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Abstract: This paper considers position and attitude control of large space structures
composed of a number of subsystems which are interconnected by springs and
dampers. It is assumed that sensors and actuators are collocated. A decentralized
simple dynamic displacement feedback, proposed by Fujisaki, Ikeda, and Miki, is
transformed to a controller whose input contains the control input and the measured
output of the space structure. The objective of this paper is to present a condition
under which the controller is optimal for a quadratic cost function.
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1. INTRODUCTION

This paper considers position and attitude control
of large space structures composed of a number
of subsystems which are interconnected flexibly
by springs and dampers. Flexible interconnection
of subsystems is realistic when we deal with very
large space structures such as solar power satel-
lites (Mankins, 1997). For interconnected large
space structures, it is reasonable to apply de-
centralized control compatible with subsystems,
which allows us to expand a large space structure
by connecting a new subsystem, or remove a failed
subsystem from the structure without any change
of the control law. In this paper, we consider op-
timality of the decentralized simple dynamic dis-
placement feedback proposed by Fujisaki, Ikeda,
and Miki (2001) under the assumption of sen-
sors/actuators collocation.

The simple dynamic displacement feedback (SDDF
B) (Fujisaki et al., 2001) is an extension of
the direct velocity and displacement feedback
(DVDFB) (Ikeda, Koujitani, and Kida, 1993)
which robustly stabilizes uncertain space struc-
tures with collocated sensors and actuators if the
rigid modes are controllable and observable. To
apply DVDFB, we do not need to know any

parameter values of the structure. The SDDFB
retains this desirable property for large space
structures.

The objective of this paper is to present a condi-
tion under which optimality of the decentralized
SDDFB is achieved for a quadratic cost function.
We expect desirable response characteristics of the
overall control system by such optimality. How-
ever, it is not possible for mechanical systems such
as space structures to be optimally controlled by
proper dynamic displacement feedback, because
the relative degree of mechanical systems is 2,
while the relative degree of the loop transfer func-
tion of an optimal control system is 1. Therefore,
we propose a transformation of the SDDFB to
a controller whose input contains not only the
measured output, but also the control input of the
space structure to be controlled as in the cases
of observer-based and Kalman-filter-based con-
trollers. Then, it is shown that the overall closed-
loop system is optimized by tuning the controller
parameters properly.

The organization of this paper is as follows. In
Section 2, we describe subsystems of the large
space structure and present a transformation of
the local SDDFB. In Section 3, we connect the
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subsystems by springs and dampers and form the
decentralized SDDFB. In Section 4, we derive a
condition for optimality of the control system. An
example is presented in Section 5, which suggests
how to choose parameters in local controllers to
achieve the overall optimality.

2. SDDFB CONTROL OF SUBSYSTEMS

In this section, we present subsystems with col-
located sensors and actuators and the stabiliz-
ing SDDFB control law. The subsystems are de-
scribed by

Miq̈i +Diq̇i +Kiqi =Liui, yi = LT
i qi

i = 1, 2, . . . , � (1)

where qi ∈ Rni , ui ∈ Rri , and yi ∈ Rri are the
displacement, control input, and measured output
of the i-th subsystem, respectively. The mass
matrix Mi is positive definite, and the damping
and stiffness matrices Di, Ki are positive semi-
definite. The existence of rigid modes implies

rank
[
Di Ki

]
= rank Di = rank Ki < ni. (2)

The matrix Li is defined by the locations and
directions of actuators, and the matrix LT

i ex-
presses the locations and directions of sensors.
This transposition relation is implied by the sen-
sors/actuators collocation. We assume that

rank
[
Di Li

]
= ni, rank

[
Ki Li

]
= ni (3)

hold, which means that the rigid modes of each
subsystem are controllable and observable.

To stabilize the subsystem, we consider a local
SDDFB controller (Fujisaki et al., 2001)

ζ̇i =−γiViζi + βiγiUiyi

ui = βiγiU
T
i ζi

− (
α2

iU
T
i V

−2
i Ui + β2

i γiU
T
i V

−1
i Ui

)
yi (4)

where ζi ∈ Rri is the state of the controller, Vi

is a positive definite matrix, Ui is a nonsingular
matrix, and αi, βi, γi are positive constants. The
transfer function of (4) is written as

ui(s) =−α2
iU

T
i V

−2
i Uiyi(s) − β2

i U
T
i V

−2
i Ui

·
{ (

1
γi

)
sU−1

i V −1
i Ui + Iri

}−1

syi(s) (5)

where the second term works as a differentiator
in the low frequency range. The parameter γi

determines the bandwidth of differentiation and
α2

i , β
2
i respectively play as the gains of the pro-

portional part and the pseudo-differential part of
the controller.

In the time domain, the term
{ (

1
γi

)
sU−1

i V −1
i Ui

+Iri

}−1
syi(s) means the estimated value ˆ̇yi of

the velocity ẏi, and the SDDFB controller (4) can
be wriiten as

ui = −α2
iWiyi − β2

i Wi
ˆ̇yi (6)

where Wi = UT
i V

−2
i Ui. Therefore, the SDDFB

controller (4) is the approximation of the DVDFB
controller

ui = −α2
iWiyi − β2

i Wiẏi (7)

which can be applied in the case that the velocity
of the subsystem is measurable as well as the
displacement.

The closed-loop system obtained by applying the
local controller (4) to the subsystem (1) is stable,
and its stability is robust against the uncertainty
in Mi, Di, Ki of the structure (Fujisaki et al.,
2001). However, the closed-loop system cannot be
optimal for any quadratic cost function, because
the relative degree of its loop transfer function is
2. As well known, for a closed-loop system to be
optimal, the relative degree of the loop transfer
function has to be 1.

Now, we note that for optimal control, we gen-
erally use a Kalman filter or an observer to esti-
mate the state, and apply state feedback control
law. Such a Kalman-filter-based or observer-based
controller’s inputs are the measured output and
control input of the system to be controlled. The
controller can optimize systems of the relative
degree 2 or even more. Seeing this fact, we use

−γiViζi + βiγiUiyi

= −β−1
i ViU

−T
i

{
βiγiU

T
i ζi

− (
α2

iU
T
i V

−2
i Ui + β2

i γiU
T
i V

−1
i Ui

)
yi

}
−α2

i β
−1
i V −1

i Uiyi

= −α2
iβ

−1
i V −1

i Uiyi − β−1
i ViU

−T
i ui

to transform the controller (4) equivalently to

ζ̇i = −α2
i β

−1
i V −1

i Uiyi − β−1
i ViU

−T
i ui

ui = βiγiU
T
i ζi

− (
α2

iU
T
i V

−2
i Ui + β2

i γiU
T
i V

−1
i Ui

)
yi (8)

whose inputs are the measured output yi and
control input ui of the subsystem (1), where U−T

i

denotes (UT
i )−1. In this paper, we use (8) as the

local controller.

3. SDDFB OF OVERALL SYSTEM

We connect the subsystems (1) by springs and
dampers. The obtained overall system is described
by

Miq̈i +Di q̇i +Kiqi

= Liui +
�∑

j=1

Nij{KCij

(
NT

jiqj −NT
ijqi

)



+DCij

(
NT

ji q̇j −NT
ij q̇i

)}
i = 1, 2, . . . , � (9)

where Nij is a matrix representing the locations
and directions of the springs and dampers at the
i-th subsystem, which connect the i-th subsystem
with the j-th subsystem. The matrices KCij and
DCij respectively denote spring and damper pa-
rameters, which are positive semi-definite.

In (9),

KCij

(
NT

jiqj −NT
ijqi

)
+DCij

(
NT

ji q̇j −NT
ij q̇i

)
represents the force and/or torque affecting the
i-th subsystem by the springs and dampers con-
nected with the j-th subsystem, and NT

ijqi is the
displacement of the connecting points of springs
and dampers in the i-th subsystem. We assume
that when the i-th and j-th subsystems are at
the origins of their displacements, qi = 0 and
qj = 0, the springs between them are neither
stretched nor compressed. The effects of springs
and dampers are bilateral, which implies KCij =
KCji and DCij = DCji.

Thus, the overall structure is described by

M̃ ¨̃q + D̃ ˙̃q + K̃q̃= L̃ũ, ỹ = L̃T q̃ (10)

where

q̃= [ qT
1 qT

2 · · · qT
� ]T , ũ = [ uT

1 uT
2 · · · uT

� ]T

ỹ = [ yT
1 yT

2 · · · yT
� ]T

M̃ = diag{Mi}i=1,2,...,�

D̃ = diag{Di}i=1,2,...,� +
�−1∑
i=1

�∑
j=i+1

ÑijDCijÑ
T
ij

K̃ = diag{Ki}i=1,2,...,� +
�−1∑
i=1

�∑
j=i+1

ÑijKCijÑ
T
ij

L̃= diag{Li}i=1,2,...,�

Here, the matrix Ñij is defined by Nij and Nji as

Ñij =




...
Nij

...
−Nji

...




i

j

in which the elements except the submatrices Nij

and −Nji are all zero.

The local SDDFB controllers (8) are put together
in the decentralized form as

˙̃ζ = −ᾱ2β̄−1Ṽ −1Ũ ỹ − β̄−1Ṽ Ũ−T ũ

ũ = β̄γ̄ŨT ζ̄

−
(
ᾱ2ŨT Ṽ −2Ũ + β̄2γ̄ŨT Ṽ −1Ũ

)
ỹ (11)

where

ζ̃ = [ ζT
1 ζT

2 · · · ζT
� ]T

Ṽ = diag{Vi}i=1,2,...,�, Ũ = diag{Ui}i=1,2,...,�

ᾱ= diag{αiIri}i=1,2,...,� , β̄ = diag{βiIri}i=1,2,...,�

γ̄ = diag{γiIri}i=1,2,...,� . (12)

The overall closed-loop system is stable (Fujisaki
et al., 2001).

4. OPTIMALITY

The interconnected structure (10) and the decen-
tralized controller (11) are described together in
a state equation as

˙̃ξ = Ãξ̃ + B̃ũ (13)

Ã =


 0 Iñ 0

−M̃−1K̃ −M̃−1D̃ 0
−ᾱ2β̄−1Ṽ −1Ũ L̃T 0 0




B̃ =


 0

M̃−1L̃

−β̄−1Ṽ Ũ−T




ũ= − [
ᾱ2ŨT Ṽ −2Ũ L̃T + β̄2γ̄ŨT Ṽ −1Ũ L̃T

0 −β̄γ̄ŨT
]
ξ̃ (14)

where ξ̃ =
[
q̃T ˙̃q

T
ζ̃T

]T

and ñ =
�∑

i=1

ni. Then,

we present the following theorem.

Theorem 1. For the system (13), the state feed-
back (14) is a stabilizing control law, and mini-
mizes the quadratic cost function

J̃ =
∫ ∞

0

(ξ̃T Q̃ξ̃ + ũT R̃ũ)dt (15)

Q̃ = T̃T


 Q̃11 Q̃12 Q̃13

Q̃T
12 Q̃22 Q̃23

Q̃T
13 Q̃

T
23 Q̃33


 T̃ (16)

Q̃11 = α̃2K̃ + K̃α̃2 + α̃4L̃ŨT Ṽ −2Ũ L̃T

Q̃12 =
1
2
(α̃2D̃ − D̃α̃2) +

1
2
(K̃β̃2 − β̃2K̃)

−(K̃ + α̃2L̃ŨT Ṽ −2Ũ L̃T )

·M̃−1L̃ŨT Ṽ −3Ũ L̃T β̃4γ̃−1

Q̃13 = (K̃ + α̃2L̃ŨT Ṽ −2Ũ L̃T )

·M̃−1L̃ŨT Ṽ −3Ũβ̄4γ̄−1

Q̃22 = β̃2D̃ + D̃β̃2 + β̃4L̃ŨT Ṽ −2Ũ L̃T

−2α̃2M̃ − β̃4γ̃−1L̃ŨT Ṽ −3Ũ L̃T M̃−1

·(D̃ + β̃2L̃ŨT Ṽ −2Ũ L̃T )

−(D̃ + β̃2L̃ŨT Ṽ −2ŨL̃T )

·M̃−1L̃ŨT Ṽ −3Ũ L̃T β̃4γ̃−1

Q̃23 = (D̃ + β̃2L̃ŨT Ṽ −2ŨL̃T )



·M̃−1L̃ŨT Ṽ −3Ũβ̄4γ̄−1

Q̃33 = β̄4ŨT Ṽ −2Ũ

T̃ =


 Iñ 0 0

0 Iñ 0
−γ̄Ũ−1Ṽ ŨL̃T L̃T β̄−1 γ̄Ũ−1Ṽ 2




α̃ = diag{αiIni}i=1,2,...,�

β̃ = diag{βiIni}i=1,2,...,�

γ̃ = diag{γiIni}i=1,2,...,�

R̃ = (ŨT Ṽ −2Ũ )−1 (17)

if the parameters αi, βi, γi are chosen so that the
matrix Q̃ is positive definite.

(Proof) Since the state feedback (14) is equivalent
to the controller (11), it is a stabilizing control law
for the system (13). Then, we introduce a matrix

P̃ = T̃T


 P̃11 P̃12 P̃13

P̃ T
12 P̃22 P̃23

P̃ T
13 P̃

T
23 P̃33


 T̃ (18)

P̃11 =
1
2
(D̃α̃2 + α̃2D̃) +

1
2
(K̃β̃2 + β̃2K̃)

+α̃2β̃2L̃ŨT Ṽ −2Ũ L̃T

P̃12 = α̃2M̃ , P̃13 = 0

P̃22 = β̃2M̃ − β̃4γ̃−1L̃ŨT Ṽ −3Ũ L̃T

+β̃6γ̃−2L̃ŨT Ṽ −3ŨL̃T M̃−1L̃ŨT Ṽ −3Ũ L̃T

P̃23 = −β̃6γ̃−2L̃ŨT Ṽ −3Ũ L̃T M̃−1L̃ŨT Ṽ −3Ũ

P̃33 = β̄4γ̄−2ŨT Ṽ −1

·(γ̄Ṽ −1 + β̄2Ṽ −2Ũ L̃T M̃−1L̃ŨT Ṽ −2)Ṽ −1Ũ .

Using this P̃ , the stabilizing feedback gain of (14)
can be described as

R̃−1B̃T P̃ =
[
ᾱ2ŨT Ṽ −2Ũ L̃T + β̄2γ̄ŨT Ṽ −1Ũ L̃T

0 −β̄γ̄ŨT
]
. (19)

Furthermore, P̃ satisfies the following Riccati
equation with Q̃ of (16) and R̃ of (17) for the
system (13).

P̃ Ã+ ÃT P̃ − P̃ B̃R̃−1B̃T P̃ + Q̃ = 0 (20)

We rewrite (20) as

P̃ (Ã − B̃R̃−1B̃T P̃ ) + (Ã − B̃R̃−1B̃T P̃ )T P̃

+P̃ B̃R̃−1B̃T P̃ + Q̃ = 0, (21)

where Ã− B̃R̃−1B̃T P̃ is stable and Q̃ is positive
definite. Thus, P̃ is a unique positive definite
solution of the Riccati equation (20). Therefore,
the feedback gain (19) of the control law (14) is
optimal for the cost function (15). The proof is
completed.

The existence of the parameters αi, βi, and γi

which satisfy the condition of Theorem 1 is shown
as follows. Let us choose the parameters as

αi = α, βi = β, γi = γ, i = 1, 2, . . . , �. (22)

Then, Q̃ of (16) becomes

Q̃ = T̃T


 Q̃11 Q̃12 Q̃13

Q̃T
12 Q̃22 Q̃23

Q̃T
13 Q̃

T
23 Q̃33


 T̃ (23)

Q̃11 = α2
(
2K̃ + α2L̃ŨT Ṽ −2Ũ L̃T

)

Q̃12 = −β4γ−1
(
K̃ + α2L̃ŨT Ṽ −2Ũ L̃T

)

·M̃−1L̃ŨT Ṽ −3Ũ L̃T

Q̃13 = β4γ−1
(
K̃ + α2L̃ŨT Ṽ −2ŨL̃T

)

·M̃−1L̃ŨT Ṽ −3Ũ

Q̃22 = β2
(
2D̃ + β2L̃ŨT Ṽ −2Ũ L̃T

)

−2α2M̃

−β4γ−1L̃ŨT Ṽ −3Ũ L̃T M̃−1

·
(
D̃ + β2L̃ŨT Ṽ −2ŨL̃T

)

−β4γ−1
(
D̃ + β2L̃ŨT Ṽ −2Ũ L̃T

)

·M̃−1L̃ŨT Ṽ −3ŨL̃T

Q̃23 = β4γ−1
(
D̃ + β2L̃ŨT Ṽ −2Ũ L̃T

)

·M̃−1L̃ŨT Ṽ −3Ũ

Q̃33 = β4ŨT Ṽ −2Ũ .

By increasing γ, the off-diagonal blocks Q̃12, Q̃13,
and Q̃23 in the matrix between T̃T and T̃ of Q̃
converge at zero matrices. On the other hand, the
diagonal blocks Q̃11 and Q̃33 are always positive
definite, and Q̃22 becomes positive definite by
choosing a sufficiently large β for α. Therefore,
there exist α, β, and γ of (22), which satisfy the
condition of Theorem 1.

The choices of αi, βi, γi in (22) are the simplest
ones. The condition of Theorem 1 provides the
freedom in choosing the parameters.

If the velocity of each subsystem in the structure is
measurable as well as the displacement by sensors
collocated with actuators, we can apply stabilizing
decentralized DVDFB

ũ = −ᾱ2W̃ ỹ − β̄2W̃ ˙̃y (24)

W̃ = diag{Wi}i=1,2,...,�

composed of the local DVDFB (7), where ᾱ and
β̄ have been defined in (12). It has been shown
(Ikeda, et al., 1993) that if we set

αi = α, βi = β, i = 1, 2, . . . , � (25)

and choose α, β suitably, the decentralized DVDFB
(24) becomes an optimal control law. We state the
following lemma.



Lemma 1. For the space structure (1), the de-
centralized stabilizing control law (24) with (25)
minimizes the quadratic cost function

Ĵ =
∫ ∞

0

([
q̃T ˙̃q

T
]
Q̂

[
q̃
˙̃q

]
+ ũT R̂ũ

)
dt (26)

Q̂ =
[
α2(2K̃ + α2L̃W̃ L̃T ) 0

0 β2(2D̃ + β2L̃W̃ L̃T ) − 2α2M̃

]

R̂ = W̃−1 > 0

where α and β are chosen so that Q̂ is positive
definite.

In this DVDFB case also, we need to increase β
sufficiently for α to make the control law optimal.

Comparing Q̂ and R̂ in Lemma 1 with Q̃ and R̃
in Theorem 1 under the constraint (22), we see a
relation. If we choose the matrices in (4) and (7)
so that

Wi = UT
i V

−2
i Ui, (27)

the matrix Q̂ is equal to the upper left 2×2 block
of the matrix between T̃T and T̃ of Q̃, and R̂ = R̃.
Furthermore, the upper left 2 × 2 block of the
matrix between T̃T and T̃ of P̃ in (18) is equal
to

P̂ =
[
α2D̃ + β2K̃ + α2β2L̃W̃ L̃T α2M̃

α2M̃ β2M̃

]
(28)

which has been used as the positive definite so-
lution to the Riccati equation to prove Lemma 1
(Ikeda et al., 1993).

5. EXAMPLE

Let us consider an interconnected space structure,
which is composed of two subsystems connected
in the x direction by springs and dampers as
illustrated in Fig. 1. For simplicity, we assume
that each subsystem consists of two rigid bodies
of rectangular shapes, which are connected in the
y direction by springs and dampers. The rigid
bodies may not be of the same size.

The mass and moment of inertia of the j-th rigid
body in the i-th subsystem is denoted by mij and
Jij . The motion of the rigid body is described by
the displacements xij , yij of the center of mass
and the rotational angle θij around the center
of mass. It is assumed that the input forces and
torque are applied at the center of mass in each
rigid body.

In the i-th subsystem (i = 1, 2), rigid body has
two connecting points labeled as ijk meaning that
the connecting point is the k-th one (k = 1, 2) at
the j-th rigid body (j = 1, 2). The length of the
line segment between the center of mass and the
connecting point ijk is denoted by �ijk. The angle
between the line segment and the edge of the rigid
body at the connecting point is denoted by ψijk.
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Fig. 1. An interconnected space structure

The springs and dampers are represented by lines
between rigid bodies in Fig. 1. The angle between
the edge of the rigid body and the direction of
the spring and damper attached not rectangularly
at the point ijk is denoted by φijk. Then, the
displacement vector of the i-th subsystem (1) is

qi =
[
xi1 yi1 θi1 xi2 yi2 θi2

]T

and the coefficient matrices of (1) are

Mi = diag{mi1, mi1, Ji1, mi2, mi2, Ji2}

Di =
[
N̂i1

−N̂i2

]
Dsi

[
N̂T

i1 −N̂T
i2

]

Ki =
[
N̂i1

−N̂i2

]
Ksi

[
N̂T

i1 −N̂T
i2

]

N̂i1 =
 0 0 −cosφi11

1 1 sinφi11

−�i11cosψi11,�i12cosψi12,−�i11sin(ψi11 + φi11)




N̂i2 =
 0 0 −cosφi22

1 1 sinφi22

−�i22cosψi22, �i21cosψi21, �i22sin(ψi22 + φi22)




Dsi = diag{di1, di2, di3}
Ksi = diag{ki1, ki2, ki3}
Li = I6

Here, the matrices N̂i1 and N̂i2 are defined by
the location and direction of springs and dampers
in the i-th subsystem. The scalar values kik, dik

respectively represent the spring and damper pa-
rameters. The subscripts ik indicate the positions
of the spring and damper as indicated in Fig. 1.

The subsystems are connected at four points la-
beled as ijk denoting the k-th point (k = 3, 4) at
the j-th rigid body (j = 1, 2) in the i-th subsystem
(i = 1, 2). Then the interconnection term in (9) is
expressed by



Table 1. Parameters of the structure

i j mij Jij kik , kcl dik, dcl

1 1 20.0 100.0

2 40.0 400.0 0.1 0.01
2 1 30.0 225.0

2 60.0 900.0

k = 1,2,3, l = 1, . . . ,6

Table 2. Parameters of the controller

Case 1 Case 2

i αi βi γi i αi βi γi

1 3.0 9.3 23.0 1 3.0 6.0 23.0

2 3.0 11.3 43.0 2 3.0 7.0 43.0

Ñ12 =
[
N12

−N21

]

N12 = diag





 1 1

0 0
�1j4cosψ1j4 −�1j3cosψ1j3

sinφ1j4

cosφ1j4

�1j4sin(ψ1j4 + φ1j4)







j=1,2

N21 = diag





 1 1

0 0
�2j3cosψ2j3 −�2j4cosψ2j4

sinφ2j3

cosφ2j3

−�2j3sin(ψ2j3 + φ2j3)







j=1,2

DC12 = diag{dc1, dc2, dc3, dc4, dc5, dc6}
KC12 = diag{kc1, kc2, kc3, kc4, kc5, kc6} (29)

The scalar values kcl and dcl (l = 1, . . . , 6) respec-
tively represent the parameters of the spring and
damper connecting the subsystems. The subscript
l indicates the l-th connection shown in Fig. 1.
The notations �ijk, ψijk, φijk for k = 3, 4 are
defined as those for k = 1, 2.

For simulation, we use the values of mass, moment
of inertia, stiffness, and damping given in Table
1. The length �ijk and angles ψijk, φijk (i, j =
1, 2, k = 1, 2, 3, 4) are 1.0, π/4 [rad], π/3 [rad],
respectively.

The controller parameters αi, βi, γi (i = 1, 2) are
chosen as in Table 2. The matrices Ui, Vi (i = 1, 2)
in the controller are 6 × 6 identity matrices. In
Table 2, the parameters of Case 1 make Q̃ of
(16) positive definite, and those of Case 2 do
not. In Case 1, the parameters are chosen as
follows. First, αi are arbitrarly fixed. Then, βi

are increased so that the term β̃2D̃ + D̃β̃2 +
β̃4L̃ŨT Ṽ −2ŨL̃T − 2α̃2M̃ of Q̃22 in (16) becomes
positive definite. Finally, γi are increased so that
the matrix between T̃T and T̃ of Q̃ in (16)
becomes positive definite.

Setting the initial displacements of subsystems as

q1(0) = (0 0 0 0.05 0.07 0.1)T

q2(0) = (0 0 0 0 0 0)T ,
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Fig. 2. Initial-state responses of displacements

the responses are computed as in Fig. 2. The left
column shows behaviors in Case 1. The right col-
umn is those of Case 2. The top, second, third, and
bottom figures respectively show the responses of
rigid bodies 11, 12, 21, and 22. Solid lines, broken
lines, and chained lines respectively indicate the
displacements in the direction xij , yij , and the
rotational angle θij . It is seen that the settling
time and amplitude of vibration is much less in
Case 1 than in Case 2.

6. CONCLUSION

This paper has considered position and attitude
control of large space structures composed of a
number of subsystems which are interconnected
by springs and dampers. A decentralized SDDFB
control law compatible with subsystems has been
applied under the assumption that sensors and
actuators are collocated. A condition has been
derived for the overall control system to be opti-
mal for a quadratic cost function. This result can
be used in choosing the controller parameters on
the design stage, and also in tuning them on the
operation stage where a new subsystem may be
connected to the space structure or a failed sub-
system may be disconnected from the structure.
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