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Abstract: The problem of detecting and isolating abrupt changes in random signals and
systems is addressed in the paper. The key results of the recently developed optimal theory
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1. INTRODUCTION

Statistical decision tools for detecting and isolating
abrupt changes in the properties of stochastic signals
and dynamical systems have numerous applications,
from on-line fault diagnosis in complex technical sys-
tems to detection of signals with unknown arrival time
in geophysics, radar and sonar signal processing. The
change detection problem (binary hypothesis case)
has received extensive research attention (Shiryayev,
1977; Lorden, 1971; Basseville and Nikiforov, 1993;
Lai, 1995; Lai, 1998; Lai, 2001). The goal of this
paper is to describe the recently developed optimal
theory of change diagnosis (detection and isolation)
(Nikiforov, 1995a; Nikiforov, 1997; Lai, 2000; Niki-
forov, 2000). The readers will be provided with some
ideas how these new results can be used in practice to
solve on-line fault diagnosis problems, especially in
safety-critical applications. Some open problems also
will be discussed. The paper is organized as follows.
First, the problem is stated, namely, the models and
criteria are introduced in section 2. Next, the design of
the change diagnosis algorithms and their statistical
properties are discussed in section 3. Some practical
applications are described in section 4. Some open
problems are drawn in section 5. Finally, concluding
remarks are given in section 6.

2. MODELS AND CRITERIA

In this section, some statistical models and criteria of
optimality are introduced. These models and criteria
will be used in the rest of the paper to design the
change detection/isolation algorithms and investigate
their statistical properties.

2.1 Models with abrupt changes

Generic model. Let us assume that there exists a
discrete time stochastic system

Yk = F(Xk, θ(k), ξk, k), (1)

whereY ∈ Rr is the measured output,θ ∈ Rr is
the parameter of interest,Xk is an unknown vector
(typically a state),ξ is a zero-mean noise. This system
is observed sequentially, i.e. at timen the observations
Y1, . . . , Yn are available. Until the unknown timek0−
1 the parameter vector isθ(k) = θ0 and from k0

it becomesθ(k) = θl for some l, 1 ≤ l ≤ K.
Therefore, (1) is a system withabrupt changeswhere
θ0 describes the normal operation mode of the system
F and θl describes the abnormal mode numberl. It
is assumed that the change timek0 and numberl are
unknown and non random1 .

1 This paper is devoted to the min-max approach, the results on the
Bayesian approach can be found in (Malladi and Speyer, 1999; Lai,
2000).
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Let (Yk)k≥1 be a sequence of observations, which are
coming from system (1). The problem is todetectand
isolate the change inθ. In other words, to determine
the type of fault (numberl) as soon as possible. The
change detection/isolation algorithm has to compute a
pair (N, ν) based on the observations(Yk)k≥1, where
N is the alarm time at which a ν-type change is
detected/isolated andν, 1 ≤ ν ≤ K, is the final
decision.

Let us discuss now several particular cases of model
(1) frequently used in practice.

Independent observations.A finite family of distri-
butionsP = {Pi, i = 0, . . . ,K} with densities
{fi, i = 0, . . . ,K} is considered. In the parametric
case, it is assumed thatP = {Pθ, θ ∈ Θ}, where
θ ∈ Rr, Θ =

⋃K
i=0{θi} and the density function of

this family is denoted byfθ(Y ). It is also assumed that
underP0, the density function ofYk is f0 for every
k ≥ 1 and underP l

k0
, the density function isf0 for

k < k0 and isfl for everyk ≥ k0, 1 ≤ l ≤ K.

Static regression model with redundancy.Consider
the following regression model with additive changes :

Yk = HXk + ξk + Gl(k, k0), (2)

whereXk ∈ Rp is the unknown non random state
vector,ξn is a zero mean Gaussian white noise with
covariance matrixR = σ2Ir, σ2 > 0, H is a full rank
matrix of sizer × p with r > p andGl(k, k0) is the
l-type change occurring at timek0, namely :

Gl(k, k0) =
{

0 if k < k0

Gl if k ≥ k0
, 1 ≤ l ≤ K. (3)

Dependent observations.It is assumed that under
P0, the conditional density function ofYk given
Yk−1

1 = Y1, . . . , Yk−1 is f0(Yk|Yk−1
1 ) for everyk ≥

1 and underP l
k0

, the conditional density function is

f0(Yk|Yk−1
1 ) for k < k0 and isfl(Yk|Yk−1

1 ) for every
k ≥ k0, 1 ≤ l ≤ K.

State space model with additive changes.The fol-
lowing state space model with additive changes is
assumed here

Xk+1 = FkXk + ζk + Ul(k, k0) (4)

Yk = HkXk + ξk + Gl(k, k0), (5)

whereUl(k, k0) is defined exactly asGl(k, k0) (see
equation (3)),ζk andξk are zero mean Gaussian white
noises.

2.2 Criteria of optimality

Intuitive formulation of the criteria. If the change is
detectedafter the change timek0 (the event{N ≥ k0}

is true), then the delay for detection/isolation isτ =
N − k0 + 1. If the changes inθ are detectedbefore
time k0 or if the final decision isincorrect (ν 6= l),
then these arefalse alarms or false isolationswhich
we characterize in the following manner.

False alarms. Let the observations(Yk)k≥1 come
from the normal mode systemF . Consider the follow-
ing sequence of alarm times

N0 = 0 < N1 < N2 < · · · < Nr < · · · ,

whereNr is the alarm time of the detection/isolation
algorithm which is applied toYNr−1+1, YNr−1+2, . . ..
Define thefirst false alarm timeNν=j of a j-type in
this sequence :

Nν=j = inf
r≥1

{Nr : νr = j}, 1 ≤ j ≤ K,

whereinf{∅} = ∞ as usual. If the consequences of
different false alarms are equivalent, then their impact
is measured by the time before a false alarm.

False isolations. Let the observations(Yk)k≥1 come
from the abnormal mode numberl. We define a false
isolation as the following event{ν 6= l} ∩ {N ≥ k0}.
In other words, the change is detected correctly but the
isolation step is failed. It is intuitively obvious that the
optimality criterion must favor fast detection with few
false alarms and few false isolations.

Formal definition of the criteria. Several criteria
have been recently developed (Nikiforov, 1995a; Niki-
forov, 1995b; Lai, 2000; Nikiforov, 2000).

Worst case detection/isolation delay.The character
feature of this approach is a pessimistic estimation
of the detection delay and an optimistic estimation
of the probability of false isolation. LetEl

k0
(or E0)

be the expectation with respect toP l
k0

(or P0). We
require that the worst case detection/isolation delay2

(Nikiforov, 1995a) :

E∗(N)= sup
k0≥1,1≤l≤K

esssup El
k0
((N−k0+1)+|Yk−1

1 ) (6)

wherex+ = max(0, x), should beas small as possi-
ble for a given minimumγ of the mean times before a
false alarm or a false isolation :

E0

(
inf
r≥1
{Nr :νr =j}

)
≥γ, El

1

(
inf
r≥ 1

{Nr :νr =j}
)
≥γ (7)

for 1 ≤ l, j 6= l ≤ K. Next, the isolation’s constraint
in (7) has been modified to obtain a more practicable
performance index, i.e. the probability of false isola-
tion (Nikiforov, 1995b)

Pl
1(ν = j 6= l) ≤ β ∼ γ−1 asγ →∞. (8)

2 Let us assume thaty, ý, x are the random values. We say that the
y = esssup x if : 1) P(x ≤ y) = 1; 2) if P(x ≤ ý) = 1 then
P(y ≤ ý) = 1, whereP(A) is the probability of the eventA.



The above criterion (6) - (8) has been generalized
to the case of dependent observations(Yk)k≥1 in
(Lai, 2000).

Uniformly constrained conditional probability of false
isolation. The drawback of criterion (6) - (8) lies in
that the probability of false isolation is constrained
only if the change time isk0 = 1. Strictly speak-
ing, if k0 > 1 then the probability of false isolation
can be greater thanβ. Simulation shows that it de-
pends on the mutual “geometry” of the hypotheses
(Nikiforov, 2000). On the other hand, equation (6)
is too pessimistic, at least for some practical pro-
blems. To obtain a more tractable criterion, we pro-
pose to minimize the maximum mean delay for detec-
tion/isolation (Nikiforov, 2000) :

E(N) = sup
k0≥1,1≤l≤K

El
k0

(N − k0 + 1 | N ≥ k0) (9)

subject to the constraints

E0(N)≥γ, sup
k0≥1

Pl
k0

(ν =j 6= l|N≥k0)≤β, (10)

for 1 ≤ l, j 6= l ≤ K. Initially (Nikiforov, 2000), the
mean time before a false alarm has been defined by
using equation (7) but to seek the simplicity a slightly
different constraintE0(N)≥γ will be used in the rest
of the paper.

Uniformly constrained probabilities of false alarm
and false isolation within a time window.For some
safety-critical applications it is necessary to warrant
that the probabilities of false alarm and false isolation
within a time window (mα) are less than a prescribed
upper bound. As it has been mentioned in (Lai, 2000),
the constraintE0(N) ≥ γ does not necessary imply
that the probability of having a false alarm before
some specified time is small. To solve this problem,
Lai proposes to minimize the mean delay for detec-
tion/isolation for every1 ≤ l ≤ K :

El
k0

(N − k0 + 1)+ (11)

subject to the constraint

sup
k≥1

P0(k ≤ N < k + mα) ≤ αmα, (12)

sup
k0≥1

Pl
k0

(k0 ≤ N < k0 + mα ∩ ν 6= l) ≤ αmα, (13)

for 1 ≤ l ≤ K.

3. ALGORITHMS AND THEIR STATISTICAL
PROPERTIES

This section is devoted to the design of the change de-
tection/isolation algorithms and investigation of their
statistical properties. It is divided into three subsec-
tions following the definitions of different criteria of
optimality given in subsection 2.2.

3.1 Worst case detection/isolation delay

An asymptotic lower boundn(γ) for the worst case
detection/isolation delay (criterion (6) - (8)) is given
by the following equation (Nikiforov, 1995a)

n(γ) ∼ log γ/ρ∗ asγ →∞, (14)

where (when the observationsY1, . . . , Yn are inde-
pendent)ρ∗ = min1≤l≤K min0≤j 6=l≤K ρl,j and0 <
ρl,j = El

1

(
log fθl

(Yi)/fθj
(Yi)

)
< ∞. The above

equation has been generalized to the case of dependent
observations in (Lai, 2000). When the observations
are dependent, the definition of the Kullback-Leibler
informationρl,j is much more complicated, the inter-
ested reader is referred to (Lai, 2000).

Non recursive algorithm. Unfortunately, the algo-
rithm (Nnr, νnr) which reaches this lower bound
(E∗(Nnr; γ) ∼ n(γ) ∼ log γ/ρ∗ asγ → ∞) is non
recursive (Nikiforov, 1995a; Lai, 2000) :

Nnr = min
1≤l≤K

{Nnr(l)}, νnr =arg min
1≤l≤K

{Nnr(l)}, (15)

where

Nnr(l)=inf
{
n≥1:max

1≤k≤n
min

0≤j 6=l≤K
Sn

k (l, j) ≥ h

}
,

Sn
k (l, j) =

n∑
i=k

log fθl
(Yi|Yi−1

1 )/fθj
(Yi|Yi−1

1 ) (16)

is the log likelihood ratio (LR) between hypotheses
Hl : θ = θl andHj : θ = θj and h is a chosen
threshold.

It is easy to see that the above algorithm requires, at
eachn, maximization over all possible change times
k : 1 ≤ k ≤ n, so the number of LR computations for
Nnr(l) at timen grows to infinity withn.

Window-limited algorithm. To reduce the computa-
tional complexity, (Lai, 2000) proposes the following
window-limited modification ofN l

nr :

Nwl(l)=inf
{
n≥ 1: max

n−Mγ≤k≤n
min

0≤j 6=l≤K
Sn

k (l, j),≥ h

}
wherelim inf Mγ/ log γ > 1/ρ∗ asγ → ∞. Lai has
shown that equation (14) still holds for the change
detection/isolation algorithm (15) - (16) with this
window-limited modificationNwl(l).

3.2 Uniformly constrained conditional probability of
false isolation

An asymptotic lower boundn(γ, β) for the maximum
mean delay for detection/isolation (criterion (9) - (10))
is given by the following equation

n(γ, β) ∼ max
{
log γ/ρ∗d, log β−1/ρ∗i

}
(17)

asmin{γ, β−1} → ∞, whereρ∗d = min1≤j≤K ρj,0,
andρ∗i =min1≤l≤K min1≤j 6=l≤K ρl,j .



Recursive algorithm. The mean number of LR
computations for the non recursive change detec-
tion/isolation algorithm at a current instantk is O(γ),
the window-limited modification approximately in-
volves O(log γ/ρ∗) LR computations at every time
k. These results are again improved by the following
fully recursive algorithm (Nikiforov, 2000) :

Nr = min
1≤l≤K

{Nr(l)}, νr =arg min
1≤l≤K

{Nr(l)}, (18)

where

Nr(l)=inf
{

n ≥ 1 : min
0≤j 6=l≤K

[Sn(l, j)−hl,j ]≥0
}

,

and the recursive decision functionsSn(l, j) are de-
fined by

Sn(l, j) = gn(l, 0)− gn(j, 0) (19)

gn(l, 0) = (gn−1(l, 0) + Zn(l, 0))+ ,

with Zn(l, 0) = log fθl
(Yn)/fθ0(Yn) andg0(l, 0) = 0

for every1 ≤ l ≤ K andgn(0, 0) ≡ 0. The thresholds
hl,j are chosen by the following formula :

hl,j=
{

hd if 1 ≤ l ≤ K and j = 0
hi if 1 ≤ j, l ≤ K and j 6= l

, (20)

wherehd is the detection threshold andhi is the isola-
tion threshold. The statistical properties of this recur-
sive algorithm is given by the following asymptotic
equation (Nikiforov, 2000) :

E(Nr)∼n(γ, β)∼max
{
log γ/ρ∗d, logβ−1/ρ∗i

}
(21)

asγ → ∞ β → 0 and logγ & log β−1. The slightly
different definition of the mean time before a false
alarm in (10) with respect to equation (7) does not
change the asymptotic relation betweenE(Nr), γ and
β in equation (21).

The tuning of the thresholdshd andhi and the com-
parison between the nonrecursive (15) - (16) and re-
cursive (18) - (19) algorithms, by using Monte Carlo
simulation, can be found in (Nikiforov, 2000).

3.3 Uniformly constrained probabilities of false
alarm and false isolation within a time window

An asymptotic lower bound forEl
k0

(N − k0 + 1)+

(criterion (11) - (13)) is given by the following equa-
tion (Lai, 2000) :

El
k0

(N−k0+1)+≥P0(N≥k0)|log α|/(ρl + o(1))

asα → 0 uniformly in k0 ≥ 1, for every1 ≤ l ≤
K, whereρl = min0≤j 6=l≤K ρl,j . The time window
lengthmα satisfies (Lai, 2000)lim inf mα/| log α| >
1/ρ∗ but log mα = o(log α) as α → 0. The crite-
rion and window limited change detection/isolation
algorithm have been extended to the case of compos-
ite alternatives. The interested reader is referred to
(Lai, 2000).

4. EXAMPLES

The goal of this section is to illustrate how the de-
veloped theory is used to solve an important practical
problem - navigation systems integrity monitoring.

4.1 Navigation systems integrity monitoring

For many safety-critical applications, a major problem
of the existing navigation systems consists in its lack
of integrity. The goal of the integrity monitoring (as
it is defined by the International Civil Aviation Or-
ganization (ICAO)) is to detect and isolate faults so
that they can be removed from the navigation solution
before they sufficiently contaminate the output. Let us
start our discussion with two types of navigation sys-
tems : the Strapdown Inertial Reference Unit (SIRU)
and the Global Positioning System (GPS).

The model of SIRU with a degradation.Conven-
tional redundant SIRU incorporatesr ≥ 5 single
degree-of-freedom sensors (laser giros or accelerome-
ters) (Sturza, 1988; Nikiforovet al., 1993). We assume
thatr skewed axis inertial sensors are equally spaced
on a cone with half-angleα = 54.736 deg. A sim-
plified measurement model of SIRU is defined by the
following static regression model with redundancy :

Yk =HAk+ζk, ζk =ζk−1+ξk+Gl(k, k0), (23)

whereAk ∈ R3 is a non random unknown state
vector (say, acceleration),Yk ∈ Rr is a vector of mea-
surements,ζk is the accelerometer biases modelled as
random walks,ξk ∈ Rr is a Gaussian white noise
with zero mean and covarianceR = σ2Ir, σ2 > 0,
H = (hij) is a matrix of sizer × 3, hi1 = cos βi,
hi2 = sinβi sinα, hi3 = − cos α, βi = 360(i −
1)/r deg, 1 ≤ i ≤ r andGl(k, k0) is an additional
bias occurring at timek0 in an l-th accelerometer’s
error,1 ≤ l ≤ r. It is easy to see that equation (23) can
be reduced to equation (2) by using the first difference

∇Yk =H∇Ak+ξk+Gl(k, k0), ∇(.)k
def=(.)k−(.)k−1.

The model of GPS with a degradation.The GPS
navigation solution is based upon accurate measuring
the distance (range) from r visible satellites with
known locationsXi = (xi, yi, zi)T , 1 ≤ i ≤ r, to
a user (vehicle) atXu = (xu, yu, zu)T . The distance
from the i-th satellite to the user is defined asdi =
‖Xi − Xu‖. The pseudo-range(i.e. measure of the
distance)ri from the i-th satellite to the user can be
written asri = di + c b + ξi, 1 ≤ i ≤ r, where
b ∈ R is a user clock bias,c ' 2.9979 · 108m/s is the
speed of light andξi is an additive pseudo-range error
at the user’s position. Let us introduce the following
vectors:R = (r1, . . . , rr)T andX = (XT

u , b)T . By
linearizing the pseudo-range equation with respect to
the state vectorX around the working pointX0, we
get the measurement equation

Y = R−R0 ' Hx + ξ, x = X −X0,



whereR0 = (r10 , . . . , rr0)
T , ri0 = ‖Xi − Xu0‖ +

c b0, ξ = (ξ1, . . . , ξn)T , H = ∂R
∂X

∣∣
X=X0

is the
Jacobian matrix of sizer × 4 and ξ ∈ Rr is a
Gaussian white noise with zero mean and covariance
R = σ2Ir, σ2 > 0. The degradation of GPS channels
is represented by an additional biases in the pseudo-
ranges (Nikiforov, 1996) :

Yk = Hxk + ξk + Gl(k, k0). (24)

Let us assume that at least six satellites are visible. As
it follows from equations (23) and (24), the optimal
estimate of the user’s fixxk (or the vehicle’s jerk
∇Ak) is given by the least squares (LS) algorithm3 :

x̂k =(HTH)−1HT Yk. (25)

As it follows from equations (23), (24) and (25), a
fault Gl, affecting the sensors (or channels), implies
an additional errorE(x̂k − xk) = (HT H)−1HT Gl

in the vectorx̂n (or ∇̂Ak) which contaminates the
output of the navigation system (Nikiforovet al.,
1993; Nikiforov, 1996).

4.2 Integrity monitoring algorithms

Change detection/isolation with nuisance parameters.
The characteristic feature of the regression model with
redundancy (2) ((23) or (24)) is the fact that the vector
Xk (Ak or xk) is unknown. This type of statistical
problem is usually called a detection withnuisance
parameters. Let us define the following hypotheses :

Hl={Y ∼N (HX + Gl, σ
2In), X∈Rm}, (26)

Hj={Y ∼N (HX + Gj , σ
2In), X∈Rm}, (27)

whereGl, Gj (0 ≤ l, j 6= l ≤ K) are theinformative
parameters, andX is thenuisanceparameter. We are
interested in detecting a change from0 to Gl, while
consideringX as anunknownparameter of model (2).
It follows from section 3 that the lower bound for
the detection/isolation delay is a monotone decreasing
function of the Kullback-Leibler information. There-
fore, the design of theminimax algorithm(in the sense
of minimizing the detection/isolation delay) consists
of finding a pair of theleast favorable valuesX l

and Xj for which the Kullback-Leibler information
ρl,j = ρ(X l, Xj) is minimum, and in computing the
LR

Sk
k (l, j) = log fGl

(Yk;X l)/fGj (Yk;Xj)

of the optimal algorithm for these values. The
Kullback-Leibler information ρl,j is given by
ρl,j(x) = 1

2σ2 ‖Hx + Gl,j‖2, wherex = X l − Xj

andGl,j = Gl −Gj . Therefore, we minimizeρl,j(x)
with respect tox (the interested reader is referred to

3 The LS algorithm is presented here to illustrate an impact of
a channel (sensor) fault on the navigation accuracy. In fact, the
Kalman filter usually processes the outputs of the SIRU (accelerom-
eters and gyros) but the problem of the navigation system contami-
nation still holds in the general framework.

(Nikiforov, 1995a)). The LR for hypotheses (26) -
(27) under the least favorable valuex∗ is given by

Sk
k (x∗; l, j) =

1
σ2

GT
l,jΠYk −

1
2σ2

GT
l,jΠGl,j , (28)

where Π = I − H(HT H)−1HT . It is of inter-
est to note that the above LR is a function of the
parity vector εk of the analytical redundancy ap-
proach (Nikiforov, 1995a). This parity vectorεk is the
transformation of the measurementsYk into a set of
r − p (p = 3; 4) linearly independent variables by
projection onto the left null space of the matrixH.

Therefore, to apply the results of section 3 to the
GPS (or SIRU) integrity monitoring, it is sufficient
to replace the LR in the definition ofNnr(l) (Nwl(l)
or Nr(l)) by the LR Sk

k (x∗; l, j) given by (28). A
comprehensive comparison (analytical and numeri-
cal) of the proposed sequential algorithm with the
so-called“snapshot” (based on the last observation
Yk) and fixed size sample approaches can be found
in (Nikiforov, 1996; Nikiforov, 1997). The signifi-
cant superiority of the sequential algorithm has been
shown.

5. UNEXPECTED PROBLEMS

Let us discuss here some new aspects of the change
detection and isolation. It turns out that these recently
identified problems are of key interest for the statisti-
cal FDI in safety-critical applications. The navigation
system integrity monitoring will be used to illustrate
these problems.

5.1 Reliable detection/isolation

First, the main goal of the navigation system integrity
monitoring is to detect the system degradation when
it leads to an unacceptable growth of the output er-
rors. All other faults are of no importance, moreover,
their detections can be considered by the user as a
false alarm. Second, the “traditional” change detec-
tion/isolation methods are formulated as that of the
quickest detection/isolation of abrupt changes in the
properties of stochastic signals and systems (see sec-
tion 3). A navigation sensor fault also should be de-
tected quickly but for safety-critical applications the
user imposes the constraint on the maximum delay for
the detection. Specifically, the ICAO fixes the proba-
bility of missed detection within a giventime-to-alarm
τa. Therefore, this new optimality criterion requires to
minimize the maximum probability of missed detec-
tion

P̄(N) = sup
k0≥1

max
1≤l≤K

Pl
k0

(N − k0 + 1 > τa)

subject to the constraint (12) and (13). Moreover, a
change detection/isolation algorithm should be adap-
tive, i.e. it has detect/isolate any faults that will cause
a navigation error above a given limit (vertical or



horizontal) for any current GPS satellite constella-
tion. The interested reader is referred to (Youneset
al., 1998; Bakhache and Nikiforov, 2000).

5.2 Multi-sensor navigation systems

The integration of several navigation subsystems
(INS, GPS, Loran-C, baro-altimeter, radio-
altimeter,...) is traditionally proposed to improve
navigational accuracy, integrity and continuity
on vehicles having two (three) INS plus aiding
subsystems such as GPS, Loran-C and others. The
error model of such a multi-sensor navigation system
(with a degradation) is given by equations (4) - (5).
The log LR of this state space model can be computed
by using the innovation sequence(ek)k≥1 of the
Kalman filter based upon the nominal state space
model (without the termsUl(k, k0) and Gl(k, k0)).
This random sequence can be modelled as

ek ∼
{
N (0, Rk) if k < k0

N (ηl(k, k0), Rk) if k ≥ k0
, (29)

whereηl(k, k0) = η(Ul(k, k0), Gl(k, k0))) is the dy-
namic profile of the innovation sequence after the
abrupt change numberl. Unfortunately, the existence
of this profile makes the isolation problem very dif-
ficult, especially in the context of the reliable detec-
tion/isolation. No results in a mathematically precise
sense exist in the literature.

6. CONCLUSION

The paper presents the key results of the recently de-
veloped optimal theory of change diagnosis (detection
and isolation). Several frequently used models of sig-
nals and systems with abrupt changes and three crite-
ria of optimality have been discussed. These criteria
have the min-max character, this choice is motivated
by the fact that the change time and the behavior of
the system’s environment are not simply unknown but
can be intentionally chosen to maximize their negative
impacts on the considered system in safety-critical
applications.

The information lower bounds for the detec-
tion/isolation delay are given for these criteria. The
change detection/isolation algorithms that asymptot-
ically reach these bounds have been discussed.

The application of the developed theory to the prob-
lem of navigation systems (SIRU and GPS) integrity
monitoring has been discussed. In the course of this
application, some open problems have been recently
identified. These new crucially important problems
have been briefly presented in the paper.
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