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The presence of fast and slow modes in vehicle suspension systems, based on a half car 
model, is utilized in the design of active suspension control using singular perturbation 
theory. This strategy is based on the slow-fast control design. The suspension system 
performance is optimised with respect to ride comfort, road holding and suspension rattle 
space as expressed by the mean-square-values of body acceleration (including effects of 
heave and pitch), tire deflections and front and rear suspension travels. The method of 
design in this study is based on LQG feedback control combined with singular perturbation 
theory, and at the end a composite LQG controller has been proposed.  Numerical 
simulations in the time domain evaluate the performance of the active suspension system.  
In spite of the simplified structure of the composite model, simulation results indicate that 
its performance is comparable to that of the full-state feedback design. 
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1. INTRODUCTION 
 

The design of vehicle suspension system is a 
compromise among several conflicting requirements. 
On one hand, for  ride comfort, the suspension 
system must isolate  vehicle body from the road 
inputs, whereas for maintaining good vehicle 
handling and road holding the tyres should 
continuously touch the road surface and 
simultaneously the system has to bear the weight of 
the vehicle. The passive suspension systems of the 
past have shown all their potentialities and won’t 
promise to bear unexpected miracles. Because of this  
the giant car manufactures world-wide have focused 
their attention on active systems . Often, in the initial 
stage of the design, a quarter car model with a single 
wheel is devised (E.W. Kamen, B.S. Heck, 1997). 
Now by considering an active suspension system and 
with due fact that different criterion are required, 
amongst other methods, the linear quadratic gaussian 

(LQG) is a sound method as an optimal control 
technique. 
The singular perturbation theory as a separate science 
and a mathematical discussion appeared in the study 
of fluid dynamics in 1904. Applying this theory for 
the analysis of integrated systems gives the designer 
extraordinary measuring potentials. Dividing the 
system into smaller subsystems attains this objective.  
However, in order to apply the singular perturbation 
theory to control systems, the system shall bare the 
two time scale properties, i.e., the system contains 
two batches of completely separate poles. Some 
modes in the system will contribute only to the initial 
stage of the response (transient response) and will 
eventually die out (assuming stable fast modes). 
Others continue throughout the entire time history 
(Nematollahzadeh S. M. 1998). Evidently, the 
dynamics of a vehicles suspension system is 
comprised of 2 separate sets of fluctuating modes. 
One set of modes are natural frequencies of vehicle 
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mass and body springs comprising the slow dynamics 
(denoted by sλ ), and another set is the national 
frequencies of tires accounting for fast dynamics 
(denoted by fλ ). Without loss of generality, the 

ratio of minmax ||/|| fs λλ is taken as the 
approximate value of the singular perturbation 
parameter ε  given by  

minmax ||/|| fs λλε ≅              (1) 
 
This clearly shows that the vehicle suspension system 
possesses a two-time-scale property, with the body 
modes as the slow, and the wheel hop modes as the 
fast modes (Salman M.A. ,Lee A.Y. and Boustany 
N.M. 1990). In the present study, the full order 
suspension system is considered first. By defining the 
appropriate cost function and using the LQG design 
method, the problem can be solved; next the singular 
perturbation technique is applied for solving the same 
problem. The theory has been applied to solve many 
of the control problems (Calise A.J. 1976), two 
strategies of the singular perturbation technique can 
be used. The first strategy is to design a reduced 
order controller and is using only the slow modes of 
the vehicle suspension and neglects the fast modes 
present (assuming stability of the fast modes). This 
method is the simplest form of controller design, 
although an appropriate response is not always 
achieved, and isn’t recommended in this case. In the 
second strategy, the controller is produced by 
composition of a slow-controller and fast one, which 
has two advantages:  First the design process 
becomes simpler due to order reduction of the 
subsystems, second, by exploiting the time scale 
property, it should be possible to perform multi-stage 
sampling entailing lower pressure upon the digital 
controller.  
In section 2 the half car model, the related 
differential equations and the appropriate cost 
function are presented. In the third part, the LQG 
problem is solved using standard singular 
perturbation theory. Its important to note that using a 
four-wheel vehicle model would render the same 
characteristics as the half car model (assuming 
independent suspension systems are employed). In 
section 4 simulation results are presented. Finally, in 
section 5 concluding remarks are given. 
 

 
Fig. 1. Half car model with active suspension system. 

2. ACTIVE SUSPENSION SYSTEM OF A HALF 
CAR MODEL 

 
The half car active suspension system is shown in 
Figure1 (Hac A., Youn I. 1993). 
Defining the states, controls and disturbances of the 
system, respectively by 
X x x x T= ( ... )1 2 8        (2a) 

( )U u u T= 1 2          (2b) 
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then the outputs will be 
 511 xxy +=   732 xxy +=        (3c) 
and U is the control signal. The differential equation 
representing the state space model is 

LwBUAXX ++=&                 
vDUCXY ++=           (4) 

Where A, B, C, D and L are constant matrices and are 
given in Appendix. w and v are unbiased process 
noise  and measurement noise respectively with 
covariance  
 E{ww'} = W  ,  E{vv'} = V  ,   E{wv'} = 0         (5) 
To define the cost function we must take into account 
the passenger comfort, acceleration in passenger 
compartment which should be kept as low as 
possible, and to achieve a good vehicle handling,  tire 
deflection rate proportional to  tire strength, should 
be low, rendering to maximum contact with road. 
Putting all the above objectives together and 
considering the random nature of disturbances, the 
performance measure is defined (Hac A., Youn I. 
1993)  
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The above criteria contains some weighting factors 
which are constant and are specified by the designer 
depending on vehicle movement conditions such as 
speed, road quality, vibration inputs, etc.  After 
substituting for the accelerations, Zc and θ , the 
quadratic performance index is expressed in terms of 
state and input vectors  

( ) }
2
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where the constant matrixes Q, N, R are given in 
(Nematollahzadeh S.M. 1999). 



 

3- STANDARD LQG DESIGN 
 

The Kalman filter gain matrix K is given by:  
(Maciejowski J.M. 1989) 

1−= VCPK T
e            (8) 

where Pe satisfies the algebraic Riccati equation 
01 =+−+ − T

e
T

e
T

ee LWLCPVCPAPAP              (9) 

and 0≥= T
ee PP . 

The optimal state-feedback gain matrix G is given by 

c
T PBRG 1−−=           (10) 

where Pc satisfies the following algebraic Riccati 
equation (MATLAB. 1999)  

0)2/()2/( 1 =+++−+ − QNPBRNBPAPPA T
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Now it is quite clear that the optimal control of the 
system (4) with the cost function (7) will take the 
form  

XGU ˆ=            (12) 
where  the estimated states are obtained from Kalman 
filter.  
 
 
 
 
 
 
 
 
 
 
 
Fig.2. LQG Controller block diagram. 

 
 
 

4-LQG DESIGN USING SINGULAR 
PERTURBATION THEORY 

 
Figure 1 is a schematic diagram of the vehicle’s 
active suspension system showing clearly its two-
time-scale behaviour, i.e. slow dynamic behaviour of 
system includes changes in the overhead front and 
rear tire suspension system and in vertical speed of 
the main mass at the wheels of system. In contrast, 
the fast dynamics include change of vertical form in 
tires and the rate of such changes called unsprung 
mass. In order to use two-time scale property of the 
system, Eq.(4) is partitioned as 

wLUBXAXAX 112121111 +++=&             (13a) 

wLUBXAXAX 222221212 +++=&           (13b) 

vXCXCY ++= 2211         (13c) 
where 

( ) ( )TT xxxxXxxxxX 8765243211 , ==   

and the constant system matrices are 1
: 

A A11 1 4 1 4= ( : , : )         A A12 1 4 58= ( : , : )        
)4:1,8:5(21 AA =       A A22 58 58= ( : , : )       (15a)       

B B1 1 4 12= ( : , : )           B B2 58 12= ( : , : )       (15b)       

)4:1,2:1(1 CC =       )8:5,2:1(2 CC =    (15c) 

L L1 1 4 12= ( : , : )         L L2 58 12= ( : , : )       (15d)           
The standard singular perturbation form of  (13) is 
then given by 

wLUBXAXAX 112121111 +++=&       (16a) 

wLUBXAXAX 222221212
ˆˆˆˆ +++=&ε         (16b) 

where 

22222121
ˆˆ AAAA εε ==        (17a) 

0,ˆˆ
12222 === LLLBB εε     (17b) 

and ε  is the singular perturbation parameter given 
by (1). Applying the standard singular perturbation 
approach to decouple the slow-fast subsystems, the 
slow and the fast dynamics is obtained (Kokotovic 
P.V. 1986) .  
 
4.1 The slow subsystem 
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where subscript s represents the slow part of the  
vectors, and  
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The problem of the slow subsystem controller can be 
solved by finding the control signal Us in such a way 
as to minimise Js  (slow part of cost function) 
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The control signal for the slow subsystem is 
 sss XGU 1
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 where sX 1
ˆ  is the optimal estimated slow states 

)( 1sX , provided by the slow  Kalman  filter 
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4.2 The fast subsystem 
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The problem is finding the control signal Uf in such a 
way as to minimise the following cost function (fast 
part) 
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The feedback control signal for fast sub-system is 
given by 

fff XGU 2
ˆ=            (29) 

where fX 2
ˆ   is the optimal estimated fast states 

)( 2 fX , provided by the fast  Kalman filter 
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The filter gain Kf is 
1
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the fast algebraic Riccati equation 
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The composite control signal is  the sum of the slow 
and fast control signals 

ffssfs XGXGUU 21
ˆˆ +=+          (33) 

as shown in Figure 3. 
 

 
 
5- APPLICATION TO THE HALF CAR MODEL 

 
The slow-fast controller design presented in section 
4.2  is now  applied to the half car model of section 2.  
The nominal parameter values of the model used in 
the simulation are presented in Table 1. These 
parameters are specified for a Sedan car model (Hac 
A., Youn I. 1993). The consonant matrices Q and R 
of Eq. (7) are attained from the cost function 
weighting coefficients of Eq. (6)-having values 
arranged in  Table 2. 

 
 
Fig.3-Block diagram representation of the 

composite stochastic control. 
 

Table 1. Parameter values for a car model. 
 

Index Value Index Value 
Kf1 10000       N/m M 500.     kg 
kf2 100000     N/m I 910. kg.m2 
kr1 10000       N/m m1 30        kg 
kr2 100000     N/m m2 40        kg 
bf 1000      N.s/m  A 1.25     m 
br 1000      N.s/m  B 1.45     m 

 
Table 2.  Coefficient values of the cost function 

 
Index Value Index Value 
P0 1 P1 2 
P2 900 P3 960 
P4 5800 P5 4600 
P6 0 P7 0 

 
The weighting coefficients for the cost function 
depend on the conditions of motion such as the road 
conditions, and the dynamic speed and to some 
extend such measures are desirably specified by the 
designer (Hac A., Youn I. 1993). 
In order to observe the performance of each of the 
above controllers in the presence of external 
disturbances, a roadway containing a hole along the 
travelling path has been considered as shown in 
Figure 4.  
 

Fig. 4- Road model used for simulations 
 
Such a particular disturbance simulates both the slow 
and the fast modes in the system. In addition, a white 
noise signal with the following power spectral 
density has been selected as a disturbance signal to 
model the speed vibrations of the road: 
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This can result from passing the white noise 
ζ ( )t from the low-pass filter 

)()()( 0 ttvt ζϖαϖ =+& ,                      (35) 
 
Where the noise signal measures at 02 vσα with σ 

and α being the road consonants and 0v  the dynamic 
speed. For an asphalt road these constant coefficients 
contain the following values (Hac A. 1992) 
σ 2 6 29 10= −* m  α = −015 1. m        (36) 
 
The vehicle speed set to 0v = 20 m/sec. The time 
response of outputs such as the amount of variation 
in the suspension system above the front wheel, the 
amount of flexure of the front wheel, the vertical 
acceleration of the car body and the amount of 
angular changes in the car body are considered for 
both approaches. In each of these simulations, the 
outputs are equivalent to the distance of the front 
section of car body from the road surface and the 
same distance at the rear car section. These outputs 
are important in LQG controller design, since in such 
a design,  by using the optimal estimator, the 
measurable output must provide a good and proper 
estimate for the modes ),( 21 XX . The combination 
of this filter together with the gains obtained from the 
optimal regulator produces the LQG controller. To 
measure these two outputs, sensors denoted by S1 and 
S2 (see Fig.1) are attached to the front and the rear of 
the car which allow the estimator (Kalman filter) to 
measure distances from the road surface. 
Computing the controller gain matrix (12) for the 
standard LQG design, we get 
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Applying this controller to the full order system, and 
computing the cost function (7), we obtain  
 94.166=fullJ                                            (38) 
In order to apply the singular perturbation theory, 
first, lets check the two-time-scale property of the 
system. Figure 5 shows the Eigen-spectrum of the 
system. As it can be seen clearly in the Figure, the 
two sets of Eigen values are well separated. The ratio 
defined by (1) is computed  
 

14.0||/|| minmax ≅fs λλ           (39) 
The calculations of the controller gains matrices 
using the singular perturbation theory for both the 
slow and the fast subsystems result in the following   
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Fig. 5  Eigen spectrum of the model 
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and the composite cost function measured by the sum 
of the slow and the fast functions (20) and (28), is 
computed to be  

30.168. =compJ           (41) 
Design of the controller using the singular 
perturbation theory entails a %0.81 cost increase that 
is negligible, and clearly justifies the utilization of 
this approach. 
The simulation results of both design approaches are 
compared graphically. Figures 6 through 9 show the 
time response of the front suspension, front tire 
deflection, vertical acceleration, and pitch rate 
respectively. As shown in the figures, the trajectories 
are almost identical justifying, once again, the 
utilisation of singular perturbation  approach.  

 
Fig.6- Size of the suspension system above the front 

wheel. (-) full states and, (…) composite control 
design. 

 
Of course, in the simple problem of half car model 
presented here, use of such a strategy may not give a 
much outstanding vision, yet, in an expanded 
problem with further dimensions, better and greater 
advantages are discernible. 



 

 
 
 

6- CONCLUSION 
 

Controller design for active suspension system has 
been presented. Singular perturbation theory was 
utilized to design LQG controllers. Although half-car 
model has been used, the eight-order dynamic system 
enjoys the decoupling into two forth-order 
subsystems. This, in turn, results in solving lower-
order Riccati equations to obtain the estimator gains, 
as well as the controller gain matrices. Simulation 

results were shown to be very close approximation to 
the full-order design. Computation time savings, 
parallel processing are of importance, and are 
enhanced by the techniques presented here. 
Extension of the approach to the full-car model will 
certainly magnify the benefits of singular 
perturbation theory. That is the subject we are 
looking into, and hope to report in the future. 
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