
ENGINEERING OF FIELD DEVICES USING DEVICE DESCRIPTIONS

Peter Neumann, Christian Diedrich, René Simon

Institut für Automation und Kommunikation e.V. (ifak)
Steinfeldstraße 3 (IGZ), D-39179 Barleben, Germany

Internet: http://www.ifak.fhg.de, Email: rsi@ifak.fhg.de

Abstract: Device Descriptions are necessary for the integration of intelligent field devices
in commissioning & maintenance tools, engineering systems or MES / ERP systems.
Device Descriptions comprise of device models and presentations based on the models
(e.g. ASCII files). The XML concept may help to enlarge the application scope of Device
Description because it is becoming one of the basic technologies of the fast growing
internet and various e-engineering activities. These issues are addressed from a modelling
and implementation point of view. Copyright © 2002 IFAC

Keywords: Distributed Computer Control Systems, Formal Methods, Computer-aided
Engineering

1. INTRODUCTION

Fieldbus systems are a part of most modern complex
machines and plants. They provide unique methods
for signal interchange between control systems and
field devices at the communication layer.

A large number of field devices of different vendors
are used in complex systems. The device vendors
supply their proprietary tools together with field
devices. The handling of these tools differs between
vendors. In this way, many different tools must be
handled in all life cycle phases of the plant. Data
must be exchanged between these tools. This data
exchange is not standardised, therefore data
conversions are often necessary, requiring detailed
specialist knowledge. In the end, the consistency of
data, documentation and configurations can only be
guaranteed by an intensive system test. Thus, the
large number of different device types and suppliers
within a control system project makes the
configuration task difficult and time-consuming
(Neumann, et al., 1995).

The central workplace for service and diagnostic
tasks in the control system does not fully cover the
functional capabilities of fieldbus devices.
Furthermore, the different device-specific tools
cannot be integrated into the system's software tools.

Typically, device-specific tools can only be
connected directly to a fieldbus line or directly to the
field device.

In order to maintain the continuity and operational
reliability of process control technology, it is
necessary to fully integrate fieldbus devices as a sub-
component of process automation (ESPRIT Project
6188, 1995). The following sections introduce
approaches designed to eliminate the insufficiencies
described above.

The analysis is done investigating the overall
engineering process of the DCS life cycle and
determining, in which activities field devices are
used (instrumentation). On this basis, a field device
model is developed (using UML technologies as
class diagrams). This device model can be
implemented (realised, used) in several ways, here
the Electronic Device Description (EDD) and a XML
approach are shown. EDD is already an industrial
standard, whereas XML based approaches are
emerging now, but have to re-use the knowledge
already developed in the automation area.

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

2. ENGINERING & INSTRUMENTATION

Besides the functional view on control systems, the
life cycles of these systems (engineering) is becom-
ing more and more important (Simon, R., Hörger, J.,
1999). According to (Alznauer, 1998) engineering
with regard to the control system is understood as
“… all tasks and activities which are carried out for
the planning, construction, commissioning, operation
and maintenance of technical systems”.

The life cycle and engineering are becoming more
complex as the used devices and tools are becoming
more differentiated and complex.

The non-interrupted engineering on the basis of
common information models and formalised
description techniques is a new quality in control
systems and a basic requirement for the design of
new generation control systems. These control
systems are called Distributed Control Systems –
DCS here.

The handling of the life cycle of DCSs is a complex
process which can only be done using sophisticated
tools (hardware, software). Here it is very important
to design a non-interrupted the life cycle, i.e. to
achieve a information transfer from one step to
another step without losing information, and to
ensure a single-source principle while putting
information into the system. This information is used
in each step to create a special view for the user. This
can not be done using paper documents for storing
and transporting information. However, the usage of
data base management systems does not as long as
open technologies are not applied. It is necessary to
use databases and communication systems which
follow a commonly agreed transfer syntax and
standardised information models which ensure the
meaning of the information (semantics). Basically, a
connection between all tools in a DCS must be
created (Diedrich, Ch., Neumann, P., 1998b).

There are several possibilities to classify the life
cycle / the engineering of DCS (Alznauer, 1998).
Such classification can be done using:
• the hierarchy of the control functions
• their timing sequence
• their logical dependencies

All life cycle phases which are connected to field
devices should be united under the word
“instrumentation” and described as use cases.

Instrumentation is defined as follows:

Instrumentation comprises of all activities within
the life cycle of the Distributed Control System
where handling of the field devices (logically or
physically) is necessary.

Therefore, instrumentation can be considered as the
intersection of the life cycle of the Distributed
Control System and the field device.

The following figure shows the instrumentation steps
as an UML use case diagram. There is only one
actor, who is not described in detail.

Assembly

Choice

Network Configuration

Channel Assignment
Operation and Technical Maintenance

Actor Application Implementation

Application Commissioning

<<include>>

Fig. 1. Use case Diagram Instrumentation

3. DEVICE MODEL

Field devices are linked both with process, via input
/output hardware/ software, and with other devices
via communication controllers/ transmission media.
The centre of our attention is on the field device as
the computational power is increasing rapidly as
mentioned above. Thus, the applications are run
more and more on these devices and the application
processes are becoming more and more distributed.
We have to solve the problem of configuring and
parameterisation of these field devices during the
operation for real-time data processing purposes,
diagnosis, parameter tuning etc. Therefore, there is a
need to model such field devices (Diedrich, Ch.,
Neumann, P., 1998a).

A field device can be characterised by:
• internal data management (process I/O image,

communication parameters, application
parameters)

• process interface
• information processing (e. g. Function Blocks)
• communication interface (Fieldbus, Ethernet-

TCP/IP etc.)
• (optional) man/ machine interface (local display,

buttons, switches, LEDs)
• (optional) persistent memory and others.

We can define a device model as shown in Figure 2
(represented by UML packages) which supports the
data exchange between instrumentation steps. This is
a very abstract presentation of a device model.

DIHardware
Architecture

DISoftware
Architecture

DIFunction

DIOperation

DICommuni-
cation

DIOrderDataDITechnical
Data

DIDocumen-
tation

DIManagement

DIProcess

Fig. 2. Device model related to the instrumentation

Important are the packages DIFunction,
DIHardwareArchitecture, DISoftwareArchitecture,
DIProcess, DICommunication, DIManagement and
DIOperation (DI stands for Device Instrumentation).
The packages depicted in Figure 2 contain the
detailed model represented by UML class diagrams
modelling the different views on a device.

Figure 3 depicts the class diagram of the package
DIFunction.

DIVariable
Name : String
Type : Enumeration
SubType : Enumeration
Length : Byte
State : Enumeration
Value : Variant
Class : Enumeration
Presentation : DIPresentation
Handling : Enumeration
Validity : DIValidity
ResponseCode : DIResponseCode
ReadTimeout : Arithmetic
WriteTimeout : Arithmetic

Display()
PreEdit()
PostEdit()
PreRead()
PostRead()
PreWrite()
PostWrite()

DIOption
MinValue : Variant
MaxValue : Variant
DefaultValue : Variant
InitialValue : Variant
LowLimit : Variant
UpLimit : Variant

1..1

1..1

1..1

1..1 DIFunc tion
Name : String
Type : Enumeration
Algorithm : Variant
Presentation : DIPresentation
Validity : DIValidity

Display()
Execute()

DIInput
WithQualifier : Boolean 1..11..* 1..11..*

DIInternal

DIOutput
WithQualifier : Boolean

1..1

1..*

1..1

1..*

DIOutputEvent

DIFunctionBlock
Name : String
Type : Enumeration
Mode : Enumeration
State : Enumeration
Algorithm[] : Variant
Presentation : DIPresentation
Validity : DIValidity

Display()
Start()
Stop()

1..1

0..*

1..1

0..*

1..1

1..*

1..1

1..*

1..1

1..*

1..1

1..*

1..1

0..*

1..1

0..*

DIInputEvent

1..1

0..*

1..1

0..*

DIEvent
Name : String
Type : Enumeration
Mode : Enumeration
State : Enumeration

Fig. 3. Package DIFunction

Figure 4 depicts the class diagram of the package
DICommunication.

DIGateway
BusType : Enumeration
BusParticipantRole : Enumeration
Address/TagName : Variant
Baudrate : Enumeration
Medium : Enumeration
More : Variant

DIArray
Name : String
Presentation : DIPresentation

DIRecord
Name : String
Presentation : DIPresentation

DIVariableList
Name : String
Presentation : DIPresentation

DIVariable
(from DIFunction)

uses

uses

uses

uses

uses

DIPhysical Interface
BusType : Enumerat ion
BusParticipantRole : Enumeration
Address/TagName : Variant
Baudrate : Enumeration
Medium : Enumeration
More : Variant
Autoconfiguration : Variant

DICommunicationCommand
Name : String
Service : Enumeration
Presentation : DIPresentation
State : Enumeration
Validity : DIValidity
Address : Variant
RequestData : Byte[]
ReplyData : Byte[]
ResponseCode : DIResponseCode

Display()
Execute()

uses

uses

uses

uses

DILogicalInterface
Name : String
AddressMode : Enumeration
AddressRange : Enumeration
Supported Service[] : Enumeration
AutoConfiguration : Variant
Presentation : DIPresentation
Validity : DIValidity
State : Enumeration

Display()

1..1
1..*
1..1

1..*

1..1
1..*

1..1
1..*

DISequence
Name : String
Class : Enumeration
Presentation : DIPresentation
Validity : DIValidity
State : Enumeration

Display()
Execute()

1..1

0..*

1..1

0..* uses

Fig. 4. Package DICommunication

Figure 5 depicts the class diagram of the package
DIOperation.

DIMenu
Name : String
Presentation : DIPresentation
Validity : DIValidity
Style : Enumeration
Access : Enumeration

Display()

DIValidity
Valid : Boolean
Algorithm : Variant

DIPresentation
Label[] : String
Help[] : String

DIResponseCode
Value : Integer
Type : Enumeration
Description[] : Single
Help[] : String

DIRelation
Name : String

DIUnitRelation

DIRefreshRelation

DIWriteAsOneRelation

DIVariable
(from DIFunction)

Between

DIOption2
DisplayFormat : String
EditFormat : String
ScalingFactor : Arithmetic

1..1

1..1

1..1

1..1
DIMethod

Name : String
Class : Enumeration
Presentation : DIPresentation
Validit y : DIValidity
Access : Enumeration
Algorithm : Variant
State : Enumeration

Display()
Execute()

DIDevice
(from DIManagement)

1..1

0.. *

1..1

0.. *

1..1

0..*

1..1

0..*

Item

Item

1..1 0..*1..1 0..*

DISequence
(from DICommunication)

Item

Fig. 5. Package DIOperation

(Simon, R., 2001) contains all other class diagrams
needed for modelling the semantics of field devices
as well as further explanations. This model has to be
described by description languages to generate the
basic information for an uninterrupted tool chain.

4. DESCRIPTION AND REALISATION
OPPORTUNITIES

4.1 Electronic Device Description (EDD)

The device model can be implemented (realised) in
several ways. For the computable description of
device parameters for automation systems compo-
nents, the so called Electronic Device Description
Language (EDDL) has been specified (NOAH,
1999), (PNO, 2000), (Simon, R. Demartini, C.,

1999b). EDD is used to describe the configuration
and operational behaviour of a device and covers the
following aspects (Neumann, et al., 2001):
• description of the device parameters, semanti-

cally defined by the field device model
mentioned above

• support of parameter dependencies
• logical grouping of the device parameters
• selection and execution of supported device

functions
• description of the device parameter access

method.

The "C-based" EDDL describes product data in a
declarative way mixed with some programming
features. It includes description elements to address
blocks and single parameters, capitalised words are
part of the EDDL syntax specification.

Parameters (VARIABLE) are identified by their
name. All other parts describing the behaviour of the
device and the relations between device parameters
refer to these names. Each parameter is defined by its
data type (TYPE) and a read/write access handling
(HANDLING).

Some runtime conditions may lead to a situation
where a parameter is not valid. This feature is
expressed with a VALIDITY identifier. The
representation of the parameter at the user interface
is controlled by LABEL and HELP strings within the
parameter declaration paragraph.

A communication action may be initiated by calling
a read or write COMMAND as identified by a name
string. Within this declaration, parameters are
referenced to be transferred. The operation of a
command determines whether a variable is read or
written from host to device. Furthermore, the
absolute or relative addressing scheme is specified
by the COMMAND structure.

MENU constructs are used to organise parameters,
methods and other items specified in the EDDL into
a hierarchical structure. A host application may use
the menu items to display information to the user in
an organised and consistent fashion. METHODs are
the most programming language like features of the
EDDL. They describe the execution of interactions
that occur between host devices and a field device, or
between field device parameters and local
parameters. The method declarations use C-like
syntax. It is possible to access device parameters via
read and write commands which refer to the related
COMMAND declarations. Furthermore, the EDD
interpreter serves some built-in functions which are
accessed by name strings reserved by the EDDL
syntax specification (e.g. selection dialogue
functions etc.). EDDL supports further extended
features such as complex data types, file import,
creating similar items with LIKE constructs and
others. EDDL is not a full featured programming
language. General features such as memory
management and system access are not necessary.

The EDD can be considered as a configuration
related electronic data sheet for Field Devices
(especially for PROFIBUS devices). It can be
delivered either on disc, bundled with the device, or
via the internet. It can even reside in every device.
The EDD can be accessed either from the
configuration tool repository representing the
collection of EDDs or directly from the device if the
EDD resides in this device. Thus, the consistency of
the device version and its associated EDD can easily
be checked.

Devices of different vendors solving similar tasks
usually possess many parameters with equal
semantics. The EDDL offers the possibility to use
standard libraries which contain standard blocks or
item collections. The parameters in a library may be
completely described with user presentation
information and related communication commands.
These libraries may be imported by various EDDs.
Properties of a device which differ from the library
specifications may be easily redefined. Thus,
different devices get uniform presentations for the
used library items.

4.2 Overall Example

EDD is based on the ASCII standard. XML
(Extended Markup Language) could be a promising
approach for the future, especially because of its use
in other areas. Both approaches contain definitions
for the exchange of device descriptions using files.
These definitions are not given here, however a small
example is used to show that different realisations
can and must be based on the same solid foundation -
the device model.

The example comprises of a variable (package
DIFunction), which is described by name, data type,
label and help.

The class DIVariableExample as shown in the
following figure is the starting point.

DIVariableExample
Name : String
Type : Enumeration
Presentation : DIPresentation

DIVariable
(from DIFunction)

Fig. 6. Class DIVariableExample

The realisation as Electronic Device Description
Language is described using language production
rules shown in the following figure.

variable
= 'VARIABLE' Identifier '{'

variable_attribute_list '}'

variable_attribute_list
= variable_attribute_listR

variable_attribute_listR
= variable_attribute

= variable_attribute_listR
variable_attribute

variable_attribute
= help
= label
= type

Fig. 7. Language production rules (EDD)

A sentence created according to these rules may look
like the following figure.

VARIABLE Temperature
{

LABEL "Temperatur";
TYPE DOUBLE;
HELP "Temperatur";

}

Fig. 6. A variable definition (EDD)

Using this definition of a variable, a commissioning
tool provides the following human machine
interface:

Fig. 8. Human machine interface showing a variable

The unit (Kelvin) is not supported by the example
model. The help text is not visible, the name of the
variable not used. Based on the data type, the value
provided by the device is shown.

4.3 The XML approach

The eXtensible Markup Language XML (Bray, et al.,
1998) expands the description language HTML with
user-defined tags, data types and structures. In
addition, a clear separation between the data
descriptions, the data themselves, and their
representation in a browser has been introduced.
Furthermore, declaring syntactical and semantical
information in a separate file (Document Type
Definition, DTD), allows re-using the description
structure in different contexts. This provides a
number of benefits when using the same XML
description file for different tasks. Different views
can be implemented on top of the same data. The
description can be hierarchically organised.
Depending on the functions to be performed, the
XML data can be filtered and associated to software
components (controls, Java beans, etc.). The
selection of the necessary information and the
definition of their presentation details can be
performed by means of scripts and style sheets. The
style sheets are part of the development of XML
(Boumphrey, 1998). In most cases they are
implemented using the extensible Style Language
(XSL). The XML file, the scripts and the different
style sheets can be used to generate HTML pages,
special text files, and binary files (components,
applets) necessary to build the certain functions of
the software tools. The distribution of the generated
HTML pages and associated software components is

done following the concepts used in an Internet
environment. The major benefit of this solution is a
unique, reusable description with an excellent
consistency and reduced efforts of the description
process.

For the realisation using the XML approach, the
specification of a schema is necessary. The following
figure shows part of it describing the element
variable.

<ElementType name="DIVariable" content="mixed"
model="closed">

<attribute type="Name" required="yes"/>
<element type="operation:DIPresentation"

minOccurs="1" maxOccurs="1"/>
<element type="Type" minOccurs="1"

maxOccurs="1"/>
</ElementType>

Fig. 9. Schema specification

An instance of this schema may look like the
following:

<DIVariable
Name="Temperature"
<operation:DIPresentation>

<operation:Label
String="Temperatur">

</operation:Label>
<operation:Help

String="Temperatur">
</operation:Help>

</operation:DIPresentation>
<Type>

<Arithmetic>
<Integer
</Integer>

</Arithmetic>
</Type>

</DIVariable>

Fig. 10. A variable definition (XML)

A standard web browser creates the following
interface:

Fig. 11. Web browser showing a variable

The unit (Kelvin) is not supported by the example
model. The help text is not visible, the name of the
variable not used. Based on the data type, the value
provided by the device is shown.

The presentation of the small example underlines the
objectives targeted by the modelling approach. If the
internal structures of different realisations are
similar, i.e. follow the same field device model, then
it is possible to build translators from one realisation
to another and to secure investments already done.
Similar presentations with the same contents provide
the opportunity to simplify training and education
through previous recognition.

5. SUMMARY

Device Descriptions are necessary for the integration
of intelligent field devices in commissioning tools,
maintenance tools, engineering systems or MES /
ERP systems. Device Descriptions comprise of
device models and presentations based on the models
(e.g. ASCII files). The XML concept may help to
enlarge the application scope of Device Description
because it is becoming one of the basic technologies
of the fast growing internet and various e-
engineering activities. At present, we can observe a
transition to XML based Device Descriptions which
is characterised by the following issues:
• XML and ASCII based Device Description have

to use the same device model to keep the
semantics already developed by automation
industry

• new application functions supporting different
phases of the life cycle of an automation system
have to be defined using different views on the
Device Description.

• consequently, a new chain of tools for creating
and using Device Descriptions has to be
developed.

There are a lot of other realisations which can profit
from a common device model:
• the firmware of the device itself
• type & instance manager in software tools
• component interfaces (e.g. (PNO, 2000a))
• device & application profiles (e.g. (PNO, 1997))
• proxy / function block within a PLC
• e-business solutions

A necessary precondition is the international
standardisation in this area, which is currently done
in the European standardisation CENELEC and the
IEC.

REFERENCES

Alznauer, R. (1998): Semantic information model for
a overall, computer based engineering using the
process industry as example(in German). PhD
thesis, Rheinisch Westfälische Technische
Hochschule Aachen.

Boumphrey, F. (1998). Professional Style Sheets for
HTML and XML. Wrox Press.

Bray, T., Paoli, J., Sperberg-McQueen, C. M. (1998).
Extensible Markup Language (XML) 1.0.,
http://www.w3.org/TR/REC-xml.

Diedrich, Ch., Neumann, P. (1998a). Field device
integration in DCS engineering using a device
model, IECON'98, IEEE Conference,
Proceedings pp. 164-168, Aachen.

Diedrich, Ch., Neumann, P. (1998b). Standardisation
in Automation Systems, Proc. of the 9th IFAC
Symposium on Information Control in Manu-

facturing (INCOM´98) pp. 1:51-56 Nancy, 1998.

ESPRIT Project 6188 (1995). Prenormative
Requirements for Intelligent Actuation and
Measurement, Deliverable D12.2&3, PRIAM.

Neumann, P., Diedrich, Ch., Simon, R. (1995).
Necessary extensions of fieldbus systems for
distributed processing, Proceedings IEEE Inter-
national Workshop on Factory Communication
Systems WFCS'95, Proceedings pp. 247-254.

Neumann, P., Simon R., Diedrich, Ch.,, Riedl, M.
(2001). Field Device Integration. 8th IEEE
International Conference on Emerging
Technologies and Factory Automation. ETFA
2001, Proceedings pp.63-68, Antibes.

NOAH (1999). Language Specification of Electronic
Device Description, Deliverable 321, Network
Oriented Application Harmonisation (NOAH).

PNO (1997). PROFIBUS-PA Profile for Process
Control Devices, V2.0, PROFIBUS User
Organisation.

PNO (2000a). Field Device Tool Interface
Specification, Version 1.0, PROFIBUS
Guideline. PROFIBUS User Organisation.

PNO (2000b). Electronic Device Description,
Version 1.0. PROFIBUS Guideline. PROFIBUS
User Organisation.

Simon, R., Hörger, J. (1999a). Engineering of
Distributed Automation Systems Based on
Novel Information Technologies and Methods,
Fet'99, 23./24.09.1999, Magdeburg, Proc. of
FET'99, pp.223-229, ISBN 3-211-83394-3,
Springer Verlag Wien New York.

Simon R., Demartini, C. (1999b). Electronic Device
Description, Fet'99, 23./24.09.1999, Magdeburg,
Proc. of FET'99, pp.429-436, ISBN 3-211-
83394-3, Springer Verlag Wien New York.

Simon, R. (2001). Methods for Field Instrumentation
of Distributed Computer Control Systems (in
German). PhD Thesis, Otto-von-Guericke
University Magdeburg.

