
A STOPWATCH SEMANTICS FOR HYBRID CONTROLLERS

Nanette Bauer
��� 1 Ralf Huuck

����� 1 � 2 Ben Lukoschus
����� 1 � 3

�
Department of Chemical Engineering, University of Dortmund,

Germany. n.bauer@chemietechnik.uni-dortmund.de���
Institute of Computer Science and Applied Mathematics, University
of Kiel, Germany.

�
rhu � bls � @informatik.uni-kiel.de

Abstract: Programmable Logic Controllers (PLC) are frequently used in the automation
industry for the control of hybrid systems. Although the programming languages for PLCs
are given in the standard IEC 61131-3, their semantics are defined in an ambiguous and
incomplete way. This holds in particular for the graphical language Sequential Function
Charts (SFC), a high-level programming language comprising such interesting features as
parallelism, activity manipulation, priorities and hierarchy. In this work we present a formal
semantics for timed SFCs, which belong to the class of linear hybrid systems.

Keywords: programmable logic controllers, linear hybrid systems, sequential function
charts, stopwatch semantics

1. INTRODUCTION

First developed during the early 1970s, PLCs started
as simple devices to replace electro-mechanical relays.
Using integrated circuit technology, they performed
simple sequential control tasks, in isolation from other
control and monitoring equipment. These simple de-
vices have grown into complex systems capable of al-
most any type of control application, including motion
control, data manipulation, and advanced computing
functions. Nowadays, PLCs are extensively used in the
field of automation, and they are integrated into much
larger environments, requiring communication with
other controllers or computer equipment performing
plant management functions.

In order to cope with this ever-growing size in terms of
lines of code for implementation as well as complexity
for communication and operation, the IEC 61131-3
standard (IEC, 1998) defines a number of program-
ming languages well-suited to tackle these different
aspects. Sequential function charts is a programming

1 This work has been partially supported by the German Research
Council (DFG) under grant LA 1012/6-1.
2 We thank VERIMAG, Grenoble, for support.
3 We thank SRI International, Menlo Park, for support.

language for PLCs, which aims at providing a clear
understanding of the possibly interwoven program
parts. SFCs are graphical high-level notations for pro-
grams which take over ideas from Petri nets and
Grafcet (David and Alla, 1992). They allow the de-
composition and structuring of program parts includ-
ing interesting concepts such as parallelism, activity
manipulation and hierarchy. Moreover, there is the
notion of time and timers, which allows to test and
reason about the amount of time a program part has
been active and to start program parts after a delay of
time or for some limited time only. All these features
can, however, again aggravate the understanding of
SFCs.

Although described in IEC 61131-3, the standard
leaves a lot of questions open concerning the se-
mantics of SFCs or provides ambiguous answers as
discussed later. The goal of this work is to define
and, hence, clarify the semantics of timed SFCs. This
serves as a basis for any discussion on SFC concepts
as well as formal verification approaches in the fu-
ture. The formal syntax and semantics for SFCs we
present in this work comprises all the aforementioned
features. In particular we focus on time and timed
behavior. We show that the implementations of SFC

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

control programs are in fact (linear) hybrid systems,
and we define the semantics of such systems by utiliz-
ing stopwatches (Cassez and Larsen, 2000).

The remainder of this work is organized as follows: In
Section 2 we briefly introduce timed SFCs and point
out the major features as well as ambiguities and open
questions. Afterwards, in Section 3 we define a unify-
ing syntax and semantics for SFCs. In Section 4 possi-
bilities and approaches to the verification of SFCs are
pointed out briefly, and we conclude with a discussion
on related work and future directions in the application
of formal methods to PLCs.

2. MOTIVATING A FORMAL SEMANTICS

The standard for PLC programming languages (IEC,
1998) provides intuitive and informal semantics for
the execution of PLC programs. This allows for a wide
range of vendor-specific implementations, but lacks a
precise definition in case things are not obvious from
an intuitive point of view. In this section, we point out
some semantical ambiguities of the SFC programming
language which need to be clarified by giving a precise
semantics (the topic of Section 3).

A � B � C

T3

M

������
LIS
3L

V5� �	 	

� �
A

T1������
LIS
1L

������
LIS
1H

V3 � � �

V1 � � �

� �
B

T2 ������
LIS
2L

������
LIS
2H

V4 � � �

V2 � � �

Fig. 1. Example: structure of the batch plant.

As a running example we use a simplified part of
a chemical batch plant at the Process Control Labo-
ratory of the University of Dortmund (Bauer et al.,
2000). Figure 1 depicts the structure of that part. Its
purpose is to produce a substance C in reactor T3 by
mixing the raw materials A and B provided by the
buffer tanks T1 and T2. The production is controlled
through valves V1 ����� V5 and the stirrer motor M. In-
formation about the liquid levels is obtained from five
level sensors, where the sensors labeled with LISxL, x� �

1 � 2 � 3 � give the value true, if the respective tank is
empty and f alse otherwise. Sensors LISxH, x � �

1 � 2 �
give the value true if a desired level is reached.

Figure 2 shows the SFC program used to control
the production process. Three tasks are running in
parallel: the delivery of raw material A to T1 through
V1, the delivery of raw material B to T2 through V2,

and the production of C in T3 (filling through V3 and
V4, stirring with M, emptying through V5). These tasks
are performed in the three parallel branches of the SFC
shown on the left. Since the production task is a bit
more involved, it is given as an individual SFC a3.

The basic syntactic elements of SFCs are steps
(s0 ����� s13 in the example), transitions labeled with
guards, and action blocks (consisting of an action
qualifier and an action name) associated with a step.
Each action name is associated with a Boolean vari-
able (shown in quotes next to the action block), with
another SFC (a3 in the example), or with a program in
another PLC language. Each SFC has an initial step,
indicated by a double bar, such as s0 and s10 in the
example.

Guards are Boolean expressions over variables, where
si �X denotes that step si is active and si � T is the time
that si has been active since its last activation. When-
ever a step is active, the qualifier of each action block
associated to that step determines if the respective
action will be executed. The qualifier N (“non-stored”)
activates the action as long as the step is active, S
(“stored”) activates it until an R qualifier resets it. The
P0 qualifier (“pulse, falling edge”) activates the action
for one cycle after the step is deactivated, whereas
P1 (“pulse, rising edge”) activates it for one cycle
whenever the step is activated. The L qualifier behaves
like N, but execution is limited to the given duration,
and D delays for the given time before the action gets
executed. There are also DS, SD and LD qualifiers,
which are explained later.

Characteristic for a PLC is its cyclic execution. A
cycle consists of reading inputs (in our example: the
Boolean variables for the sensor values and the “start”
command are updated), doing some computation (exe-
cuting actions, taking transitions), and an output phase
(e.g., sending commands to the valves). In contrast
to the “maximal progress” semantics for the Grafcet
language, only one set of transitions is taken in one
cycle (“lock step” semantics).

In the following we point out some ambiguities which
are not resolved by the standard.

2.1 Execution order of actions

In which order are actions of parallel steps exe-
cuted? Is there any order at all or do we have non-
determinism? The execution order is also not clear
if we have more than one action associated to the
same step. Are they executed from top to bottom or
according to a different rule?

The order of execution makes a difference if two or
more actions modify the same variable or if actions
read the value of a variable that is modified by another
action. We refer to such actions as conflicting actions.
The standard does not give a clear rule for these situ-
ations. A comparison of different programming tools

s0

g0 start

s1

g1 � s11
� X

s2
L

t#15s
a1 “V 1”

g2 LIS1H

s3

s4

g3 � s12
� X

s5
L

t#15s
a2 “V 2”

g4 LIS2H

s6

g6 true

�

s7
N a3

g5 finished

s8

a3 :
s10

g10 LIS1H
�

LIS2H
�

LIS3L

s11
N a4 “V 3”
S a5 “M”

g11 LIS1L

s12
N a6 “V 4”

g12 LIS2L
�

s12
� T � 20s

s13
N a7 “V 5”
R a5 “M”
P0 a8 “finished”

g13 LIS3L

�

Fig. 2. Example: the control program for the batch plant.

for SFCs (Bauer and Treseler, 2001) showed that the
tools have implemented different orders, ranging from
the alphabetical order of action names to the order
given by the graphical position in the SFC diagrams.

2.2 Hierarchy

As the standard allows an action to be another SFC
(like a3), a hierarchical structure of SFCs is possible.
However, the standard does not define a clear seman-
tical concept of hierarchy, thus leaving a lot of aspects
undefined. It is clear that the SFC a3 becomes inactive
if step s7 is not longer active. But does a3 take another
transition during the cycle in which s7 is left? And
what happens if s7 is entered later and a3 becomes
active again? Does a3 always restart at its initial step
s10 or is there notion of history and the last active step
of a3 becomes activated again? As the standard does
not provide a rule, we define that SFCs have a notion
of history.

2.3 Timed Qualifiers

Apart from the timed qualifier L, it is also possible to
delay the activation of an action for a certain time after
the step has become active using the D qualifier. The
L and D qualifiers can be combined with S yielding
DS, SD and SL. An action associated with DS will
only be activated if the delay time is reached before
the step is left, whereas an SD action always becomes
active after the elapsed time, independent of the step
activity. Similar, an SL action is (in contrast to L)
always activated for T time units. Although the ac-
tion qualifier concept is defined using well-understood
function blocks, the definitions in the standard still are
ambiguous. For example, assume an SFC which calls
an SD action in one step and in the next step calls the
action again with the SD qualifier but with a different
delay time. Assume that the activity time of the first
step has been shorter than the first delay time, i.e. the
action is not yet activated when it is called in the next

step with a different delay time. Which delay time now
is relevant?

These ambiguities clearly show that there is a need for
an SFC semantics which gives answers to these open
questions.

3. A HYBRID SEMANTICS FOR SFCS

In the following we will describe the basic elements
of a formal syntax and semantics for timed SFCs. We
will omit some technical details; for untimed SFCs, a
more technical description can be found in (Bauer and
Huuck, 2002). Important features of this semantics are
orders on actions and transitions and the introduction
of clocks and stopwatches to describe timed SFCs.

3.1 Syntax of SFCs

SFCs (or PLC programs in general) have different
types of variables, such as input variables, output vari-
ables, and local variables, i.e. variables, that cannot
be accessed from outside of the SFC. The values of
the variables may belong to different data types such
as Boolean or integer. The valid variable and data
types are regulated by the standard, already mentioned
above. We abstract here from these different variable
and data types simply saying an SFC has variables
which may have different values. To describe the val-
ues of all variables we use the notion of a state σ ,
which is a function assigning a value to each variable.

A state (i.e., the values of the variables) can be mod-
ified by state transformations. The standard defines
different types of programming languages for such
state transformations. We abstract from these types by
simply saying that a state transformation is a function
that transforms a given state into another state.

To associate action blocks to steps, we introduce a
function called action labelling function, which gives
for each step the action blocks assigned to it. For

action a1 associated to s2 in our example, we have
block

�
s2 ���

���
L � t#10s � a1 � � .

A transition is defined by at least one source step, one
guard, and at least one target step. E.g., the transition
opening the parallel branch in our example is given by� �

s0 � � g0 �
�
s1 � s4 � s7 � � .

A guard is a Boolean expression describing a set of
possible values for each variable, a set of active steps
and a set of possible time intervals of step durations,
since we allow guards to reason about variables and
step activities and the time a step has been active.

In order to cope with different execution orders of
actions realized in different tools (see Section 2.1)
we introduce an order on actions, � . The order is
partial, as we only need to give the execution order for
conflicting actions, e.g., actions which share variables.
This allows us to adapt to different execution orders
realized by different tools.

Additionally, we have a partial order on conflicting
transitions, � . For transitions, conflicting means that
more than one transition starting at the same step is
enabled.

To reason about timed SFCs we introduce the notions
of clocks and stopwatches. A stopwatch θs has a
dynamical behavior given by either f

�
θs ��� θ̇s � 1

if the stopwatch is running, or f
�
θs ��� θ̇s � 0 if it

is stopped, whereas a clock θa cannot be stopped,
i.e., the dynamical behavior is always f

�
θa ��� θ̇a � 1.

Both can be reset to zero. To describe the values of all
stopwatches and clocks we use the notion of a clock
evaluation ν , which is a function assigning a value to
each stopwatch or clock.

As guards may reason about the time a step is active
or has been active before, each step needs a stopwatch
which is reset to zero when the step is entered, runs
when the step is active, and is stopped when the step
is deactivated. Second, we need stopwatches because
we define that hierarchically nested SFCs have history,
i.e., after deactivation nested SFCs are activated in the
step the have been last. The notion of history includes
that the SFCs remember the values of their clocks at
the point of deactivation if they are activated again.

Additionally we need a clock for those actions which
are associated with an SD or SL qualifier, because
these actions might be deactived (SL) or activated
(SD) independently from a step activity. Clocks are
sufficient, because according to the standard, guards
cannot access the time an action has been active, and
therefore we do not need to memorize the activity time
after the action has been deactivated.

An SFC is then defined as follows:

Definition 1. (SFC). A sequential function chart (SFC)	 �
�
X � Θ � S � s0 � G � T � A � block �
� �
� � consists of:

� A finite set X of variables.

� A finite set Θ of stopwatches and clocks.� A finite set S of steps si.� An initial step s0
�

S.� A finite set G of guards gi.� A finite set T of transitions ti.� A finite set A of actions ai.� An action labelling function called block assign-
ing a set of action blocks to each step.� A partial order on actions � to define the execu-
tion order of conflicting actions.� A partial order on transitions � to determine
priorities on conflicting transitions.

3.2 Semantics of SFCs

In this section we provide an operational semantics for
SFCs. First of all, let us introduce some notions. It is
crucial to distinguish between ready steps and active
steps. Active steps are the ones control resides in and
their actions will be performed. On the other hand,
there might be steps where control resides in, but their
actions will not be performed. These steps belong to
nested SFCs which are currently not activated, i.e.,
there is no action active which points to this SFC.
Control is “waiting” there to resume. We call all steps
where control resides in ready steps. Hence, each
active step is also a ready step, but the converse does
of course not hold.

Moreover, active actions are actions which will po-
tentially be executed in the current SFC cycle. This
means, unless there is no matching reset action these
actions will be performed. Stored actions are the ones
which have been tagged by an S qualifier and po-
tentially keep on being active outside their step of
activation.

The global state of an SFC (including all its nested
SFCs) is given by the values of all its variables, the
evaluation of clocks and stopwatches, the sets of active
and ready steps and the sets of active and stored
actions. In addition to stored actions we also have
to remember stored delayed actions associated to a
step with an SD qualifier, which potentially need to
be activated after the corresponding step has been
deactivated and stored limited actions indicated by the
SL qualifier, which potentially have to be executed
for a certain time after the activating step has been
deactivated.

We describe the global state of an SFC
	

by a
configuration, given by:

Definition 2. (Configuration). A configuration c of
	

is an 8-tuple
�
σ � ν � readyS � activeS � activeA � storedA �

storedDA � storedLA � , where
� σ is the state of the variables,� ν is the evaluation of clocks and stopwatches,� readyS � S̄ is the set of ready steps,� activeS � S̄ is the set of active steps,

� activeA � Ā is the set of active actions,� storedA � Ā is the set of stored actions,� storedDA � Ā is the set of stored delayed actions,
and� storedLA � Ā is the set of stored limited actions.

We use the notions S̄ and Ā to denote the sets of
all steps or actions of an SFC including the sets of
steps/actions of its nested SFCs.

Such a configuration is modified in the cycles of a
PLC. In a cycle the following sequence is performed:

(1) Get new input from the environment and store
the information into the state of the variables σ .

(2) Execute the SFC program, i.e., determine the
new SFC configuration c � .

(3) Send the outputs to the environment by extract-
ing the required information from the new state
σ � .

The SFC program executions in (2) are defined by
means of configuration changes within a cycle. We
describe the change of configuration by associating
a transition system to an SFC. A transition c � � c �
in this transition system is computed by the following
algorithm:

(1) Determine the new state σ � by executing all
actions in activeA except for those which are
SFCs. Conflicting actions have to be executed in
accordance with the order � .

(2) Determine readyS � . To do so, determine the set
Tenabled of transitions with source steps in activeS
and guards holding for the current configuration.
Then, readyS � is given by joining readyS with the
sets of target steps of the transitions t

�
Tready for

which no other transition t1
�

Tenabled with higher
priority exists, and removing the source steps of
these transitions.

(3) Determine activeS � , activeA � , storedA � , storedDA �
and storedLA � . The new sets are computed recur-
sively on the structure of the SFC using an auxil-
iary function. The function recursively searches
the top-level SFC and the hierarchically nested
ones to find out if an action activated on a higher
level is reset within an hierarchical lower active
SFC. An algorithm for the computation of the
untimed sets can be found in (Bauer and Hu-
uck, 2002).

(4) Stopwatches and clocks are reset to zero, if one
of the following holds:� The stopwatch θs belongs to a step s which

has been activated in this cycle, i.e., s �
activeS � � activeS.� The clock θa belongs to an action a which
has been activated “stored delayed” in this
cycle, i.e., a

�
storedDA � � storedDA.� The clock θa belongs to an action a which

has been activated “stored limited” in this
cycle, i.e., a

�
storedLA � � storedLA.

s10 T F T

s11 F T F

s12 F T F

s13 F T F

“V3” a4 F T F

“M” a5 F T F

“V4” a6 F T F

“V5” a7 F T F

LIS1H F T F

LIS1L T F T

LIS2H F T F

LIS2L T F T

LIS3L T F T

finished F T F� ��� �	 20s

Fig. 3. Example: a fragment of a run.

An execution sequence
 c0 � � c1 � � c2 � ������� is called
run. The operational semantics of an SFC

	
is given

by the set of runs of its associated transition system.

3.3 Example

Figure 3 shows a part of a run of the example shown
in Figure 2. This fragment shows the evolution of the
Boolean variables and step/action activities used in the
nested SFC s3 during its active phase. Note that the
values for the actions a4, a6, and a7 are identical to
the activity of the steps they are associated with, since
they are labeled with the N qualifier, whereas a5 is
active whenever s11 or s12 is active, since the S and
R qualifiers are used. Also note that g12 keeps s12 and
a6 active for at least 20 seconds.

Such diagrams can be helpful for the manual analysis
of PLC programs. Approaches for machine-supported
analysis are briefly discussed in the next section.

4. CONCLUSIONS

In this work we presented an approach for a formal
semantics of SFCs in order to clarify and unify the
different interpretations by different PLC vendors and
to use it as a formal basis for verification. In particular,
this is the first work comprising all the mentioned con-
cepts of SFCs including time. Moreover, it can cope
with implementation dependent aspects, which are not
well defined in the standard, such as the execution
order of actions and transitions. The parameterization
of the semantics allows to adjust to different interpre-
tations of the standard and, hence, to support various
available commercial tools.

There are several other approaches to define a for-
mal framework for SFCs (Jiang and Holding, 1996),
(Anderson and Tourlas, 1998), (Bornot et al., 2000).
However, all of them tackle restricted subclasses only
and none of them defines a semantics for timed SFCs.

Future work will focus on proving the correctness of
timed SFCs based on the given semantics. Currently,
there exist a few approaches to prove the correct-
ness of SFCs. However, most of them just consider
Grafcet-like models or very simplistic SFCs only,
e.g., (Lampérière and Lesage, 2000). A comprehen-
sive model is studied in (Bauer and Huuck, 2001), but
as the previous ones it does not take quantitative time
into account. A timed approach is proposed in (L’Her
et al., 1998), but again for SFCs, where most features
are not covered.

Hence, there is still no verification method for timed
SFCs with timed qualifiers and all its distinct features.
Since we deal in fact with hybrid systems this is not
a simple task. As model-checking techniques do not
scale well in particular for timed models, there is
at least the need to find some ways to decompose
SFCs. A natural decomposition into their sub-SFCs,
i.e., according to the hierarchy, seems not promising,
since the semantics is not layer-wise compositional,
due to the action qualifier concept. However, different
abstraction and deductive techniques might be worth
to examine as well as how to combine them with
existing automatic exploration techniques.

5. REFERENCES

Anderson, S. and K. Tourlas (1998). Design for proof:
An approach to the design of domain-specific
languages. Formal Aspects of Computing 10(5-
6), 452–468.

Bauer, N. and H. Treseler (2001). Vergleich der Se-
mantik der Ablaufsprache nach IEC 61131-3 in
unterschiedlichen Programmierwerkzeugen. In:
GMA-Kongress 2001. Vol. 1608 of VDI-Berichte.
VDI-Verlag. pp. 135 –142.

Bauer, N. and R. Huuck (2001). Towards automatic
verification of embedded control software. In:
Asian Pacific Conference on Quality Software.

Bauer, N. and R. Huuck (2002). A parameterized se-
mantics for sequential function charts. Accepted
for ETAPS02 Satellite Workshop on Semantic
Foundations of Engineering Design Languages
(SFEDL).

Bauer, N., S. Kowalewski, G. Sand and T. Löhl (2000).
A case study: Multi product batch plant for the
demonstration of control and scheduling prob-
lems. In: ADPM2000 Conference Proceedings
(S. Engell, S. Kowalewski and J. Zaytoon, Eds.).
pp. 383–388.

Bornot, S., R. Huuck, Y. Lakhnech and B. Lukoschus
(2000). An abstract model for sequential function
charts. In: Discrete Event Systems (R. Boel and
G. Stremersch, Eds.). Kluwer Academic Publish-
ers. pp. 255–264.

Cassez, F. and K. Larsen (2000). The impressive
power of stopwatches. In: International Confer-
ence on Concurrency Theory. pp. 138–152.

David, R. and H. Alla (1992). Petri Nets & Grafcet.
Prentice Hall.

IEC (1998). Programmable Controllers – Program-
ming Languages, IEC 61131-3. second ed. Com-
mittee draft.

Jiang, J. and D.J. Holding (1996). The formalisation
and analysis of sequential function charts using a
Petri net approach. In: Proceedings of 13th World
Congress of IFAC. pp. 513–518.

Lampérière, S. and J.-J. Lesage (2000). Formal ver-
ification of the sequential part of PLC pro-
grams. In: Discrete Event Systems (R. Boel and
G. Stremersch, Eds.). Kluwer Academic Publish-
ers. pp. 247–254.

L’Her, D., J.L. Scharbarg, P. Le Parc and L. Marcé
(1998). Proving sequential function chart pro-
grams using automata. Lecture Notes in Com-
puter Science 1660, 149 – 163.

