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Abstract: We give an explicit parameterization of all causal stabilizing repetitive
controllers for single-input/single-output continuous time non-minimum phase sys-
tems of a certain class. When the plant meets certain conditions, using the parallel
compensation technique, we obtain the parameterization of all repetitive controllers.
Finally, a numerical example shows the effectiveness of this parameterization.

Keywords: parameterization, interpolation problem, strong stability, parallel
compensation, inverse system

1. INTRODUCTION

We examine the parameterization of all stabi-
lizing repetitive controllers for a certain class
of non-minimum phase systems. The repetitive
control system is a type of servomechanism for
repetitive reference signals. That is, the repeti-
tive control system follows the periodic reference
input without steady state error even if a peri-
odic disturbance or uncertainty exists in the plant
(Inoue, et al., 1980; Inoue, Iwai and Nakano, 1981;
Hara, Omata, and Nakano, 1986; Yamamoto and
Hara, 1987; Hara and Yamamoto, 1986; Hara, Ya-
mamoto, Omata and Nakano, 1988; Omata, Hara
and Nakano, 1987; Watanabe and Yamatari, 1986;
Ikeda and Takano, 1988; Gotou, et al., 1987; Ka-
toh and Funahashi, 1996). The repetitive con-
trol system was initially proposed for ’high ac-
curacy control magnet power supply of proton
synchrotron’(Inoue, et al., 1980). Subsequently,
several papers on the theory and application of
repetitive control systems have been published
(Inoue, et al., 1980; Inoue, Iwai and Nakano, 1981;
Hara, Omata, and Nakano, 1986; Yamamoto and
Hara, 1987; Hara and Yamamoto, 1986; Hara,
Yamamoto, Omata and Nakano, 1988; Omata,
Hara and Nakano, 1987; Watanabe and Ya-
matari, 1986; Ikeda and Takano, 1988; Gotou, et

al., 1987; Katoh and Funahashi, 1996). Because
a repetitive control system follows any periodic
reference input without steady state error is a
neutral type of time-delay control system, it is
difficult to design stabilizing controllers for the
plant (Watanabe and Yamatari, 1986). To design
a repetitive control system that follows any pe-
riodic reference input without steady state error,
the plant needs to be biproper (Hara, Omata, and
Nakano, 1986; Yamamoto and Hara, 1987; Hara
and Yamamoto, 1986; Hara, Yamamoto, Omata
and Nakano, 1988; Omata, Hara and Nakano,
1987; Watanabe and Yamatari, 1986). Ikeda and
Takano (Ikeda and Takano, 1988) pointed out that
it is physically difficult for the output to follow
any periodic reference input without steady state
error. In addition they showed that the repetitive
control system is L2 stable for periodic signals
that do not include infinite frequency signals if
the relative degree of the controller is one.

However, if the actual control system is strictly
proper and has any relative degree, many design
methods are given in (Hara, Omata, and Nakano,
1986; Hara and Yamamoto, 1986; Yamamoto
and Hara, 1987; Hara, Yamamoto, Omata and
Nakano, 1988; Omata, Hara and Nakano, 1987;
Watanabe and Yamatari, 1986). These studies
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are divided into two types. One uses a low pass
filter and the other uses an attenuator. Since the
first type of repetitive control system has a sim-
ple structure, and is easy to design, this design
method is used in many applications.

On the other hand, there remains the impor-
tant control problem of finding all stabilizing
controllers, called the parameterization problem
(D.C. Youla, H.Jabr and J.J. Bongiorno, 1976; V.
Kucera, 1979; C.A. Dedoer, R.W. Liu, J. Mur-
ray and R. Saeks, 1980; J.J. Glaria and G.C.
Goodwin, 1994; M. Vidyasagar, 1985). Initially,
the parameterization of a stabilizing repetitive
compensator was studied by Hara and Yamamoto
(Hara and Yamamoto, 1986). In (Hara and Ya-
mamoto, 1986), since the stability sufficient con-
dition of a repetitive control system is defined
as an H∞ norm problem, the parameterization
for the repetitive control system is given by re-
solving the interpolation problem of Nevanlinna-
Pick. Katoh and Funahashi give the parameteri-
zation of repetitive control system for minimum
phase systems by solving the Bezout equation
exactly (Katoh and Funahashi, 1996). In (Katoh
and Funahashi, 1996), the parameterization is
not based on sufficient stability condition. This
result is important in the sense that the class
of repetitive controllers is more extensive than
the class of repetitive controller given in (Hara
and Yamamoto, 1986). However, in (Katoh and
Funahashi, 1996), the plant is assumed to be an
asymptotically stable, or able to be stabilized by
local feedback control. This implies that (Katoh
and Funahashi, 1996) gave a parameterization of
all stabilizing repetitive controllers for asymptot-
ically stable and minimum phase plants. That is
(Katoh and Funahashi, 1996) did not give the ex-
act parameterization for minimum phase systems.

In this paper, we consider the parameterization for
all stabilizing repetitive controllers for a certain
class of non-minimum phase systems that has
never considered. Using the fusion of the parallel
compensation technique and the solution of the
Bezout equation, the parameterization of all sta-
bilizing controllers can be obtained.

Notation

R(s) the set of real rational function with s.
RH∞ the set of stable proper real rational

functions.
H∞ a set of stable causal functions.
U the unimodular procession in RH∞.

That is, U(s) ∈ U means that U(s) ∈
H∞ and 1/U (s) ∈ H∞.

2. PROBLEM FORMULATION

Let us consider unity feedback system given by

{
y = G(s)u
u = C(s)(r − y) , (1)

where G(s) is a plant, G(s) is controllable and
observable, and s/G(s) is assumed to be strongly
stabilizable. That is, a stable controller to stabilize
1/G(s) exists. y is the output. u is the control
input. r is the periodic reference input with period
T written as

r(t+ T ) = r(t). (∀t ≥ 0) (2)

If the plant G(s) has a periodic disturbance,
with period T and uncertainty, and the output
y follows the periodic reference input, r, with
period T without steady state error, then the
controller C(s) must be described by (Yamamoto
and Hara, 1987)

C(s) = Cr(s)Ĉ(s), (3)

where Cr(s) is an internal model for the periodic
reference input, with period T , written as

Cr(s) =
a(s)

1− q(s)e−sT
(4)

and a(s) ∈ RH∞ is minimum phase and q(s)
is strictly proper, asymptotically stable low pass
filter satisfying q(0) = 1. It is assumed a neces-
sary condition exists in the internally stabilizing
controllers, that is, G(s)Cr(s) is assumed to have
no unstable pole-zero cancellation.

The problem considered in this paper is to give all
causal controllers Ĉ(s) such that the system (1)
is internally stable under the assumption that the
repetitive controller Cr(s) has settled beforehand.

3. THE PARAMETERIZATION OF ALL
STABILIZING REPETITIVE CONTROLLERS

Using the controller C(s) given by (3), the pa-
rameterization of all causal controllers so that
the system in (1) is internally stable is given by
following theorem.

Theorem 1. Using K(s) such that G(s)a(s)/(1 −
q(s)e−sT )+K(s) is of minimum phase and asymp-
totically stable and both K(s) and 1/K(s) are
causal, the parameterization of all controllers Ĉ(s)
in (3) that stabilize G(s) is given by

Ĉ(s) =
C̄(s)

1 + C̄(s)K(s)
, (5)

(
lim

ω→∞ C̄(jω)K(jω) �= −1
)

where C̄(s) is written by

C̄(s) =
1

Q(s)
− 1

a(s)
1− q(s)e−sT G(s) +K(s)

. (6)



Here, Q(s) is any asymptotically stable non-zero
function such that both Q(s) and 1/Q(s) are
causal.

Proof of this theorem requires the following theo-
rem.

Theorem 2. G(s)a(s)/(1 − q(s)e−sT ) + K(s) is
assumed to be of minimum phase and both

a(s)
1− q(s)e−sT

G(s) +K(s)

and

1
a(s)

1− q(s)e−sT
G(s) +K(s)

are causal. The parameterization of all controller
Ĉ(s) that stabilize the unity feedback control
system in

y =
{

a(s)
1− q(s)e−sT

G(s) +K(s)
}
u

u = −Ĉ(s)y
(7)

is given by

Ĉ(s) =
1

Q(s)
− 1

a(s)
1− q(s)e−sT G(s) +K(s)

. (8)

Here Q(s) is any non-zero asymptotically stable
rational function such that both Q(s) and 1/Q(s)
are causal.

Theorem 3. If s/G(s) are strongly stabilizable,
there existsK(s) such thatG(s)a(s)/(1−q(s)e−sT )+
K(s) is of minimum phase and asymptotically
stable and both K(s) and 1/K(s) are causal.

Proof of Theorem 3 requires the following theo-
rem.

Theorem 4. Let σ1, · · · , σl be distinct nonnegative
extended real numbers, and let sl+1, · · · , sn be
distinct complex numbers having a positive imag-
inary part. Let

S = {σ1, . . . , σl, sl+1, . . . , sn} ,
let

M = {m1, . . . ,mn}
be a corresponding set of positive integers, and let

R = {rij , j = 0, . . . ,mj − 1; i = 1, . . . , n}
be a set of complex numbers, where rij is real
whenever j = 0, · · · ,mi − 1, i = 1, · · · , l, and

ri0 �= 0 for all i. Under these conditions, there
exists a unimodular matrix U(s) in S that satisfies

dj

dsj
U(si) = rij (9)

if, and only if, r10, · · · , rl0 are all of the same sign
(M. Vidyasagar, 1985).

Using above mentioned theorems, we shall show
the proof of Theorem 3.
(Proof) We will show there exists K(s) such that
G(s)a(s)/(1 − q(s)e−sT ) + K(s) is of minimum
phase, K(s) is asymptotically stable and both
K(s) and 1/K(s) are causal.

G(s)a(s)/(1− q(s)e−sT ) +K(s) is rewritten by

a(s)
1− q(s)e−sT

G(s) +K(s)

=
N(s)a(s) +K(s)D(s)(1− q(s)e−sT )

D(s)(1− q(s)e−sT )
, (10)

where, D(s) ∈ RH∞ and N(s) ∈ RH∞ are
coprime factor on RH∞ of G(s) written by

G(s) = D−1(s)N(s). (11)

Therefore, the condition for the existence of an
asymptotically stable K(s) so that G(s)a(s)/(1−
q(s)e−sT )+K(s) is of minimum phase is equal to
the condition for the existence of an asymptoti-
cally stable K(s) and U(s) satisfying

U(s) = N(s)a(s) +K(s)D(s)(1− q(s)e−sT ) ∈ U .
(12)

This condition is equal to the interpolation prob-
lem written by

dj

dsj
U(si) =

dj

dsj
N(si), (13)

(j = 0, . . . ,mi − 1, i = 1, . . . , l)

where σ1, · · · , σl are unstable zeros of (1 −
q(s)e−sT )D(s).

Next, we show that interpolation problem in
(13) is solvable. From the assumption that q(s)
is strictly proper, the number of zeroes of 1 −
q(s)e−sT in the closed right half plane is finite.
Therefore, Theorem4 is applicable to the interpo-
lation problem in (13). From the assumption that
s/G(s) is strongly stabilizable, N(si) is always the
same sign as si on the real axis. From the as-
sumption that a(s) is minimum phase, N(si)a(si)
is always the same sign. From Theorem4, a U(s)
that satisfies (13) exists.

Next, we show that if U(s) satisfies (13), then

both K(s) = U(s)−N(s)a(s)
D(s)(1− q(s)e−sT )

and 1/K(s)



are causal. From the assumption that N(s) is
strictly proper, U(s) − N(s)a(s) and 1/(U (s) −
N(s)a(s)) are causal. From the assumption that
D(s) is biproper, both D(s)(1 − q(s)e−sT ) and
1/D(s)(1 − q(s)e−sT ) are causal. Accordingly,

K(s) = U(s)−N(s)a(s)
D(s)(1− q(s)e−sT )

and 1/K(s) are

causal.

We have, therefore, proved Theorem3

Using the above theorem, we shall show the proof
of Theorem1.
(Proof) From Theorem3, there exists K(s) ∈ H∞
such that both K(s) and 1/K(s) are causal.
Therefore, we show that the following expressions
hold.

(1) If the causal controller Ĉ(s) in (3) stabilize
the plant G(s), then

C̄(s) =
Ĉ(s)

1− Ĉ(s)K(s)
stabilizes G(s)Cr(s)+K(s) = G(s)a(s)/(1−
q(s)e−sT ) +K(s).

(2) If the causal controller C̄(s) stabilizes

G(s)Cr(s) +K(s)

=G(s)a(s)/(1− q(s)e−sT ) +K(s),

then

Ĉ(s) =
C̄(s)

1 + C̄(s)K(s)

stabilizes G(s)Cr(s).

The former expression is proved as follows. From
the assumption that Ĉ(s) is causal and

lim
w→∞ C̄(jw)K(jw) �= −1,

C̄(s) is causal. We have

1
1 + C̄(s) (G(s)Cr(s) +K(s))

=
1

1 + Ĉ(s)
1− Ĉ(s)K(s) (G(s)Cr(s) +K(s))

=
1− Ĉ(s)K(s)

1 + Ĉ(s)G(s)Cr(s)
. (14)

From the assumption that Ĉ(s)Cr(s) stabilizes

G(s), C̄(s) = Ĉ(s)
1− Ĉ(s)K(s) stabilizesG(s)Cr(s)+

K(s) = G(s)a(s)/(1 − q(s)e−sT ) + K(s). There-
fore, the former expression is proved.

Next, the latter expression is proved. From

Ĉ(s) =
C̄(s)

1 + C̄(s)K(s)
,

(
1 + C̄(s)K(s)

) (
1− Ĉ(s)K(s)

)
= 1 (15)

holds. From the assumption of

(
1 + C̄(s)K(s)

) (
1− Ĉ(s)K(s)

)
= 1

and

lim
w→∞ C̄(jw)K(jw) �= −1,

lim
w→∞ Ĉ(jw)K(jw) �= −1 (16)

is satisfied. From the assumption C̄(s) is causal,
Ĉ(s) is causal. We have

1
1 + Ĉ(s)G(s)Cr(s)

=
1

1 + C̄(s)
1 + C̄(s)K(s)

G(s)Cr(s)

=
1 + C̄(s)K(s)

1 + C̄(s) (G(s)Cr(s) +K(s))
. (17)

From the assumption that C̄(s) stabilizesG(s)Cr(s)+

K(s), Ĉ(s) = C̄(s)
1 + C̄(s)K(s)

stabilizes G(s)Cr(s).

The latter part is proved.

From Theorem2, the parameterization of all con-
trollers C̄(s) to stabilize G(s)Cr(s)+K(s) is writ-
ten as

C̄(s) =
1

Q(s)
− 1

a(s)
1− q(s)e−sT

G(s) +K(s)
.(18)

This completes the proof of this theorem.

4. A DESIGN METHOD OF FREE
PARAMETER Q(S)

In this section, we present a design method of
free parameter Q(s) to specify the sensitivity
characteristic.

The sensitivity function S(s) is written as

S(s)

=
Q(s)

a(s)
1− q(s)e−sT

G(s)
(

a(s)
1− q(s)e−sT

G(s) +K(s)
)2

+
K(s)

(
a(s)

1− q(s)e−sT
G(s) +K(s)

)
(

a(s)
1− q(s)e−sT

G(s) +K(s)
)2 (19)



In order to specify the sensitivity function S(s)
using Q(s), Q(s) is settled by

Q(s) = −
K(s)

(
a(s)

1− q(s)e−sT
G(s) +K(s)

)

a(s)
1− q(s)e−sT

Ĝ(s)
q̄(s).

(20)

Here,

G(s) = Gi(s)Ĝ(s), (21)

Gi(s) is inner function satisfying |Gi(jw)| =
1(∀ω ∈ R) and Ĝ(s) is of minimum phase and
q̄(s) ∈ RH∞ is a strictly proper low pass filter.
Q(s) defined by (20) is obviously an asymptoti-
cally stable causal function. Using Q(s) in (20),
the sensitivity function S(s) is rewritten as

S(s) =
K(s) (1− q̄(s)Gi(s))
a(s)

1− q(s)e−sT
G(s) +K(s)

. (22)

The desirable sensitivity characteristic is obtained
using q̄(s) ∈ RH∞.

5. NUMERICAL EXAMPLE

In this section, we present a numerical example to
show effectiveness of this result.

Let G(s) be

G(s) =
−s+ 1

2s2 + 3s+ 1
. (23)

Let us consider to obtain the parameterization of
all repetitive controllers for G(s) in (23), where
T = 1[sec] and the repetitive compensator Cr(s)
is given by

Cr(s) =
1

1− q(s)e−sT
(24)

q(s) =
1

0.001s+ 1
. (25)

One condition for K(s) to hold the condition in
Theorem3 is given by

K(s) =
10s+ 5
s+ 2

. (26)

From Theorem 1, the parameterization of all con-
troller Ĉ(s) is given by

Ĉ(s) =
C̄(s)

1 + C̄(s)K(s)
(27)

(
lim

ω→∞ C̄(jω)K(jω) �= −1
)

C̄(s) =
1

Q(s)
− 1

G(s)
a(s)

1 − q(s)e−sT
+K(s)

(28)

Free parameter Q(s) is settled by

Q(s) = −
K(s)

(
a(s)

1− q(s)e−sT
G(s) +K(s)

)

a(s)
1− q(s)e−sT

Ĝ(s)
q̄(s),

(29)

where q̄(s) is written by

q̄(s) =
1

(0.01s+ 1)2
. (30)

The response to the reference input r(t) =
sin(2πt) is shown in Fig. 1 . Here, a solid line
shows the output y and a dotted line shows the
reference input r. It is shown that the output y
follows the reference input r without steady state
error.
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Fig. 1. Response for the reference input r =
sin(2πt)

Next, when disturbance d = sin(2πt) exists, the
response for the disturbance is shown in Fig. 2 .
Here, a solid line shows the output y and a dotted
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Fig. 2. Response for the disturbance d = sin(2πt)



line shows the disturbance d. Fig. 2 shows that
the disturbance is attenuated effectively.

From a practical point of view, the period of the
disturbance is sometimes not equal to T . Next,
when disturbance d = sin(1.02×2πt), the response
for the disturbance is shown in Fig. 3 . Here, a
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Fig. 3. Response for the disturbance d =
sin(1.02× 2πt)

solid line shows the output y and a dotted line
shows the disturbance d. Fig. 3 shows that even
if the period of disturbance is not equal to T , the
disturbance is attenuated effectively.

6. CONCLUSIONS

In this paper, we proposed the parameterization
of all stabilizing repetitive controllers for a certain
class of all causal repetitive controllers of non-
minimum phase systems such that the system is
internally stable. A numerical example shows the
effectiveness of the proposed method.
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