

MODELING AND SIMULATION OF FMS DYNAMICS BY USING VRML

N. Smolić-Ročak, S. Bogdan, Z. Kovačić
T. Reichenbach, B. Birgmajer

University of Zagreb, Faculty of Electrical Engineering and Computing
Unska 3, 10000 Zagreb, CROATIA

http://flrcg.rasip.fer.hr

Abstract: This paper presents advantages of using virtual reality FMS models and
corresponding dynamic simulators for design, analysis, dynamic simulation and
visualization of complex flexible manufacturing systems. Developed software has
been used for creating a virtual model of the laboratory FMS setup. It is shown how
phenomena like operation conflicts and deadlocks can be observed and supervised
remotely through a client-server Internet connection.

Keywords: flexible manufacturing systems, modeling, simulation, virtual reality

1. INTRODUCTION

Flexible manufacturing systems (FMS) can be
viewed as complex structures assembled of elements
such as robots, machine tools, rotary tables, belt
conveyers etc., that are connected and supervised
through a local area network access. Design of FMS
can be a demanding job and for this purpose
graphically oriented tools for design of FMS have
been developed. To get an insight into the dynamic
performance of FMS, the methods for modeling and
control based on the discrete event systems theory
are applied. Good examples are the programs Onika
(Gertz and Khosla, 1994), Robotica (Nethery and
Spong, 1994), OpenRob (Ge, et al., 2000) and the
Robotics Toolbox for Matlab (Corke, 1999), which
allow graphical design of systems for control of
robotized plants and which integrate already existing
software modules for control of robot manipulators.

Virtual modeling of complex physical systems has
brought a new quality in investigation of FMS
phenomena. Allowing clear visualization of all
problems arising during FMS operation, virtual
reality modeling in conjunction with dynamic
characteristics of the modeled objects and web-
related technologies has traced a completely new
route to analysis and design of flexible

manufacturing processes (Jacobs, et al., 1996;
Hirukawa and Hara, 2000).

The aim of this paper is to show how effective can be
analysis of FMS dynamic behavior with the usage of
virtual models and accompanying dynamic models.
By using a developed software, based on JAVA and
C++, a virtual model of the previously built
laboratory model of the FMS has been made to
illustrate the occurrence of critical phenomena such
as the operations conflict and deadlock, which
endanger regular FMS operation. Being clearly
visualized, these irregularities can be prevented by
selecting an appropriate dispatching policy.

2. FLEXMAN CONCEPT

FlexMan is a tool for computer-integrated design
and simulation of FMS (Kovačić, et al., 2001). Its
concept is directed towards concretization of a very
popular term “future factory” which assumes a high
level of integration of the manufacturing tasks
(strategies and production planning) on one hand
and the machine infrastructure (robots, transporters,
machine tools) on the other hand. The aim of
FlexMan is to provide an environment for
investigation of various shop floor configurations
and job scheduling strategies with one goal - to
reach a necessary level of manufacturing flexibility.

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

http://flrcg.rasip.fer.hr/

The concept of FlexMan has been based on five
main software components (Fig. 1): the Scene
Builder, the trajectory planner tool LEONARDO,
the Database, the Visualization Client and the FMS
Controller. Although some components can operate
independently, the interconnection and
communication between various parts under
supervision of the FMS controller is what makes the
whole concept feasible.

The software is based on the client - server
architecture (actually, there is more than one server
and some servers can also act as clients) with thin
“final” client (that serves for visualization of a
virtual FMS). The servers are implemented in C++
for the win32 platform, while the clients can be any
Internet browsers that support the JAVA technology
and have incorporated the VRML.

Although the data are transferred with different
protocols, they are all stored in XML format. The
advantages of such an implementation are easy
software maintenance, scalability, adaptability to
customer needs (easy reconfiguration of the virtual
scene), the usage of standard protocols, no need for
“extra” client software - standard HTML browsers
with VRML viewer plug-ins and Java support can
be used, and finally, the important thing is that the
client can be run on various hardware platforms.

The Scene Builder is a component written in Java,
which serves for graphically based setting of virtual
FMS configurations. Elements such as robots,
conveyers, pistons, machines, tools etc., whose
virtual models are used in the scene, are described in
the Database. The Database consists of the records
of tools, robots, parts, trajectories, scenes and saved
statistical information.

LEONARDO is an integrated tool for the complex
objects off-line trajectory planning, that is primarily
applicable to the single robot work cells.

The Visualization client is responsible for accurate
visualization of a simulated virtual FMS. The
commands received from the FMS Controller are
used to move the parts and operate the tools. The
Visualization Client is built completely in JAVA.
Control of the VRML scene, which is a
representation of the FMS model, is achieved via the
External Authoring Interface (EAI).

The FMS Controller serves as a supervision and
communication center and on top of that as a virtual
FMS simulation executor. The FMS planner uses a
timed matrix-based model (Bogdan, et al., 1999) to
determine which operation is taking place and what
is the duration of an operation. Once the FMS scene
is defined and selection of the FMS control strategy
has been made, the FMS planner does not require
any further interaction with the user. All data
necessary for simulation and visualization are
calculated based on the parameters in the Database.
Different FMS control strategies can be applied and
their impact on the behavior of the virtual FMS can
be investigated.

3. A TIMED MATRIX-BASED MODEL OF FMS

FlexMan utilizes a timed matrix-based algebra
(Bogdan, et al., 1999) to simulate FMS dynamics. In
order to create a timed matrix-based model of an
FMS it is required first to define a sequence of
manufacturing operations. The sequence of
operations can be generated on the basis of a part
path, and then easily transformed into the matrices
Sr - resource release matrix, Sv - job start matrix, Sy
- output matrix, Fr - resource requirements matrix,
Fv - job sequencing matrix and Fu – input matrix,
that are explained in detail in (Lewis, et al., 1998).
These matrices describe logical connections among
the resources and operations, or in other words, they
represent the set of IF-THEN rules.

Fig. 1. The concept of FlexMan.

Scene
Builder
client

Planner /
Dispatcher

LEONARDO
an integrated tool

for the
complex objects

trajectory planning

FMS
 Controller

Visualisation
Client

Database

However, every operation takes a specific time to
get completed, so it is necessary to define durations
of all operations. From the time intervals specified
for each operation corresponding diagonal matrices
Dr and Dv containing operation delays are created.

According to the timed matrix-based FMS model
the number of parts waiting to proceed through a
flow line after completion of a corresponding job (a
component of job vector v) can be calculated by
using the following recursive equation:

() () ()() ()zxFzTzvz T
vv −=− −11 (1)

where:
() () vvv SzDzT *= - task duration matrix.

In the same way the number of available resources
(components of resource vector r) can be
determined as:

() () ()() ()zxFzTzrz T
rr −=− −11 (2)

where:
() () **

rrr SzDzT Φ= - resource release duration
matrix,

 Φ - release transformation matrix, see (Bogdan,
 et al., 1999).

Components of the logical state vector x, which
define operations to be started and resources to be
released (referring to (1) and (2)), depend on a
current status of operations and resources. They are
calculated from the set of IF-THEN rules, which can
be represented as a recursive equation of the form

() ()[]zyzx σ= (3)
where:

() ()[]

−−=

×

−

1

1

1
...
1

n

wzmzFzy σ

11
...
1

×

=

n

Fw , ()

=

)(
)(

zr
zv

zm , ()

≤
>

=
0,0
0,1

a
a

aσ ,

[]rv FFF =

To resolve a possible occurrence of operations
conflict due to the existence of shared resources in
the FMS, controllers must be used. The FMS
controller is integrated within a timed matrix-based
model through the user-defined control matrices Sd
and Fd. The structures of these two matrices are
determined by the structure of the controlled FMS
and the desired dispatching strategy (Gurel, et al.,
2000)

4. VIRTUAL MODELING OF FMS

As a part of FlexMan, the Scene Builder is an easy-
to-use Internet browser-based tool for virtual scene
customization and FMS properties definition. To
create a virtual model of an FMS, a user must open a
specified URL address by using one of available
browsers (e.g. Netscape, Internet Explorer).

A virtual scene (Fig. 2.) is modeled by using objects
from the Database (Predefined objects list) whose
characteristics are defined by the corresponding
prototypes. In this way, a build-up of more complex
layouts becomes very easy and straightforward.

Fig. 2. A virtual scene of an FMS created with a Scene Builder tool.

Following the VRML specifications (X3D
Consortium, 2001), the prototype created for FMS
elements defines their position and orientation and a
scaling factor that determines their respective size.
Depending on the structure of each element and the
number of its movable parts (e.g. the number of
axes), the corresponding prototype defines interface
for external manipulation of the object through
definition of so called eventIn input variables.

Fig. 3. Object task definition frame (Rhino XR3).

Once an object is placed on the virtual scene, its
properties (name, position, orientation etc.) can be
defined by using the corresponding fields. Some
objects on the scene, such as resources, have a
physical meaning while the others, such as control
place, serve only as logical entities for the purpose
of FMS control. It is worth to mention that the
object called “CONTROL PANEL” (in the right
bottom corner of Fig. 2) displays a current status of
the FMS notifying the user if for example, a conflict
or a deadlock have occurred.

Having a structure of the FMS described by the
virtual model, the user opens a frame for definition
of tasks performed by the objects on the scene.
Depending on a selected type of an object, different
frames are opened (Fig. 3). For example, as shown
in Fig. 3, the object named “r” represents a virtual
model of the educational robot Rhino XR-3 (see Fig.
2), which has two tasks, “r1r” and “r2r”. The frame
allows the user to define all data that determine
these tasks (trajectories, resource release durations,
durations of tasks etc.). On the other hand, the frame
for the Control place enables only definition of
object’s release time and initial condition.

In order to visualize FMS operations in the virtual
environment as they were real, the algorithm
described by equations (1)-(3) must be active and its
input and output must be closely connected to the
elements of the virtual model. This will eventually

result in a clear picture of what is going on in the
FMS during the manufacturing process. Providing
that resources and operations they perform are
defined, to make a virtual model feasible for
simulation, the user has to define FMS operation
sequencing. This can be done by a Rule Editor
frame (Fig. 4). From the previously defined objects
and their tasks the user builds a set of rules that
describes sequencing of operations in the FMS:

IF operation_1 is finished AND resource_1 is ready
THEN start operation_2 AND release resource_2.
Based on these rules and objects properties the FMS
model matrices required for simulation are
calculated automatically.

The elements of matrix Fr, which relates resources
and IF part of rules, attain value 1 if the
corresponding resource (column) participates in a
rule (row). Otherwise the corresponding element
becomes 0. In the same way, matrix Fv gets 1s in the
places where the corresponding task (column)
participates in the IF part of rule (row). THEN parts
of the rules are related to the resources and
operations through matrices Sr and Sv. If the
resource (row) takes part in a rule (column), then the
corresponding element of matrix Sr gets value 1.
The same is effective for matrix Sv in which rows
represent tasks while columns represent rules.

Trajectories for resources with only one degree of
freedom are generated on-line by the FMS planner,
while the program LEONARDO generates
trajectories for more complex resources off-line.

The connection between the Scene Builder and the
FlexMan is accomplished through XML formatted
data. When the complete FMS is properly
initialized, simulation can start. During simulation
the FMS Controller sends coordinates and
orientation of a tool tip for each resource and part to

Fig. 4. The Rule Editor frame.

the Visualization Client, and correspondingly, the
Visualization Client moves resources and parts to
defined positions. FMS Controller sends data to
Visualization Client only when there is a change in
the state of object. The data are sent in the XML
format via socket communication. Data are accepted
by the Visualization Client, which parses the XML
document and puts parts and resources in positions
given in the XML document.

5. AN EXAMPLE

An example of FMS, which contains a Rhino XR-3
robot, three transporters and three pistons are shown
in Fig. 5. (a dotted line represents a part path).

Fig. 5. The machine shop of experimental FMS.

A virtual model of this FMS in various states of
operation is presented in Figs. 6a-c. Fig. 6a.
illustrates starting operations where the robot takes

the first part from the input feeder, carries it and puts
it on the transporter T1, which further carries it in
front of the piston P1. A simulator, using the matrix-
based model, provides simultaneous execution of
more than one operation.

Fig. 6b. illustrates the state of conflict as the robot
must decide which of the two possible jobs should do
first – to take the part from the buffer and put it on
the transporter T2 or to take another part from the
input place and put it on the transporter T1. Such a
conflict is easily resolved by an adequate controller
action that will enable one and disable another
possible operation. In the studied case the FMS
controller successfully resolves the situation by
deciding that the robot takes another (the third) part
and carries it to the transporter T1.

a) the beginning of operation

b) a conflict

c) a deadlock

Fig. 6. A virtual model of an experimental FMS.

Fig. 6c. shows a deadlock. The robot must remove
the part from T3 while holding a part that cannot be
put on already occupied transporter T2. This stopped
parts to proceed through the system. Obviously, the
user must use a Scene Builder to change a
dispatching policy by editing and changing the rules.

6. CONCLUSIONS

Virtual modeling of complex physical systems has
given a new dimension to the FMS design. The
usage of virtual FMS models enables easy changes
of FMS configurations and allows feasibility
studies. All phenomena can be clearly visualized in
the virtual world and possible conceptual mistakes
can be eliminated before building the real system.

By providing a powerful 3D visualization, virtual
models enable deeper insight and understanding of an
FMS dynamic behavior, thus becoming very useful
for education and personnel training. The graphical
user interface supporting 3D graphics and animation
provides facilities for off-line elaboration and
validation of various virtual laboratory and virtual
factory concepts. For this purpose the program
FlexMan has been developed and presented with an
additional feature of supporting remote control via
Internet through the client-server communication.

The usage of virtual models provides conditions for
realistic visualization of conflict situations and thus
helps to explore all possible situations and implement
other dispatching strategies, which will ensure that
the system is deadlock free.

7. ACKNOWLEDGEMENTS

The work described in this paper was performed
within the framework of the projects 00-2 "Design of
FMS by Using Virtual Models and Internet" and
036042 "Integrated Control of Robotized Systems"
supported by grants from the Ministry of Science and
Technology, Republic of Croatia.

REFERENCES

Bogdan, S; F. Lewis, Z. Kovačić, A. Gurel, (1999).

"New Matrix Formulation for Supervisory
Controller Design in Practical Flexible
Manufacturing System", The 1999 IEEE ISIC,
Boston, pp. 144-149.

Corke P., (1999). Robotic Toolbox for Matlab,
CSIRO Manufacturing Science and Technology

Ge S.S., Lee T.H., Gu D.L. and Woon L.C., (2000)
"A One Stop Solution in Robotic Control System
Design", IEEE Robotics and Automation Mag.,
vol. 7, no. 3, pp.42-54.

Gertz M. W. and Khosla P. K., (1994). "Onika: A
multilevel Human-Machine Interface for Real-
Time Sensor-Based Robotics Systems", in Proc. of
SPACE 94, Albuquerque.

Gurel A.; Bogdan S.; Lewis F.L.; Huff B. (2000);
Matrix Approach To Deadlock-Free Dispatching
In Multi-Class Finite Buffer Flowlines, The IEEE
Transaction on Automatic Control, Vol. 45, No.
11, pp. 2086-2090.

Hirukawa H. and Hara I., (2000) "Web-Top
Robotics:

Using the World Wide Web as a Platform for
Building Robotic Systems", The IEEE R&A
Magazine, vol. 7, no. 2, pp. 40-45.

Jacobs K., Lemay L, Murdock K. and Couch J.,
(1996) "Laura Lemay's Web Workshop: 3D
Graphics and VRML 2", Sams Publishing.

Kovačić, Z, S. Bogdan, T. Reichenbach, N. Smolić-
Ročak, B. Birgmajer, (2001). "FlexMan – A
Computer-integrated Tool for Design and
Simulation of Flexible Manufacturing Systems",
CD-proc. of The 9th Mediterranean Conference on
Control and Automation, Dubrovnik.

Lewis, F., A. Gürel, S. Bogdan, A. Doganalp, O. C.
Pastravanu, (1998) "Analysis of Deadlock and
Circular Waits Using a Matrix Model for Flexible
Manufacturing System", Automatica, vol. 34, no.
9, pp. 1083-1100.

Nethery J., and Spong M.W. (1994), "Robotica: A
mathematica package for robot analysis", IEEE
Robotics and Automation Mag., vol. 1, no. 1,
pp.13-20.

X3D Consortium (2001). VRML 2.0 modeling
language specification.

