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Abstract: The problem of detecting and isolating abrupt changes in random signals and
systems is addressed in the paper. The key results of the recently developed optimal theory
of change diagnosis (detection and isolation) are presented. The application of the developed
theory to the problem of navigation system integrity monitoring is discussed.
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1. INTRODUCTION 2. MODELS AND CRITERIA

In this section, some statistical models and criteria of

optimality are introduced. These models and criteria

will be used in the rest of the paper to design the
Statistical decision tools for detecting and isolating change detection/isolation algorithms and investigate
abrupt changes in the properties of stochastic signalstheir statistical properties.
and dynamical systems have numerous applications,
from on-line fault diagnosis in complex technical sys-
tems to detection of signals with unknown arrival time
in geophysics, _radar and sonar signal processing. TheGeneric model. Let us assume that there exists a
change detection problem (binary hypothesis case)d. te time stochastic svstem
has received extensive research attention (Shiryayev, Iscre y
1977; Lorden, 1971; Basseville and Nikiforov, 1993; Yi = F(Xk, 0(k), &k, k), 1)
Lai, 1995; Lai, 1998; Lai, 2001). The goal of this whereY < R” is the measured outpud, € R" is
paper is to describe the recently developed optimalthe parameter of interesk), is an unknown vector
theory of change diagnosis (detection and isolation) (typically a state)¢ is a zero-mean noise. This system
(Nikiforov, 1995s; Nikiforov, 1997; Lai, 2000; Niki-  is observed sequentially, i.e. at timehe observations
forov, 2000). The readers will be provided with some y; ... Y, are available. Until the unknown timig —
ideas how these new results can be used in practice tq the parameter vector i&(k) = 6, and fromk
solve on-line fault diagnosis problems, especially in it becomesf(k) = 6, for somel, 1 < | < K.
safety-critical applications. Some open problems also Therefore, (1) is a system witibrupt changesvhere
will be discussed. The paper is organized as follows. ¢, describes the normal operation mode of the system
First, the problem is stated, namely, the models and 7 and 6, describes the abnormal mode numbelt
criteria are introduced in section 2. Next, the design of js assumed that the change tifagand numbel are
the change diagnosis algorithms and their statisticalynknown and non randorh.
properties are discussed in section 3. Some practical
applications are described in section 4. Some open, _ ) )

This paper is devoted to the min-max approach, the results on the

problems are .dravx{n n S?Ctmn 5. Finally, concluding Bayesian approach can be found in (Malladi and Speyer, 1999; Lai,
remarks are given in section 6. 2000).

2.1 Models with abrupt changes




Let (Y% )r>1 be a sequence of observations, which are is true), then the delay for detection/isolationris=
coming from system (1). The problem isdetectand N — ko + 1. If the changes i are detectedbefore
isolatethe change irf. In other words, to determine time ko or if the final decision isncorrect (v # 1),
the type of fault (numbel) as soon as possible. The then these aréalse alarms or false isolationahich
change detection/isolation algorithm has to compute awe characterize in the following manner.

pair (N, v) based on the observatio(is; );>1, where

N is the alarm time at which av-type change is ,
detected/isolated and, 1 < v < K, is thefinal False alarms. Let the observationgYy),>1 come
decision T from the normal mode systeff. Consider the follow-

_ . ing sequence of alarm times
Let us discuss now several particular cases of model
No=0< Ny <Nag<:-+-<N.<--+,

(1) frequently used in practice.

whereN,. is the alarm time of the detection/isolation
algorithm which is applied t0'y, _,+1, YN, _,+2,. ...
Define thefirst false alarm timeN*=7 of a j-type in
this sequence :

Independent observationsA finite family of distri-
butionsP = {P;, i = 0,...,K} with densities
{fi;, i = 0,...,K} is considered. In the parametric
case, it is assumed th@ = {Py, § € O}, where N'= = inf{N, : v, =4}, 1<j<K,

0 € R, © = JX,{6;} and the density function of =t

this family is denoted by, (Y'). Itis also assumed that Whereinf{0} = oo as usual. If the consequences of
under P,, the density function ot is f, for every different false alarms are equivalent, then their impact
k> 1and underP,éO, the density function ig for is measured by the time before a false alarm.

k < ko and isf; for everyk > kg, 1 <l < K.

False isolations. Let the observation&)x>1 come
Static regression model with redundancyConsider  from the abnormal mode numb&rWe define a false
the following regression model with additive changes : isolation as the following everty # I} N {N > ko }.

In other words, the change is detected correctly but the

Yo = HXp + & + Gulk, ko), @ isolation step is failed. s intuitively obvious that the

where X, € RP is the unknown non random state optimality criterion must favor fast detection with few
vector, ¢, is a zero mean Gaussian white noise with false alarms and few false isolations.
covariance matri® = o21,, o2 > 0, H is a full rank
matrix of sizer x p with r > p andG,(k, ko) is the
I-type change occurring at timg, namely :

[0 i k<k

Formal definition of the criteria. Several criteria
have been recently developed (Nikiforov, 1898iki-
forov, 199%; Lai, 2000; Nikiforov, 2000).

_ _ Worst case detection/isolation delayThe character
Dependent observationslt is assumed that under feature of this approach is a pessimistic estimation
Py, the conditional density function ot} given  of the detection delay and an optimistic estimation
k=l — y; Yi_1 is fo(Y|YE~1) for everyk > ili isolati !
1 1oy Yeo1 08 fo(Ya|D7 ™) yrk 2 of the probability of false isolation. LeE; (or Eo)
1 and underP}, , the conditional density function is pg the expectation with respect 1 (or Pp). We
0

fo(Yal¥i~") for k < ko andisfi(Y,|Yf ") forevery  require that the worst case detection/isolation délay

k>ko1<I<K. (Nikiforov, 1995a) :

E"(N)=supesssup ELO((N—kO—i—l)ﬂyf*l) (6)
State space model with additive change$he fol- ko>1,1<I<K
lowing state space model with additive changes is yherez+ = max (0, z), should beas small as possi-
assumed here ble for a given minimumy of the mean times before a

false alarm or a false isolation :
e R (R A NG

for1 <I,5 #1 < K. Next, the isolation’s constraint
in (7) has been modified to obtain a more practicable
performance index, i.e. the probability of false isola-
tion (Nikiforov, 199%))

Pllv=j#1)<B~y'asy—oo. (8)

X1 = Fip X + G + U(k, ko) 4)
Yi = Hp Xy, + & + Gi(k, ko), %)

whereU,(k, ko) is defined exactly as/;(k, ko) (see
equation (3))(, and¢, are zero mean Gaussian white
noises.

2.2 Criteria of optimality

.. . L . 2 Let us assume that 4, = are the random values. We say that the
Intuitive formulation of the criteria. If the changeis  , — csssupz if: 1) P(z < y) = 1;2) if P(z < 4) = 1 then

detectedhfterthe change timé, (the even{ N > kq} P(y < 9) = 1, whereP(A) is the probability of the evend.



The above criterion (6) - (8) has been generalized 3.1 Worst case detection/isolation delay

to the case of dependent observatiq})i>1 in

(Lai, 2000). An asymptotic lower bouna.(y) for the worst case
detection/isolation delay (criterion (6) - (8)) is given
by the following equation (Nikiforov, 199

Uniformly constrained conditional probability of false .

isolation. The drawback of criterion (6) - (8) lies in n(y) ~logvy/p" asy — oo, (14)

that the probability of false isolation is constrained where (when the observations,...,Y,, are inde-

only if the change time is, = 1. Strictly speak-  pendent)p* = min;<;<x ming<;zi<x p1; and0 <

ing, if ko > 1 then the probability of false isolation p, ; = E} (log fo, (Yi)/fgj(yi)) < o0. The above

can be greater thad. Simulation shows that it de- equation has been generalized to the case of dependent

pends on the mutual “geometry” of the hypotheses observations in (Lai, 2000). When the observations

(Nikiforov, 2000). On the other hand, equation (6) are dependent, the definition of the Kullback-Leibler

is too pessimistic, at least for some practical pro- informationp; ; is much more complicated, the inter-

blems. To obtain a more tractable criterion, we pro- ested reader is referred to (Lai, 2000).

pose to minimize the maximum mean delay for detec-

tion/isolation (Nikiforov, 2000) : . )
( ) Non recursive algorithm. Unfortunately, the algo-

E(N)= sup Ej (N—ko+1|N>k) (9  rithm (N,,,v,,) which reaches this lower bound
ko>1,1<I<K — .
, _ (E (Nar;v) ~ n(y) ~ logy/p* asy — oo) is non
subject to the constraints recursive (Nikiforov, 1998; Lai, 2000) :

Eo(N)> P! (v=j #IIN>ky) < 10 = mi = i
o(N) =7, sup ko (V=3 #UN>ko)<B, (10) N, N (1)}, v =arg min{ N, ()}, (15)

for1 <1, # 1 < K. Initially (Nikiforov, 2000), the =~ where
mean time before a false alarm has been defined by ) ) o
using equation (7) but to seek the simplicity a slightly Nnr(l)sz{"> 1:max 0<517161{1<K5k (1,7) = h} ;
different constrainEq (V) >~ will be used in the rest T
of the paper. o - i i
Spl,5) = log fo,(Yil V™) / fo, (Vi Y1) (16)

i=k
Uniformly constrained probabilities of false alarm S thelog likelihood ratio (LR) between hypotheses
and false isolation within a time window.For some i : 0 = 6 andH; : 6 = 6; andh is a chosen
safety-critical applications it is necessary to warrant threshold.
that the probabilities of false alarm and false isolation |1 s easy to see that the above algorithm requires, at
within a time window {n,,) are less than a prescribed - eachy, maximization over all possible change times
upper bound. As it has been mentioned in (Lai, 2000), ; . | < k < n, so the number of LR computations for

the constraini€,(N) > ~ does not necessary imply N,.,.(1) at timen grows to infinity withr.
that the probability of having a false alarm before

some specified time is small. To solve this problem, o .
Lai proposes to minimize the mean delay for detec- Window-limited algorithm. To reduce the computa-

tion/isolation for everyl < < K : tional complexity, (Lai, 2000) proposes the following

. N window-limited modification ofV.,, :

]Ek0<N —ko+1) (12)
subject to the constraint Nwl(l):iﬂf{n> 17;7]{}la<><k<n0<§11;}1<1§ﬁ(17j)7 > h}
wherelim inf M., /log~y > 1/p* asy — oo. Lai has

oub Po(k < N <k +ma) < ama, (12) " shown that equation (14) still holds for the change
- detection/isolation algorithm (15) - (16) with this
8 l
P Pho (ko < N < ko +ma Nv #1) < ama, (13)  indow-limited modificationV,,; (7).
forl1 << K.

3.2 Uniformly constrained conditional probability of
false isolation
3. ALGORITHMS AND THEIR STATISTICAL
PROPERTIES An asymptotic lower bound(~y, 3) for the maximum

mean delay for detection/isolation (criterion (9) - (10))

This section is devoted to the design of the change de-is given by the following equation

tection/isolation algorithms and investigation of their " 1 %

statistical propertigs. It is divided intoq[hree subsec- n(y, ) ~ max {logy/p3,log 57/} (17)

tions following the definitions of different criteria of asmin{~y, 37!} — oo, wherep} = mini<j<k pj,0,

optimality given in subsection 2.2. andpf =mini <j< g mini <2<k P15



Recursive algorithm. The mean number of LR 4. EXAMPLES

computations for the non recursive change detec-

tion/isolation algorithm at a current instalis O(y), ~ The goal of this section is to illustrate how the de-
the window-limited modification approximately in- veloped theory is used to solve an important practical
volves O(logy/p*) LR computations at every time problem - navigation systems integrity monitoring.

k. These results are again improved by the following

fully recursive algorithm (Nikiforov, 2000) :

N, = 121;%]\&(1)}, vy = arglrgr%lgnleT(l)}, (18)

4.1 Navigation systems integrity monitoring

For many safety-critical applications, a major problem

where of the existing navigation systems consists in its lack
of integrity. The goal of the integrity monitoring (as
N,.(I)=inf {n >1: 0<n;121n<1< [Sn(l,j)—hi ;] 20} , it is defined by the International Civil Aviation Or-
SIFS

ganization (ICAQ)) is to detect and isolate faults so
and the recursive decision functios§(/,j) are de-  that they can be removed from the navigation solution
fined by before they sufficiently contaminate the output. Let us
start our discussion with two types of navigation sys-
) ) tems : the Strapdown Inertial Reference Unit (SIRU)
Sn(l,5) = gn(l,0) = gu(5,0) (190 and the Global Positioning System (GPS).
n(1,0) = (ga—1(1,0) + Z,(1,0)) ",

with Z,,(1,0) = log fa,(Yn)/ fo, (Yx) @andgo(1,0) = 0 The model of SIRU wit_h a degradationCor_wen-
for everyl < [ < K andg,(0,0) = 0. The thresholds tional redundant SIRU incorporates > 5 single
h, ; are chosen by the following formula : degree-of-freedom sensors (laser giros or accelerome-
_ ters) (Sturza, 1988; Nikiforogt al., 1993). We assume
hy '_{ haif 1<I<K andj=0 (20) thatr skewed axis inertial sensors are equally spaced
Tl h if1<jlI<Kandj#l"’ on a cone with half-angles = 54.736 deg. A sim-
plified measurement model of SIRU is defined by the

wherehgq is the detection threshold agis the isola- . . . X
d el following static regression model with redundancy :

tion threshold. The statistical properties of this recur-
sive algorithm is given by the following asymptotic Yi=HA+C, Ge=Ca1+&+Gi(k, ko), (23)
equation (Nikiforov, 2000) : where A, € R? is a non random unknown state
E(N, )~n(y, #)~max {bg v/ 5, logﬂ*fo} (21) vector (say, a_cceleration%€ eR"is a_vector of mea-
surementsgy, is the accelerometer biases modelled as
asy — oo 3 — 0 andlogy > log 3~!. The slightly  random walks¢, € R” is a Gaussian white noise
different definition of the mean time before a false with zero mean and covariande = ¢21,, 02 > 0,
alarm in (10) with respect to equation (7) does not H = (h;;) is a matrix of sizer x 3, h;; = cos 3;,
change the asymptotic relation betweg(iv,.), v and hio = sinf@;sina, hiz3 = —cosa, B; = 360(i —
(G in equation (21). 1)/rdeg, 1 < i < r andG(k, ko) is an additional

The tuning of the thresholds, and; and the com- bias occurring at timé:, in an [-th accelerometer’s
parison between the nonrecursive &15) - (16) and re_error,l <l<r.ltis easy tosee that eq“"’?“"” (23) can
cursive (18) - (19) algorithms, by using Monte Carlo be reduced to equation (2) by using the first difference

simulation, can be found in (Nikiforov, 2000). VY, =HV Ap+&+Gi(k ko), V(OrE0)e—()per-

The model of GPS with a degradationThe GPS
3.3 Uniformly constrained probabilities of false navigation solution is based upon accurate measuring
alarm and false isolation within a time window the distance range from r visible satellites with
known locationsX; = (z;,v:,2:)%7,1 < i < r, 1o
An asymptotic lower bound foE}, (N — ko + 1)* a user (vehicle) akX, = (zu,Yu,2.)” . The distance
(criterion (11) - (13)) is given by the following equa- from thei-th satellite to the user is defined ds =

tion (Lai, 2000) : |X; — X.||- The pseudo-rangdi.e. measure of the
. N distance)r; from thei-th satellite to the user can be
Ejo(N —=ko+1)">Po (N > ko)|log a|/(p1 + o(1)) written asr; = d; + cb+ &, 1 < i < r, where

b € Ris a user clock bias; ~ 2.9979 - 103m/s is the
speed of light and; is an additive pseudo-range error
at the user’s position. Let us introduce the following
vectors:R = (ry,...,r.)T and X = (XTI b)T. By
linearizing the pseudo-range equation with respect to

asa — 0 uniformly in kg > 1, for everyl < [ <

K, wherep; = ming<;j2i<x pi,;. The time window
lengthm,, satisfies (Lai, 2000)im inf ., /|log a| >
1/p* butlogm, = o(loga) asa — 0. The crite-
rion and window limited change detection/isolation ) :
algorithm have been extended to the case of composN€ State vectoX™ around the working poinKo, we
ite alternatives. The interested reader is referred to9€t the measurement equation

(Lai, 2000). Y=R—Ry~He+¢ z=X—Xo,



whereRy = (1,5 7r) s 1y = |1 Xi — Xuoll + (Nikiforov, 199%)). The LR for hypotheses (26) -

cby, € = (&,...,&)T, H = %‘x . is the (27) under the least favorable valugis given by
=X0

Jacobian matrix of sizee x 4 and¢ € R" is a

Gaussian white noise with zero mean and covariance

R = ¢%I,, 0% > 0. The degradation of GPS channels T 1T e .

is represented by an additional biases in the pseudo-WhereH = I — HH"H)"H". It is of inter-

o 1 1
SE(x*;1,5) = ;GZJHYk — pGZjHGm, (28)

ranges (Nikiforov, 1996) : est.to note that the above LR is a function of the
parity vector ¢, of the analytical redundancy ap-
Yi = Hay + & + Gi(k, ko). (24)  proach (Nikiforov, 1998). This parity vectoky, is the

Let us assume that at least six satellites are visible. Astransformation of the measuremerits into a set of
it follows from equations (23) and (24), the optimal " — ? (» = 3;4) linearly independent variables by
estimate of the user's fix; (or the vehicle’s jerk ~ Projection onto the left null space of the matfik

V. Ay) is given by the least squares (LS) algoritim  Therefore, to apply the results of section 3 to the
Zn=(HH)'HTY,. (25) GPS (or SIRU) integrity monitoring, it is sufficient
) _ to replace the LR in the definition df,,,.(1) (N (1)
As it follows ffom equations (23), (24) and (_25),_a or N,(1)) by the LR SF(2*;1,7) given by (28). A
fault G;, affecting the sensors (or channels), implies comprehensive comparison (analytical and numeri-

an additional ero(z — z) = (H"H) 'H" G cal) of the proposed sequential algorithm with the

in the vectorz,, (or V.A;) which contaminates the so-called“snapshot” (based on the last observation

output of the navigation system (Nikiforoet al, Y:) and fixed size sample approaches can be found

1993; Nikiforov, 1996). in (Nikiforov, 1996; Nikiforov, 1997). The signifi-
cant superiority of the sequential algorithm has been
shown.

4.2 Integrity monitoring algorithms

Change detection/isolation with nuisance parameters. 5. UNEXPECTED PROBLEMS
The characteristic feature of the regression model with
redundancy (2) ((23) or (24)) is the fact that the vector
Xk (Ag or xx) is unknown. This type of statistical
problem is usually called a detection wittuisance
parametersLet us define the following hypotheses :

Let us discuss here some new aspects of the change
detection and isolation. It turns out that these recently
identified problems are of key interest for the statisti-
cal FDI in safety-critical applications. The navigation
system integrity monitoring will be used to illustrate
Hi={Y ~N(HX + Gy,0%I,), X€R™}, (26)  these problems.

H;={Y ~N(HX +G;,5°I,), X€R™}, (27)

whereG;, G; (0 < 1,j # | < K) are theinformative 5 1 Reliable detection/isolation
parameters, and’ is thenuisanceparameter. We are

interested in detecting a change framo G;, while  pirst the main goal of the navigation system integrity

consideringX’ as arunknowrparameter of model (2).  monitoring is to detect the system degradation when

It follows from section 3 that the lower bound for it leads to an unacceptable growth of the output er-
the detection/isolation delay is a monotone decreasing, s All other faults are of no importance, moreover

function of the Kullback-Leibler information. There-  yheir detections can be considered by the user as a
fore, the design of thminimax algorithn(in the sense ¢4 56 glarm. Second, the “traditional” change detec-
of minimizing the detection/isolation delay) consists jop/isolation methods are formulated as that of the
of finding a pair of theleast favorable values¥ : quickest detection/isolation of abrupt changes in the
and X’ foerh'_Ch_ the Kullback-Leibler information 5 erties of stochastic signals and systems (see sec-
pj = p(X', X7) is minimum, and in computing the  tjon 3). A navigation sensor fault also should be de-
LR tected quickly but for safety-critical applications the
Sk(l,5) = log fa, Yie; X'/ fa, (Yi; X7) user imposes the constraint on the maximum delay for
the detection. Specifically, the ICAO fixes the proba-
bility of missed detection within a giveime-to-alarm
Tq. Therefore, this new optimality criterion requires to

— 1 2 - x! j S : ) .
p1i(x) = 5z [He + Gusll”, wherex.—. X - X/ minimize the maximum probability of missed detec-
andG; ; = G; — G;. Therefore, we minimize; ;(x) tion

with respect tar (the interested reader is referred to

of the optimal algorithm for these values. The
Kullback-Leibler information p; ; is given by

_ B . B
P(N) = Ii}lzpl 121[2%)}(]}”%(N ko+1>1,)

3 . . . . ] .
The LS algorithm is presented he_re t_o illustrate an impact of subject to the constraint (12) and (13). Moreover, a
a channel (sensor) fault on the navigation accuracy. In fact, the h detection/isolati | ith hould be ad
Kalman filter usually processes the outputs of the SIRU (accelerom-cj an_ge . etection/iso a lon algorithm shou . € adap-
eters and gyros) but the problem of the navigation system contami- tivVe, i.€. it has detect/isolate any faults that will cause

nation still holds in the general framework. a navigation error above a given limit (vertical or



horizontal) for any current GPS satellite constella- national Journal of Adaptive Control and Signal

tion. The interested reader is referred to (Youeés Processingl4, 683 — 700.
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