQuasi–Newtonmethods,at theexpense
of highercomputationalrequirements.

For training purposes,the decisionvector that has
typically beenreportedin theliteratureis basedonthe
matrix coefficientsof theDNN (2):

θ �+*, βd

vec	 ω 

vec	 γ 


-.
(7)

whereβd is a vectorwith the diagonalelementsof β
andvec	�� 
 is avectorcreatedwith thestackedcolumns
of anargumentmatrix 	�� 
 .
It isproposedin thispaperthatthedecisionvectorθ be
augmentedto includethe initial valuesof the hidden
statesof theDNN, xh 	 t1 
 :

θ � *//, βd

vec	 ω 

vec	 γ 

xh 	 t1 


-100.
(8)

Thetrainingprocedurewouldbeasfollows:

Procedure1. (DNN Training).� Step1: Initialize theoutputstatesasfollows:

xo 	 t1 
�� y 	 t1 
 (9)� Step2: Initialize thevaluesof βd, ω, γ andxh 	 t1 

with randomvalues.Form the initial decision
vectorθ � 0� accordingto Equation(8).� Step3: Computethe decisionvector θ̂ by solv-
ing the associatedoptimisation problem, with
Vn 	 θ � ZN 
 givenby eitherEquation(5) or (6):

θ̂ � argmin
θ

VN 	 θ � ZN 
 (10)

Notice that the outputstatesare normally initialized
with the valuesof the output variables.Also notice
that several runs of Procedure1 may be requiredto
checkfor localminima.

If the initial valuesof the hidden statesare not in-
cludedin the vectorof decisionvariables,then it is
likely that the resultingmodelparametersβ, ω andγ
will be biased.The explanationof this is asfollows.
Althoughthe initial valuesof thehiddenstatesxh 	 t1 

do not affect the initial valuesof the output states
xo 	 t1 
 (which are typically set to matchthe real sys-
tem’soutput),theinitial valuesof thehiddenstatesdo
affect the initial time derivativesof the outputstates
ẋo 	 t1 
 . This can be easily inferred by looking at the
following form of Equation(2) at time t1 andrecalling
thatω is a full matrix:

d
dt

"
xo 	 t1 

xh 	 t1 
 # �2� β

"
xo 	 t1 

xh 	 t1 
 # � ωσ 3 "

xo 	 t1 

xh 	 t1 
 #54� γu 	 t1 


(11)

So,by fixing the initial valuesof thehiddenstatesto
zerofor training purposes,the initial time derivatives
of theDNN outputsmayhavedifferentvaluesthanthe
timederivativesof thedatathatthenetwork is required
to learn.Thiswill forcethetrainingalgorithmto adjust
the network parametersβ, ω and γ to compensate



for the initial incorrectvaluesin the derivatives, so
introducingabiasin thevaluesof theseparameters.

In linearstatespacemodelling,theeffectof theinitial
statesdependson the stability of the modelandcan
beseparatedfrom the influenceof theexternalinput.
If the linear model is asymptoticallystable,then the
effect of the initial statesdecaysexponentiallywith
time, and if the systemdynamicsare fast, then the
effect of the initial statesdisappearsquickly (Ljung,
1999).

Ontheotherhand,in nonlinearstatespacemodelling,
theeffectof theinitial statesis richer:firstly, theeffect
of theinitial statescannotbein generalseparatedfrom
the effect of the external input. Secondly, even if the
externalinputiskeptconstant,thesystemmayexhibit,
for example,multiple equilibrium points, instability,
limit cycles or chaoticbehaviour, dependingon the
valuesof theinitial states(Khalil, 1992).

4. INITIALIZING DYNAMIC NEURAL
NETWORKS

Once a DNN has beentrained, it is likely that the
designerwill useit onadifferentdatasetfor validation
or simulationpurposes,or it mayevenbeusedon–line
aspartof amonitoringor nonlinearcontrolscheme.

Denoteyv 	 t1 
 thevalueof theoutputvectorat time t1
anduv 	 t1 
 asthevalueof theinput vectorat time t1.

A simpletwo stepprocedurecanbeusedto initialize
theDNN at time t1

Procedure2. (DNN Initialisation).� Step1: Initialize theoutputstatesxo 	 t1 
 with the
valuesof thesystem’soutputat time t1:

xo 	 t1 
�� y 	 t1 
 (12)� Step2: Initialize thehiddenstatesxh 	 t1 
 by solv-
ing thefollowing optimisationproblem:

xh 	 t1 
�� arg min
xh � t1 � 	 ẏ 	 t1 
&� ẋo 	 t1 
�
 2 (13)

whereẏ 	 t1 
 canbe calculatedfrom known data
using finite differencesand ẋo 	 t1 
 can be cal-
culatedfrom Equation(11), given the valuesof
xo 	 t1 
 , xh 	 t1 
 , β, ω andγ.

If theDNN is beingusedfor validationpurposes,then
ẏ 	 t1 
 may be calculatedusingthe validationdataset.
On theotherhand,if theDNN is beingusedin anon–
line application,thenẏ 	 t1 
 canbecalculatedusingthe
recenthistoryof y 	 t 
 .
By using Procedure2, it is ensuredthat the initial
valueof thehiddenstatevectorxh 	 t1 
 is suchthat the
initial outputderivativeof theDNN, ẋo 	 t1 
 , is asclose
aspossibleto therequiredvalueẏ 	 t1 
 .

PIC

40

PI
40

HSO
40

M

Pum p

DC 
Motor

Norm ally

C losed

Norm ally

Open

Pressure  
Sensor

Pressure  
Controlle r

Fig. 3. Schematicdiagramof thepilot plant

Notice that in generalthe numberof hidden states
is different from the numberof outputs.Therefore,
formulatingtheDNN initialization asanoptimisation
problem is more general than formulating it as a
nonlinearequationsolutionproblem.

5. CASESTUDY

To illustrate the conceptspresentedabove, a case
studyhasbeencarriedout usingdatafrom a pressure
pilot plant,which is describedbelow.

5.1 Thepressurepilot plant

The pressurepilot plant used in this casestudy is
illustratedin Figure3. It consistsof a pressurevessel
containingair andwater. Theair pressureis measured
at the top of the vesselby meansof a pressuretrans-
ducer. A hydraulic pump is usedto createa water
flow thatentersthevesselthroughaninlet pipeandso
decreasestheair volume,thusincreasingits pressure.
For a given pumprotationspeedthe systemreaches
an equilibrium point whereno extra waterentersthe
vessel.Furthermore,the directionof flow canbe re-
versedsuchthatthelevel decreasesandsodoestheair
pressure.The input signal,with a rangeof 0-10 V, is
the voltageappliedto the power amplifier thatdrives
the DC motor that operatesthe hydraulicpump.The
signalsaresentandacquiredby asupervisoryPCvia a
Profibusnetwork. Thepressuresignalrangesbetween
0 an100mBar. Thesamplingtimeusedwas0.165s.

5.2 Results

Both the training and validation data setswere ob-
tainedexperimentallyandhad500input–outputsam-
ples each.The optimisationwas carriedout using a
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Quasi-Newton unconstrainedoptimisationalgorithm
implementedin functionfminunc, which is partof the
OptimisationToolbox in MATLAB version6.1. The
DNN usedhada total two states:oneoutputstateand
onehiddenstate.In orderto make a fair comparison,
thetrainingrunswerecarriedout from thesameinitial
valuesof the parametersβ, ω andγ. This casestudy
comparesthe training andvalidationperformanceof
themodelscalculatedwith andwithout theoptimisa-
tion of thehiddenstates.

For training purposes,all signals were scaledand
translatedsuchthat their rangewasin the interval [-
1,1]. Figures4 and5 show thetrainingandvalidation
data,respectively, with optimisedinitial hiddenstates,
asdescribedin Sections3 and4. Figures6 and7 show
thetrainingandvalidationdata,respectively, with the
initial hiddenstatesetto zero.Notice the differences
betweentheresultswith andwithout optimisedinitial
hiddenstate.

The valuesof the parameterswhenthe initial hidden
statewasoptimisedwere:

βd � "
0 � 2479
5 � 6164# (14)

ω � " � 2 � 1166 � 7 � 2336� 1 � 1385 2 � 1893 # (15)

γ � "
5 � 3782
2 � 7541# (16)

The valuesof the parameterswhenthe initial hidden
statewassetto zerowere:

βd � "
0 � 2166
23� 7131# (17)

ω � " � 2 � 7336 � 6 � 9816� 5 � 8830 10� 6528# (18)

γ � "
5 � 6761
11� 7509# (19)

Noticethedifferencesin theparametervaluesin both
cases,which indicatethe presenceof bias when the
initial hiddenstatewasnot optimised.
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Fig. 5. Validation trajectorieswith optimisedinitial
hiddenstates
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Fig. 6. Training trajectorieswith zero initial hidden
states
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Fig. 7. Validationtrajectorieswith zeroinitial hidden
states

6. CONCLUSIONS

An optimisationbasedmethodhasbeenproposedin
this paperfor properlyinitialising thehiddenstatesof
a dynamicneuralnetwork, so as to avoid the intro-
ductionof biasin the network parametersasa result
of incorrecthiddenstateinitialisation.Furthermore,a
simpleoptimisationbasedmethodhasbeenproposed
to initialise the hidden statesonce the network has
beentrained.The methodsareillustratedwith exper-
imental data taken from a laboratoryscalepressure
plant.
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