
 
 

NEURAL OUTPUT REGULATION FOR A SOLAR POWER PLANT  

J. Henriques, P. Gil and A. Dourado  
 

CISUC - Centro de Informática e Sistemas da Universidade de Coimbra,  
Dep. Engenharia Informática, Pólo II da Universidade, Pinhal de Marrocos, 3030 Coimbra, Portugal 

e-mail: {jh, pgil, dourado}@dei.uc.pt, Phone: + 351 239 79 00 00 Fax:+ 351 239 701 266 
  

Abstract: In this paper the modelling capabilities of a recurrent neural network and the effectiveness and 
stability of the output regulation control theory are combined. The control structure consists in a neural 
based indirect adaptive control scheme, being the main goal to provide a viable practical control strategy 
suitable for real-time implementations. This control scheme was applied to the distributed solar collector 
field at Plataforma Solar de Almería, Spain. Experimental results obtained at the solar power plant are 
presented showing the effectiveness of the proposed approach. 
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1. INTRODUCTION 

The main control requirement in a solar power plant is to 
maintain the outlet oil temperature of the collector field at a 
constant pre-specified value. One of the main features of the 
plant is that its primary energy source, the solar radiation, 
can not be manipulated by the control system. Moreover, 
since the solar radiation changes substantially during plant 
operation, due to the daily solar cycle, atmospheric 
conditions such as a the cloud cover, humidity and air 
transparency, this leads to significant variations in the 
dynamics of the field (e.g. the response rate and time delay), 
corresponding to different operating conditions. Therefore, 
it is difficult to obtain a satisfactory performance over the 
whole operating range with a fixed linear controller. 

One possibility to overcome these difficulties is to use 
adaptive control schemes, on the basis of local linear models 
of the plant, which mimic changes during the operation and 
are used for self-tuning or within predictive control schemes 
(Camacho et al, 1992; Camacho et al, 1994; Pickhardt and 
Silva, 1998). The distributed solar collector field is a process 
where the main disturbances, the solar radiation and the inlet 
oil temperature, are measurable. Following this idea Coito et 
al (1997) have presented simulation and experimental results 
concerning the design of a predictive controller 
(MUSMAR), and Cardoso et al (1999) have presented a 
fuzzy supervisor strategy that takes into account this 
measured disturbances.  

Others have suggested intelligent control techniques, such as 
neural networks (Arahal et al, 1997) or fuzzy systems 
(Berenguel et al, 1997), (Rubio et al, 1995), (Oksanen and 
Juuso, 1999). Another possible alternative could be the 
commissioning of a switching controller using different 
models of the plant for different operating points. Henriques 
et al (1999) have suggested a control strategy based on a 
PID control design with a fuzzy logic-switching supervisor. 
The supervisor is built upon a Takagi-Sugeno fuzzy model 
to implement an on-line switching between several PID 
controllers according to the real time measured conditions.  

 

Recently, neural networks (NN) have attracted a great deal 
of attention owing to their ability to learn non-linear 
functions from input-output data examples (Cybenko, 
1989). Applied to control field, NN are essentially non-
linear models that can be useful to solve non-linear control 
problems (Hunt and Zbikowski, 1997). Due to their 
intrinsic abilities to incorporate time, recurrent neural 
networks (RNN), introduced by Hopfield (1982) and 
further developed by some other authors (Rovithakis and 
Christodoulou, 1997), (Poznyak et al, 1999), (Kulawski and 
Brdys, 2000) have some advantages with respect to static 
NN, mainly for modelling dynamic processes purposes. 

In this paper a RNN is used to replace the unknown 
system, transforming the original problem into a non-linear 
control problem suitable to be designed by non-linear 
control techniques. In this context, the geometric approach 
has provided a variety of tools for the analysis and design of 
non-linear control systems.  
A well-known theory is the output regulation (OR) that 
aims to derive a control law such that the closed loop 
system is stable and, simultaneously, the tracking output 
error converges to zero. This technique leads to a 
straightforward method for solving non-linear control 
problems. However, the OR theory assumes a perfect model 
knowledge. Given the neural model plant mismatch, an on-
line adaptation of neural networks weights is considered in 
order to improve the discrepancies between the output of a 
previous off-line model and the actual output of the system. 
By means of a Lyapunov analysis a stability condition for 
the weights updating is employed. 

The paper is organised as follows: section 2 gives a short 
description of the solar power plant. In section 3 the 
proposed NN architecture and the associated off-line and 
on-line learning laws are presented. The OR theory is 
reviewed in section 4 and the adaptive neural-control 
structure is introduced. In section 5 some simulation and 
experimental results collected from the solar power plant are 
presented. Finally, section 6 concludes the paper. 
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2. THE SOLAR POWER PLANT 

The Acurex distributed solar collector field at Plataforma 
Solar de Almería (PSA) is quite well described in available 
literature (Kaltz, 1982; Camacho et al, 1992) and is located 
at the desert of Tabernas, in south of Spain. The field 
consists of 480 distributed solar collectors arranged in 20 
rows, which form 10 parallel loops. Each loop is 172 m long 
and the total aperture surface is 2672 m2. The plant is able 
to provide 1.2 MW peak of thermal power. A schematic 
diagram is shown in Fig. 1. 
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Fig. 1: Schematic diagram of the Acurex field.  

Each collector uses parabolic mirrors to concentrate the 
radiation in a receiver tube. Synthetic oil is pumped through 
the receiver tube and picks up the heat transferred through 
the tube walls. The cold inlet oil is collected from the 
bottom of the storage tank and is passed through the field 
by using a pump at the field inlet. The heated fluid is 
introduced into the storage tank to be used for electrical 
energy generation or feeding a heat exchanger of the 
desalination plant. The manipulated variable in the plant is 
the oil flow rate Θιν being the main goal to regulate the outlet 
field oil temperature Τουτ  at a desired value Τρεφ. The main 
disturbances are the solar radiation Ιρρ  and the inlet oil 
temperature Τιν. 

3. RECURRENT NEURAL NETWORKS 

The solar plant is assumed to be described in the form (1), 

ξπ(κ+1)=ƒ ( ξπ(κ), υ(κ) ) 
ψ(κ) = Χ ξπ(κ) 

(1)

where φ:ℜνπ×ℜνυ→ℜνπ defines a non-linear function. The 
vector ξπ∈ℜνπ is the state of the process (assumed to be 

unknown and inaccessible), υ∈ℜνυ and ψ∈ℜνψ are, 
respectively, the process input and output.  

3.1 Proposed Recurrent Neural Architecture 

Given the approximation capabilities of RNN (Jin et al, 
1999) it is assumed that there exist a RNN, described by (2) 
and shown in Fig. 2, that is able to describe the plant’s 
dynamics.  
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Fig. 2: Recurrent neural network structure. 

ξν(κ+1) = Α ξν(κ) + ∆ σ( ξν(κ) ) +Β υ(κ) 
ψν(κ) = Χ ξν(κ) 

(2)

The vector ξν∈ℜν is the output of the hidden layer, known 

as the network hyper-state, and ψν∈ℜνψ is the network 

output. Α∈ℜν×ν, Β∈ℜν×νυ, Χ∈ℜνψ×ν, ∆∈ℜν×ν are 
interconnection matrices and the neural activation function 
σ(⋅) is the hyperbolic tangent function. This architecture can 
be seen as a modification of the original discrete time RNN 
proposed by Hopfield, with an additional exogenous input. 
On the other hand, this can be seen as a hybrid model, with 
a linear and a non-linear part.  

3.2 Parameter Estimation 

Off-line learning: As pointed out by Hagan and Menhaj 
(1994) the Levenberg-Marquardt is more efficient than other 
techniques when the network contains no more than a few 
hundred parameters. Due to its effectiveness this algorithm 
has been applied for the off-line training of the RNN. From 
this initial training phase results the network parameters, 
expressed in Α∗ , Β∗ , Χ∗  and ∆∗  matrices. 

On-line learning: Several training algorithms have been 
proposed to recursively adjust the network parameters in 
recurrent networks. Typical examples are the real time 
recurrent algorithm (Williams and Zipser, 1995), the 
dynamic backpropagation (Narendra and Parthasarathy, 
1991), and the backpropagation trough time (Werbos, 1990). 
Unfortunately few stability studies were addressed 
considering the weights updating. Henriques et al (2001), 
based on Lyapunov stability theory, proposed a stable on-
line learning law for the RNN based on the dual Kalman 
strategy, where both the hyper-state and the parameters are 
updated. To this aim it is assumed that the matrices Α and Χ 
are static (off-line evaluated) and only the matrices Β and ∆ 
are to be updated on-line. The updating law is given by, 

∆Ω(κ)= Μ(κ)−1 ϕ(κ)Τ Π Α Χ ε(κ) (3)

where ε(κ)∈ℜνψ is the identification error Ω(κ)∈ℜνω =[ 
→
Β

(κ) 
→
∆ (κ) ]  is a vector consisting of weights (νω) of matrices 

Β(κ) and ∆(κ) at each time instant κ, Α is assumed to be a 
Hurwitz matrix, Μ(κ)∈ℜνω×νω is given by (4) and 
Π∈ℜν×ν is obtained from the discrete time Lyapunov 
equation (5). 

Μ(κ)= [ Ι +
1
2  ϕ(κ)Τ Π  ϕ(κ) ] (4)



 

 
 

ΑΤΠ Α−Π=−Θ (5)

ϕ(κ)∈ℜν×νω is an information matrix, based on σ(ξσ(κ)) and 

υ(κ). Θ∈ℜν×ν is a user choice positive definite matrix and Ι 
is an identity matrix of appropriate dimensions. 
Additionally, it is assumed that the hyper-state ξν(κ) is 
unknown and is to be determined by an observing procedure 
(Henriques et al, 2001). For this reason the pair (Α, Χ) is 
assumed observable. It is important to stress that, the 
network does not actually behave as an observer, in the 
strictest sense. In fact, it is not expected to estimate 
correctly the system state ξπ (which is assumed unknown), 
but only one possible representation in state space form ξν 
for the system, such that the output of the neural model 
ψν converge to the actual output plant ψ. 

4. NON-LINEAR OUTPUT REGULATION  

The OR problem for linear systems was solved by Francis 
(1977). For non-linear discrete time systems, Castillo et al 
(1993), using the zero output constrained algorithm 
(Monaco and Normand-Cyrot, 1987), has shown that the 
solution for the problem is reduced to the solution of 
transcendental non-linear equations, which represent the 
discrete time counterpart of the differential and 
transcendental equations, found for the continuous time 
systems by Isidori and Byrnes (1990).  

4.1 Problem Formulation 

Given a system in the form (1) and considering an additional 
external variable ω(κ), the discrete time system is given by 
(6). 

ξ(κ+1)=φ { ξ(κ), υ(κ, ω(κ) }  
ψ(κ) = Χ ξ(κ) 

ω(κ+1)=σ { ω(κ) } 
ε(κ+1)=η { ω(κ), ξ(κ) } 

(6)

The vector ω∈ℜνψ defines the disturbances and/or the 
reference signal generated by a so-called exosystem, and 
ε∈ℜνψ defines the output tracking error. Given this 
extended system, it is desired to find conditions such that a 
controller in the form (7), 

υ(κ)=γ ( ξ(κ), ω(κ) )  (7)

where γ:ℜν×ℜνψ→ℜνυ is a smooth mapping satisfying the 
following two requirements. 

S1: he equilibrium point ξ=0 of dynamics  

ξ(κ+1) = φ ( ξ(κ), γ(ξ(κ),0) ) (8)

is locally exponentially stable; 

S2: There exists a neighbourhood of the origin (0,0) such 
that, for each initial state (ξ(0),ω(0)), the solution of the 
closed loop system (9), 

ξ(κ+1) = φ ( ξ(κ), γ(ξ(κ),ω(κ)), ω(κ) ) 
ω(κ+1)=σ ( ω(κ) ) 

(9)

satisfies the error condition (10). 

λιµ
κ→∞  ( Χ ξ(κ) − ρ(ω(κ)) )=0 (10)

where the desired output (reference) is generated by the 
exosystem  

ψδ(κ)= ρ( ω(κ) )  (11)

Castillo et al (1993) have shown that the state feedback 
discrete time regulator problem is locally solvable if there 
exist two mappings ξ=π(ω) and υ=χ(ω), satisfying (12). 

π( σ(ω) )=φ ( π(ω), χ(ω), ω ) 
0 = Χ π(ω) − ρ(ω)  

(12)

Once evaluated the mappings ξ=π(ω) and υ=χ(ω), it is easy 
to show that the particular control law given by (13), 
satisfies both requirements S1 and S2.  

υ(κ)=γ(ξ,ω)=χ(ω)+Κ ( ξ−π(ω) )  (13)

Κ is a matrix of appropriate dimensions that places the 
eigenvalues of the first order approximation of the non-linear 
state space model in desired locations. As given by equation 
(12), the solution of the output regulator problem is reduced 
to a set of non-linear difference equations, known as 
regulator equations.  

4.2 Solution of Regulator Equations 

Except in a very few cases, it is difficult to derive an 
analytical solution to the mappings ξ=π(ω) and υ=χ(ω), that 
solves the regulator equations. One possibility is to solve 
approximately the regulator equations. Castillo et al (1993) 
have presented and derived conditions for the existence of an 
approximate solution for the discrete time case based on a 
polynomial expansion. Based on a Taylor series expansion 
as well, (Huang and Rugh, 1992) have proposed an 
approximation method for the continuous case. The same 
authors have presented an alternative approximation (Huang 
and Rugh, 1999) using a type of RNN, analogous to a 
cellular network. With a correct choice of parameters, the 
RNN is able to solve the regulator equations, in the least 
square sense, by means of a gradient descent minimisation. 

Based on a class of RNN, Henriques et al (2000), have 
proposed an approximation method to solve the regulator 
equations. The proposed algorithm leads to a pole 
placement design ensuring that the solution to the regulator 
equations converges if the eigenvalues of a given matrix are 
chosen to be stable. 

4.3 Adaptive Control Structure 

The block diagram of the proposed control structure is 
shown in Fig. 3. Based on the identification error, 
εν(κ)=ψν(κ)−ψ(κ) the learning law (section 2) updates the 
neural parameters, Ω, and states, ξν.  
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Fig. 3: Proposed control structure. 

The output regulator design for the NN ensures the 
asymptotic convergence of the neural tracking error, 
εδ(κ)=ψν(κ)−ψδ(κ). If the parameters of the neural model 
are adapted in the presence of parametric variations or 
uncertainties in the plant dynamics, the system tracking 
error will converge to zero. In fact, the system tracking 
error, ε(κ)=ψ(κ)−ψδ(κ), can be written as (14) 

ε(κ)=ψ(κ)−ψν(κ)+ψν(κ)−ψδ(κ) (14)

Since the regulator assures (15) 

λιµ
κ→∞  ( ψν(κ) − ψδ(κ) )=0 (15)

the overall error will converge provided that the 
identification error also converges, i.e, (16). 

λιµ
κ→∞  ( ψ(κ) − ψν(κ) )=0 (16)

5. EXPERIMENTAL RESULTS 

The experiments were carried out in the Acurex Solar 
Collectors Field of the Plataforma Solar de Almería on June 
14 and 15, 2001. The proposed control was implemented in 
C code and operates over a software developed at PSA 
(López, 1996) also in C code. The effectiveness of the 
developed approach was first tested using a non-linear 
distributed parameter model of the Acurex field, developed 
at the University of Sevilla (Berenguel et al, 1993). The 
sampling time was 15 seconds and the output temperature 
(Τουτ) was considered as the maximum temperature of all 
the loops (another usual strategy is to assume the average 
value). 

5.1 Off-line Learning 

The distributed solar collector field is a process where the 
main disturbances, the solar radiation and the inlet oil 
temperature, are measurable. Therefore, it makes sense to 
use this knowledge in the design of a feedforward 
compensator, shown in Fig. 4 and characterised in steady 
state behaviour by (17). 
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Fig. 4: Feedforward compensator. 

Θιν= 
 11423×102 Ιρρ 

 (903−0.67 Τρεφ) (1820+3.47 Τρεφ ) ( Τουτ−Τιν)
  (17)

To obtain an initial estimation for the neural network 
parameters a number of test inputs were considered. The 
goal in designing the test inputs was to cover the operational 
range of the plant to as great and extend as possible. The 
number of training patterns, hidden neurons and input 
sequence are all chosen by an trial and error approach since 
there is still no reliable method available for determining 
these parameters systematically. It was found that a 
selection of two hidden neurons, ν=2, is suitable to obtain a 
good model for the Acurex plant. As mentioned, the 
Levenberg-Marquardt algorithm was applied to obtaining an 
initial value for the matrices Α, Β, Χ, and ∆, defined in (2). 
Fig. 5 shows the off-line modelling results considering the 
experimental data set collected on June 14, 2001. 
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(a) Actual output versus neural output. 
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Fig. 5: Off-line neural modelling (June 14, 2001). 

In Fig. 5 the good performance of the learning methodology 
is clearly illustrated. As can be seen the output of the neural 
model ψν performs considerably well in tracking the actual 
output   ψ=Τουτ . 



 

 
 

5.2 Experimental results 

The present experiment was carried out on June 15, 2001 
and is intended to show the behaviour of the control system 
when several changes in the operation point, by setting 
different reference temperatures, are introduced. The effect 
of strong disturbances caused by large passing clouds, which 
produce drastic changes in the direct solar radiation level 
was tested, as well as the effect of inlet oil temperature 
variation. 

As can bee seen in Fig. 6 the control behaviour is quite 
acceptable. The response presents almost no oscillations 
neither overshoots and after an initial transient phase the 
outlet oil temperature stabilises close to the reference. 
The disturbance rejection capabilities of the controller are 
also acceptable, shown by a change in the inlet oil 
temperature, carried out at instant 15h00m. 
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(a) Reference, output temperature and pump flow rate. 

10 11 12 13 14 15 16
0

100

200

Time [hours]

T in

[oC]

I rr

[w / m2]Irr

T in

200

400

600

800

 
(b) Solar radiation and inlet oil temperature. 

Fig. 6: Experimental results obtained on June 15, 2001. 

Although, it should be expected a zero steady state error. 
The actual state steady control error is justified by the lower 
gain characteristics of the on-line learning procedure. Since it 
was not possible to adjust during operation both learning 
and controller parameters their choice were not the most 
favourable. In future experiments it is expected to improve 
the learning procedure by increasing the learning gain. 

In Fig. 6 the behaviour of the controlled system when 
intermittent clouds occurred (11h50m and 15h40m) can also 
be analysed. They produce changes in solar radiation that 
disturb the outlet oil temperature level during the operation. 
As observed the control results are very acceptable in this 
situation. 

From several simulations, tested using the non-linear 
distributed parameter model of the Acurex field, (Berenguel 
et al, 1993), together with the experiments it can be 
concluded that the output regulation neural strategy 
performs according to its design: by on-line adjusting the 
neural parameters it is possible to reduce gradually model 
plant mismatches contributing to the convergence of tracking 
error steady-state offsets to zero. Moreover, it provides a 
control law such that the closed loop system is stable. 

6. CONCLUSIONS  

A non-linear control scheme based on a recurrent neural 
network has been implemented in real-time and applied to a 
distributed collector field in a solar power plant. The 
process is characterised by different operating conditions, 
depending on the changes in dynamics caused by variations 
in the solar radiation, reference temperature and plant 
characteristics. 

The proposed strategy is a systematic one, which can be 
easily applied to a wide variety of processes with a small 
initial knowledge of the plant model. To cope with the 
inaccuracy of the off-line estimated neural parameters and 
possible changing dynamics, an adaptive strategy was 
employed providing an on-line scheme, ensuring stability 
and convergence properties. In this sense, the neural model 
can adaptively learn the system uncertainties and the 
regulator law adjusts the control action in order to guarantee 
a robust asymptotic error convergence. 

Experimental results confirm the simulation results and 
show that the system has robustness with respect to 
changes in solar radiation, inlet oil temperature and operating 
conditions. This experimental study has shown that neural 
networks are an important methodology for many industrial 
control applications. The simplicity and reliability of neuro-
control gives high potential for the development of efficient 
and intelligent control systems.  
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