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Abstract: This paper presents a control la w for the tracking of an optimal reference
trajectory by an underactuated biped robot. The degree of under-actuation is one
during the single support phase. The control law is de�ned in the following way.
Only the geometric evolution of the robot is controlled, not its temporal evolution.
To achiev e this objective, we consider a set of reference trajectories parameterised
by a virtual time. The robot is under-actuated so its evolution is constrained and
the evolution of the virtual time can be analysed. A analytical simple condition
to assure convergence tow ard the optimal reference trajectory is deduced. For the
biped and the studied optimal motion, this condition is naturally satis�ed.
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1. INTRODUCTION

T o de�ne a simple and economic walking robot, it
is in teresting to reduce the number of actuators,
and to use unactuated ankles. The robot studied
in this paper is a planar biped with only four actu-
ators, t w o on the haunch, tw o on the knees. Dur-
ing the single support phase, �ve independent con-
�guration variables exist. Thus the robot is under-
actuated. This mechanical simpli�cation makes
the design of the control la w diÆcult. One classical
w ayto control a system consists in tw o steps.
During the �rst step, an open loop joint reference
trajectory is designed. In the second step a control
law is de�ned to track this reference trajectory. In
this context, a reference trajectory was obtained
by an optimisation technique (Chevallereau and
Aoustin, 2001) and now a control la w is proposed.

V ariousstudies for the con trolof an underactu-
ated biped exist. A �rst group of methods (Grizzle
et al., 2001; Aoustin and F ormal'sky, 1999) is
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based on the de�nition of the reference trajec-
tory for m outputs (where m is the number of
actuators), not as a function of time but as a
function of a con�guration variable independent
of the m outputs. When such a control has con-
verged, the con�guration of the robot at the im-
pact is the desired con�guration but the velocit y
can di�er from the cyclic one. The convergence
of the motion tow arda cyclic trajectory is then
studied numerically using the P oincar�e stabilit y.
Another approach involves parameterised refer-
ence trajectories. In this case, one derivative of the
parameter is used as a supplementary input as it
was shown in (Wieber, 2000; Canudas de Witt et
al., 2002; Gubina et al., 1974). In (Wieber, 2000),
the parameter is used to satisfy some constraints
on the reaction betw een the feet and the ground.
In (Canudas de Witt et al., 2002), a parameter
involved in the zero dynamics is used as a supple-
mentary input.

In this paper, only the geometric evolution of the
robot is controlled, not its temporal evolution like
in (Grizzle et al., 2001; Aoustin and Formal'sky,
1999). To achiev e this objective a set of reference
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trajectories parameterised by a virtual time is
considered. The second deriv ativ eof the virtual
time is considered as a supplementary con trol
input. Thus we deal with a model with the same
number of inputs and independent con�guration
variables. But the robot is under-actuated so its
ev olution is constrained. Through the study of
the dynamic model the evolution of the virtual
time can be analysed. And an analytical simple
condition to assure a con vergence tow ard the
optimal cyclic reference trajectory is deduced. For
the optimal w alkingof a biped this condition is
naturally satis�ed.

In section 2, the modelling of the robot and
an optimal reference trajectory are presented. In
section 3 the control law is de�ned. The evolution
of the virtual time is analysed in section 4 and
a condition of con vergence isdeduced. Section 5
concludes this study.

2. THE ROBOT MODELLING

2.1 The studied robot

The biped studied w alks in a vertical xz plane.
It is composed of a trunk and two identical legs.
Each leg is composed of tw o links articulated with
a knee. The knees and the hips are one degree
of freedom rotational joints. During the single
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Fig. 1. The studied biped

support phase the vector q = (q1; q2; q3; q4; q5)T

describes the con�guration of the robot. The vec-
tor � describes the torques applied at the hip and
knee joints (Figure 1).

2.2 Dynamic modelling

The walk studied is composed of single support
phases separated by instantaneous double support
phases.

In single support on leg j (j=1 or 2), the dynamic
model can be written as:

A(q)�q +H(q; _q) = D� (1)

where A(5 x 5) is the inertia matrix, H(5 x 1)
is the vector of Coriolis, cen trifugal and gra vity
e�ects and D is a (5 x 4) matrix.

When the free leg j touc hes the ground at the end
of single support, an impact exists. This impact
is assumed instantaneous and inelastic. During
the impact, the supporting leg i (with i 6= j)
takes o�. The velocities just before and just after
the impact, denoted _q� and _q+ respectively, are
related by a linear model (Furusho et al., 1995):

_q+ = I(q) _q� (2)

During the single support phase, the number of
torques is four but there are �v e independent
con�guration variables. Thus, a relation on the
robot ev olution independent of the torques can
be written. T oobtain this relation, the dynamic
model is projected into the space generated by a
vector orthogonal toD denoted D?. By de�nition
D
?
D = 0, thus: .

D
?
A(q)�q +D

?
H(q; _q) = 0 (3)

An other way to �nd such a relation is to remark
that the derivative of the angular momentum of
the robot written around the supporting leg tip
depends only on the gravity e�ects. In the case
of a planar motion, the angular momentum is
perpendicular to the motion plane. Its value is
denoted �, we have.

_� = mg(xg � xs) (4)

where m is the total mass of the robot, g is
the gravity acceleration, xs is the abscissa of the
contact point, xg is the abscissa of the robot mass
center.

remark : for a special choice of D?, � can be
calculated by: � = D

?
A(q) _q

2.3 A n optimal trajectory

The de�nition of some optimal reference trajec-
tory is detailed in (Chevallereau and Aoustin,
2001) for example. An optimal trajectory is as-
sumed to be known by numerical values for a given
sampling time. The duration of an half step is
denoted T . For each time between 0 and T the
joint con�guration qr(t), the joint velocity

dqr(t)

dt
,

and the joint acceleration d2qr(t)

dt2
are recorded.

The optimal trajectory is cyclic, thus the con-
�guration of the robot is a con tinuous periodic
function and the legs swap roles from one half step
to the following one, thus:

qr(t+ kT ) = E
k
qr(t) (5)



for 0 < t < T , where E is a permutation matrix
which allo ws to take into account the exchange of
legs. The condition (2) is satis�ed for each impact.

The characteristics of the proposed con trol law
will be illustrated on a reference trajectory corre-
sponding to an energetic criterion (Chevallereau
and Aoustin, 2001) for a motion velocit y equal to
1:25m=s. For this optimal trajectory, the angular
momentum � can be calculated as function of qr(t)

and
dqr(t)

dt
and is denoted �r.

�r(t) = D
?
A(qr(t))

dqr(t)

dt

�r(t) is periodicwith a period equal to T and is
presented in �gure 2 for an half step. For each sin-

� � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� �

� �

� 	

� �

� �

� �

� �

� 	

� �

� � � �

Fig. 2. Angular momentum �r(t) (in kgm
2
=s)

gle support phase, the initial con�guration of the
robot is such that xg < xs. During the �rst part of
the motion the angular momentum decreases (see
equation (4)) and its initial angular momentum
must be high enough to reach a con�guration such
that xg > xs. In the other case it falls down back
(Kajita and Tani, 1995). After, as soon as xg > xs

the angular momentum increases. Thus for an y
cyclic walk of a biped, the evolution of the angular
momentum is close to the evolution presented in
�gure 2 and never crosses zero.

Two times deserve atten tion (see �gure 2). They
are denoted Tm and T0. They are de�ned by:
d�r(Tm)

d�
= 0 and �r(T0) = �r(0) with T0 > 0.

A ttime such that �(t) = Tm, the con�guration
of the robot is such that its mass centre abscissa
coincides with the contact point abscissa. For any
studied walking trajectory of the biped, Tm exists.
T0 may exist or not for cyclic walking trajectories.
If T0 exists, T0 > Tm. For the studied trajectory,
Tm ' 0:12s and T0 ' 0:24s.

3. THE PROPOSED CONTROL LAW

The optimal reference trajectory is composed es-
sentially of single support phases. During these
phases, the robot studied is under-actuated. The
objective of the control la w presented in this sec-
tion is not to track exactly the reference trajectory
but only the path associated. Only a geometrical

tracking is desired. A set of trajectories corre-
sponding to the same con�guration path as the
optimal trajectory is considered. The control is
de�ned to insure the convergence to the set of
reference trajectories in a �nite time.

3.1 A set of reference trajectories

We consider a set of trajectories de�ned by :8>>><
>>>:

qd(t) = qr(�(t))

_qd(t) =
dqr(�(t))

d�
_�

�qd(t) =
dqr(�(t))

d�
�� +

d
2
qr(�(t))

d�2
_�2

(6)

where � is a function of the time called "virtual
time". The kno wledgeof �(t) de�nes a unique
trajectory .Any trajectory de�ned by (6) corre-
sponds to the same path in the joint space as the
optimal trajectory but the evolution of the robot
with respect to time may di�er. The optimal tra-
jectory belongs to the considered set of reference
trajectories with: � = t, _� = 1, �� = 0

The desired con�guration of the robot at time t
is the optimal con�guration at time �(t). Thus
for all trajectories de�ned by (6) the free leg tip
does not touch the ground for any time t suc h
that �(t) < T . In consequence the impact with
the ground occurs for the �rst step at time t1

such that �(t1) = T and for the step k at time tk
suc h that�(tk) = kT . The con�guration at impact
is the same as the con�guration of the optimal
trajectory. But the velocity can be di�erent from
the optimal one.

All the reference trajectories (6) respect the im-
pact equation (2) and _� is continuous at the
impact time. This property is obtained because
(i) the optimal trajectory is cyclic and takes into
account the impact and (ii) the velocit y after the
impact is linear with respect to the velocity before
impact (2).

3.2 The control law

The second derivative �� includes in the de�nition
of the reference trajectories will be treated as
a supplementary control input. Thus the con trol
law will be designed for a system with the same
number of outputs and inputs. The controlled
variables are simply the �ve joint variables q. The
con trol inputs are the four torques � and �� .

The con trol law is a computed torque con trol
law classically used in robotics. But to have a
�nite time stabilisation around one of the desired
trajectories, the feedback function proposed in
(Bhat and Bernstein, 1998; Grizzle et al., 2001) is



used. The tracking errors are de�ned with respect
to the trajectories belonging to (6):

eq(t) = qr(�(t)) � q(t)

_eq(t) =
dqr(�(t))

d�
_� � _q(t)

(7)

The desired behaviour in closed loop is :

�q = �qd +
1

�2
 (8)

where  is a vector of 5 components  (i) with:

 (i) = �sign(� _eq(i))j� _eq(i)j
� � sign(�(i))j�(i)j�

and 0 < � < 1, � > 0, �(i) = eq(i) +
1

2��
sign(� _eq(i))j� _eq(i)j

2�� , the expression x(i) de-

notes the i
t
h component of a vector x with

i=1,...5. � and � are parameters to adjust the
settling time of the controller.

T aking into account the expression (6) of the refer-
ence trajectory, the equation (8) can be rewritten
as:

�q =
dqr(�(t))

d�
�� + v(�; _� ; q; _q) (9)

with v(�; _� ; q; _q) =
d2qr(�(t))

d�2
_�2 + 1

�2
 . The dynamic

model of the robot is described by equation (1),
thus the control law must be such that:

A(q)(
dqr(�(t))

d�
�� + v) +H(q; _q) = D� (10)

or :

A(q)v +H(q; _q) = �A(q)
dqr(�(t))

d�
�� +D�(11)

As the control input are the torques and �� , w e
obtain : �

��
�

�
= ��1fA(q)v +H(q; _q)g (12)

with

� =

�
�A(q)

dqr(�(t))

d�
D

�

Like the matrices � and A(q) are invertible,
without modelling error, the con trol law insures
that eq. (8)is satis�ed or that q(t) goes tow ards
qd(�(t)) in a �nite time. Without disturbance,
a perfect tracking of qd(�(t)) is obtained. This
control law de�nes �� . Knowing initial values for
� and _� , the ev olution of �(t) can be calculated
but not chosen. The initial values are �(0) = 0,

and _�(0) =
_q(0)T

dqr(0)

d�

j
dqr(0)

d�
j
2

to minimize the error on

the joint velocit y j _q(0)� _qr(0)j
2.

Remark: The singularities for this control

law.The control is not de�ned if the matrix � is

singular. The matrix D is a constant (5x4) matrix
with rank 4. The matrix � is invertible if and
only if (A(q)dqr(�(t))

d�
) does not belong the space

generated by D or:

D
?(A(q)

dqr(�(t))

d�
) 6= 0 (13)

F or a trajectory belonging to the set described by
equation (6):

D
?(A(qr(�(t)))

dqr(�(t))

d�
) = �r(�(t))

Thus, for the optimal trajectory, the angular mo-
mentum is far from zero, (see �gure 2), so no
singularity occurs. With small tracking errors, no
singularity appears.

4. CONVERGENCE TOWARDS THE
OPTIMAL TRAJECTORY

The con trol law insures that the motion of the
robot converges in a �nite time towards a refer-
ence trajectory described by (6). As soon as the
con trolhas con verged, w eha ve:q(t) = qr(�(t)),
_q(t) = _qr(�(t); _� ), �q(t) = _qr(�(t); _� ; ��), and these
properties will be kept for all the following steps.
In the following section, the behaviour of the robot
is studied after the con vergenceof the con trol
law,when the robot follows a trajectory sat-

isfying (6). The robot velocity is _q(t) = dqr(�(t))

d�
_�

and the optimal velocit yis dqr(�(t))

d�
. The di�er-

ence betw een the two velocities is proportional to
e = _� � 1, this term is referred to as "velocit y
di�erence". The robot converges tow ards the op-
timal trajectory if and only if _� con verges to 1 or
e con verges to 0.

4.1 Evolution of the virtual time

During the single support phase, the robot studied
is under-actuated, thus it can not follow any tra-
jectory described by (6). The motion of the robot
can be studied with the ev olution of the angu-
lar momentum (4).The angular momen tum � is
linear with respect to the velocity components.
The real velocity of the robot is proportional to
the optimal velocity. Thus the angular momentum
can be expressed by:

�(t) = �r(�(t)) _� (14)

Using this equation, the derivative of the angular
momentum can be written as:

_�(t) =
d�r(�(t))

d�
_�2 + �r(�(t))�� (15)

But the derivative of the angular momentum
depends only on the con�guration of the robot



(see equation (4)). Since the con�guration of the
robot is the optimal one q(t) = qr(�(t)), we have:

_�(t) = �mg(xg(qr(�(t))) � xs) (16)

We can also write the same equation (4), for the
optimal trajectory. Thus, we deduce that: _�(t) =
d�r(�(t))

d�
. Using this equation into equation (15),

we have:

d�r(�(t))

d�
( _�2 � 1) + �r(�(t))�� = 0 (17)

The "v elocity di�erence" has been de�ned by:
e = _��1, so its derivative is _e = �� . From equation
(17), the behavior of the velocit y di�erence is
de�ned by:

_e = �
d�r(�(t))

d�

�r(�(t))
( _� + 1)e (18)

Using the relation ( _� +1) = _� ( 2+e
1+e

), the equation
(18) is rewritten as:

_e

e
(
1 + e

2 + e
) = �

_�r(�(t))

�r(�(t))
(19)

�r is a periodical function discontinuous at the im-
pact time. So the equation (19) can be integrated
step by step only .The integration during step k

giv es fortk < t < tk+1:

1

2
[Log((e+ 1)2 � 1)]ttk = �[Log(�r(�))]

t
tk
(20)

T o simplify the notation the velocit y di�erence at
impact k, e(tk) is denoted ek. Using the initial
condition we have, for tk < t < tk+1:

e(t) =

s
1 + ek(ek + 2)

�
�r(0)

�r(�(t))

�2

� 1(21)

this function includes a square root and is de�ned
if ek > emin with:

emin = �1 +

s
1�

�
�r(Tm)

�r(0)

�2

(22)

Since the evolution of �r is cyclic, the behavior of
e(t) is de�ned by the ev olution of �r during one
step. The di�erent steps can be taken in to account
using the following iterative equation:

ek =

s
1 + ek�1(ek�1 + 2)

�
�r(0)

�r(T )

�2

� 1(23)

A typical evolution of e(t) is presented in �gure 3.

� For kT < � < kT +Tm, jej increases because
�r decreases.
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Fig. 3. Evolution of the velocit y di�erencee = 1�
_� as function of � , for one step

� For� = kT + Tm, jej has a localmaxim um
denoted emk .

e(tkm) =

s
1 + ek(ek + 2)

�
�r(0)

�r(Tm)

�2

� 1(24)

� ForTm + kT < � < (k + 1)T , jej decreases
because �r increases.

� For� = kT + T0, �(kT + T0) = �(0), e = ek.
This characteristics is clearly explained by
equations (21).

Remark : Minimal initial velocity for one

step. The de�nition of the parameterised refer-
ence trajectories assumes implicitly that the pa-
rameter is monotonic. In the case studied, the
parameter is a virtual time so it must increase. In
fact if the parameter decreases, this means that
the robot goes back. The evolution of � is mono-
tonic if: _� > 0 or e > �1. Since e(t) is expressed by
equation (21), e(t) is always greater than�1 when
it is de�ned. Thus the condition of monotony is
ek > emin. For the studied optimal trajectory, the
minimal velocity di�erence is emin = �0:58.

4.2 Convergence towards the optimal trajectory

With the proposed control, the motion of the
robot converges to the set of reference trajectories
(6) in a �nite time which can be chosen to be less
than the duration of one step.

Theorem

If e(t1) > emin and if
�

�r(0)

�r(T )

�
< 1, the velocit y

di�erence e(t) goes to zero, i.e.,

8� > 0; 9tl; such that for t > tl; je(t)j < �

In the de�ned attraction domain, the robot mo-
tion tends towards the optimal reference trajec-
tory .

Proof

Step 1: The absolute value of the initial

v elocity di�erence decreases

If ek�1 is positive, lik e �(0)

�(T )
� 1, we have:



1 + ek�1(ek�1 + 2)

�
�(0)

�(T )

�2

�

1 +

�
�(0)

�(T )

�2

e
2
k�1 + 2

�(0)

�(T )
ek�1

(25)

thus, since the evolution of the velocit y di�erence
from one step to the following one is given by the
iterativ e equation (23), we have:

ek �
�r(0)

�r(T )
ek�1 (26)

If ek�1 is negative, similar calculations can be
made. Since the velocit y di�erence does not
change sign, we have:

jekj �
�r(0)

�r(T )
jek�1j (27)

Step 2: The absolute value of the maximal

velocity di�erence decreases

By hypothesis e(0) > emin > �1, thus the
maximal value ekm is an increasing function of ek
(eq. 24). Besides if ek = 0 then ekm = 0. Thus since
jekj � jek�1j, je

k
mj � jek�1

m j.

In consequence

� since e(0) > emin > �1, the evolution of � is
increasing during all the motion.

� since during step k, tk < t < tk+1; je(t)j <
je(tkm)j, for t > tk, je(t)j < je(tkm)j,

Step 3: The time tl is calculated

A number of steps l is de�ned such that if t > tl,
je(t)j < �. Using the step 2 of this proof, l is chosen
such that je(tlm)j < �. An in termediate positiv e
value " is de�ned. This value corresponds to the
maximal value of je(tl)j, suc h that je(t

l
m)j < �. "

is calculated by:

" =

s
1 + �(�+ 2)

�
�r(Tm)

�r(0)

�2

� 1 (28)

Using equation (27), l is calculated suc h that
je(tl)j < " : �

�r(0)

�r(T )

�l

je(0)j � " (29)

thus

l �
Log

�
"

je(0)j

�
Log

�
�r(0)

�r(T )

� (30)

Remark : The equation (30) gives some informa-
tion about the convergence rate, it is clear that the

smaller �r(0)

�r(T )
, the faster the convergence tow ards

the optimal trajectory.

5. CONCLUSION

An original control law for the tracking of a
desired joint reference trajectory has been pro-
posed. The robot studied is a planar biped, under-
actuated during the single support phases. A
cyclic desired reference trajectory (may be opti-
mal) satisfying the dynamic equations is assumed
to be known. A stable tracking of this trajectory
is obtained if this trajectory is such that �r(T ) >
�r(0) where �r is the angular momentum around
the contact point with the ground for the optimal
motion, and T is the duration of the single sup-
port. This result is very in teresting because this
condition can be easily tested or used to modify a
given reference trajectory .It has been observed
that for this robot, the optimal motion for an
energetic criterion naturally satis�es this condi-
tion. The proposed control law have been tested in
simulation with large initial velocity error. Good
results are obtained. Due to space limitation, the
simulation results are not presented in this paper.
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