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Abstract: This paper treats model reduction of linear time-varying models in continuous
time. The method proposed is based on time-varying Lyapunov inequalities and balancing
of Gramians. An error bound for truncated models that generalizes the well-known ’twice-
the-sum-of-the-tail’-formulafor time-invariant balanced systems is obtained. Input-output
stability of truncated balanced models is also proved.
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1. INTRODUCTION

Model reduction is a vital step in the design process
of a control system. Both the process model and the
controller might need reduction during the design.
The motivation is to reduce complexity of models
and to make the implementational work safer and less
complicated.

There are many ways to reduce systems, see surveys in
for example (Andersson, 1999). However, many of the
reduction techniques lack the possibility of giving an
error bound on the reduced system. One method often
used is balanced truncation. It is popular because it is
easy to implement and gives a nice upper error bound,
see (Enns, 1984; Glover, 1984). The method was
originally developed for time-invariant models. It is
natural to ask if a similar result also holds for the time-
varying case. Balanced realizations for time-varying
systems were studied in (Shokoohiet al., 1983) and
results on existence of such realizations were given.
However, no error bound of truncated models was
given. With methods developed for uncertain systems
(Becketal., 1996; Andersson, 1999), error bounds are
obtainable if the time-varying dynamics is described
as uncertainty. Those bounds are conservative as the
known time-variance is not used explicitly.

In (Lall et al., 1998) an operator theoretic framework
for balanced truncation of time-varying system is
presented together with an error bound. Error bounds
on truncated periodic balanced time-variable systems
in discrete time can be found in (Longhi and Orlando,
1999; Varga, 2000).

In this paper reduction of time-variable systems in
continuous time will be studied. An error bound
based on the use of time-varying balanced Lya-
punov inequalities is presented. The bound generalizes
the ’twice-the-sum-of-the-tail’-formula used for time-
invariant balanced systems. Stability properties of bal-
anced truncated systems are also given. Finally an ex-
ample is solved numerically using the described tech-
niques.

2. PRELIMINARIES AND PROBLEM
FORMULATION

The subject of the paper is linear time-varying sys-
tems. The weighted Euclidean norm will be used ex-
tensively in the proofs,|x(t)|2P = xT(t)P(t)x(t) and
P(t) ≥ 0. Matrix inequalities of the typeP(t) ≤ Q(t)
means thatP(t) − Q(t) is negative semidefinite for all
t. In will denote then× n-dimensional identity matrix.

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain



Forn-dimensional signalsx(t) in L n
2[0,T] the norm

‖x‖2 =

(∫ T

0
|x(t)|2dt

)1/2

is defined, and for linear operatorsG : Lm
2 [0,T] →

L p
2[0,T] the induced norm

‖G‖ = sup
‖u‖2=1

‖Gu‖2 .

The original linearnth order system will be denoted
by G, and its state-space realization is given by

G :

 ẋ = A(t)x + B(t)u, x(0) = 0

y = C(t)x + D(t)u
(1)

with the signalsx ∈ L n
2[0,T],u ∈ Lm

2 [0,T], and y ∈
L p

2[0,T]. The matricesA,B,C,D are time-varying,
continuous in t, and with dimensions so that the
multiplications and additions are defined. With these
conditions existence and uniqueness of solutions to (1)
is guaranteed, see for example (Rugh, 1996). When
the infinite time-horizon case is studied the system is
assumed to be asymptotically stable.

With inspiration from Linear Fractional Transforma-
tions (1) can be interpreted as a feedback system as
depicted in Figure 1 with a static time-varying matrix
M (t)

M (t) =

[
A(t) B(t)

C(t) D(t)

]
.

With the additional signalz ∈ Ln
2[0,T] the system can

be written as[
z

y

]
= M (t)

[
x

u

]
, x =

1
s
In · z.

1/s here denotes integration in time. It is often suit-
able to change the coordinate representation in the re-
alization ofG. Here Lyapunov coordinate transforma-
tions T(t), x(t) = T(t)x̃(t), will be considered.M (t)
then transforms according to

M (t) =

[
A B

C D

]
T−→ (2)

M̃ (t) =

[
Ã B̃

C̃ D̃

]
=

[
T−1(AT − Ṫ) T−1B

CT D

]
.

so that the input-output map is invariant.

A truncated realization ofG will be denoted byĜ.
This is obtained by first specifying the following
structure onM (t)

M (t) =


A11(t) A12(t) B1(t)

A21(t) A22(t) B2(t)

C1(t) C2(t) D(t)

 , (3)

Ĝ

G

M (t)

M (t)

1
s In

1
s I n̂ 0

0 0

x

y u

u

z

x̂ẑ

ŷ

Fig. 1 The systemsG and Ĝ viewed as feedback systems: a
time-varying matrix is interconnected with a dynamical block
containing integrators. It is desired to measure the difference
betweeny and ŷ when both systems are driven by the same
signalu.

with dimA11 = n̂× n̂. Then use the interconnection
ẑ1

ẑ2

ŷ

 = M (t)


x̂1

x̂2

u

 ,
[
x̂1

x̂2

]
=

1
s

[
I n̂ 0

0 0

] [
ẑ1

ẑ2

]
.

Notice thatx̂2 = 0, butẑ2 , 0 in general. A realization
for Ĝ is the followingn̂th order system

Ĝ :

 ˙̂x1 = A11(t)x̂1 + B1(t)u, x̂1(0) = 0.

ŷ = C1(t)x̂1 + D(t)u.
(4)

The objective of this paper is to find a low order system
Ĝ such that the error

∥∥∥G − Ĝ
∥∥∥ is small, or at least

bounded by a computable number.

3. A TECHNICAL LEMMA

When using balanced truncation on an asymptotically
stable time-invariant system, it is assumed that there
are diagonal solutions to the controllability and ob-
servability Lyapunov equations. In order for the error
bound to hold it is enough to have solutions to Lya-
punov inequalities, which is proven in for example
(Andersson, 1999). When looking for corresponding
results for time-variable systems, time-varying Lya-
punov inequalities are a natural start:

A(t)P(t) + P(t)AT(t) − Ṗ(t) + B(t)BT(t) ≤ 0 (5)

Q(t)A(t) + AT(t)Q(t) + Q̇(t) + CT (t)C(t) ≤ 0 (6)

for all t. If these are solved with equality,P is the con-
trollability Gramian andQ the observability Gramian
with suitably chosen initial conditions. The following
lemma is the first step in establishing an error bound:



L 1
If there exist solutions

P(t) =

[
P1(t) 0

0 p(t) · In−n̂

]
, (7)

Q(t) =

[
Q1(t) 0

0 q(t) · In−n̂

]
(8)

to the Lyapunov inequalities (5) and (6) with dimP1 =

dimQ1 = dimA11 = n̂× n̂, P(t) > 0 andQ(t) ≥ 0 for
all t, andn̂ ≤ n the solutions to (1) and (4) satisfy∫ T

0
a(t)|y − ŷ|2dt ≤

∫ T

0
4b(t)|u|2dt.

where a(t) and b(t) are positive and non-increasing
scalar functions that satisfy

b(t)p−1(t) = a(t)q(t). (9)

Proof. The proof is separated into three steps: first the
two Lyapunov inequalities are transformed into two
scalar inequalities. In the final step they are added
and a cross-coupling term is cancelled. Notice that
xT = [xT

1 xT
2 ]T andx̂T = [x̂T

1 x̂T
2 ]T to conform with

M (t) in (3).

1. (5) may be written as

P−1A + ATP−1 +
d
dt

(P−1) + P−1BBTP−1 ≤ 0.

Using Schur complements this is equivalent to[
A B

I 0

]T [
0 P−1

P−1 d
dtP
−1

] [
A B

I 0

]
≤

[
0 0

0 I

]
. (10)

Now multiply (10) from the right with [xT +x̂T , 2uT ]T,
and from the left with the transpose. After some
simplifications and using the factŝx2 = 0 and ẑ2 =

A21x̂1 + A22x̂2 + B2u this can be written
ẋ1 + ˙̂x1

ẋ2 + ẑ2

x1 + x̂1

x2


T [

0 P−1

P−1 d
dtP
−1

] 
ẋ1 + ˙̂x1

ẋ2 + ẑ2

x1 + x̂1

x2

 ≤ 4|u|2.

Simplifications using the structure ofP and differenti-
ation rules give

d
dt
|x1 + x̂1|2P−1

1
+

d
dt
|x2|2p−1 + 2p−1ẑT

2 x2 ≤ 4|u|2. (11)

2. (6) may be written as[
A

I

]T [
0 Q

Q Q̇

] [
A

I

]
+ CTC ≤ 0. (12)

Multiply (12) from the right with [x − x̂] and from the
left with its transpose. This can be simplified to

ẋ1 − ˙̂x1

ẋ2 − ẑ2

x1 − x̂1

x2


T [

0 Q

Q Q̇

] 
ẋ1 − ˙̂x1

ẋ2 − ẑ2

x1 − x̂1

x2

 + |y − ŷ|2 ≤ 0

Using the structure ofQ and differentiation rules we
obtain

d

dt
|x1 − x̂1|2Q1

+
d
dt
|x2|2q − 2qẑT

2x2

+ |y − ŷ|2 ≤ 0.
(13)

3. In the expressions (11) and (13) the terms that
include ẑT

2 x2 are troublesome because they contain
coupling betweenG and Ĝ and are sign indefinite.
Notice however that by multiplying (11) byb(t) and
(13) bya(t) and adding the inequalities these terms are
cancelled with (9) in mind.

If the sum of the inequalities are integrated over [0,T]
and the additional assumption of non-increasinga and
b the result follows as all terms are positive,∫ T

0
a(t)

d
dt
|x1 − x̂1|2Q1

dt =

[
a(t)|x1− x̂1|2Q1

]T
0
−

∫ T

0
ȧ(t)|x1 − x̂1|2Q1

dt ≥ 0,

for example.

4. TIME-VARYING BALANCED REALIZATIONS
AND TRUNCATION

In (Shokoohiet al., 1983) balancing of time-variable
systems in continuous time is studied. Essentially this
means that there is a positive definite matrixΣ(t) =

diag{σ1(t)I s1, . . . , σN(t)I sN} with s1 + s2 + · · ·+ sN = n,
that fulfills the Lyapunov inequalities

Ã(t)Σ(t) + Σ(t)ÃT(t) − Σ̇(t) + B̃(t)B̃T(t) ≤ 0

Σ(t)Ã(t) + ÃT (t)Σ(t) + Σ̇(t) + C̃T (t)C̃(t) ≤ 0.
(14)

To find such Gramians a coordinate transformation is
often needed. In (Shokoohiet al., 1983) sufficient con-
ditions for the existence of a Lyapunov transformation,
(2), that makes the realization balanced is presented. If
there are solutions to (5)-(6) those are related toΣ(t) by

Σ(t) = T−1(t)P(t)T−T(t)

Σ(t) = TT (t)Q(t)T(t).
(15)

Thus at each time-instantt, T(t) can be calculated. If
there is a balanced representation ofG Lemma 1 is
applicable:

T 1
SupposeG has a balanced realization (14) on the
interval [0,T] withΣ(t) = diag{Σ1(t),Σ2(t)}

Σ1(t) = diag{σ1(t)I s1, . . . , σr (t)I sr }
Σ2(t) = diag{σr+1(t)I sr+1 , . . . , σN(t)I sN}

where each diagonal elementσi(t), i ∈ [r + 1,N]
is either non-increasing or non-decreasing for allt ∈



[0,T]. The truncated (s1 + · · · + sr )-order systemĜ is
then balanced byΣ1(t) and

∥∥∥G − Ĝ
∥∥∥ ≤ 2

N∑
k=r+1

sup
t∈[0,T]

σk(t). (16)

If the monotonicity condition is violated by someσk(t)
the corresponding term in the sum (16) is replaced by√

σk(0)σk(T) exp

(∫ T

0

∣∣∣∣∣ d
dτ

logσk(τ)
∣∣∣∣∣dτ). (17)

Proof. First assume the monotonicity condition is
valid. Use Lemma 1 withP(t) = Q(t) = Σ(t). Start
by removing the states related toσN(t), by selecting
p = q = σN. By assumption there are two possibilities:
σ̇N(t) ≥ 0 or σ̇N(t) ≤ 0 for all t. First consider ˙σN(t) ≤
0. Then chooseb(t) = σ2

N(t) anda(t) = 1 in Lemma 1.
In the other case choosea(t) = σ−2

N (t) andb(t) = 1. In
both cases it follows that

‖G −GN−1‖ = sup
u,0


∫ T

0
|y − yN−1|2dt∫ T

0 |u|2dt


1/2

≤ 2 sup
t∈[0,T]

σN(t).

Next notice thatGN−1 is still balanced with the rest of
Σ(t). Thus removeσN−1(t) from GN−1, and then repeat
the scheme until the system̂G is reached. Finally
notice that ∥∥∥G − Ĝ

∥∥∥ = ‖G −Gr‖ =

||G −GN−1 + GN−1 + · · · + Gr+1 −Gr ||

≤ 2
N∑

k=r+1

sup
t
σk(t)

by the triangular inequality.

If σN(t) is not monotonic an error bound is still
obtainable, even though it is large in general. In
Lemma 1 chooseb(t)

a(t) = σ2
N(t) with a(t) and b(t)

decreasing. Such a choice is

loga(t) = − logσN(T)+∫ T

t

d
dτ

logσN(τ) + | d
dτ

logσN(τ)|dτ

and

logb(t) = logσN(T)+∫ T

t
− d

dτ
logσN(τ) + | d

dτ
logσN(τ)|dτ.

This gives the bound

||G −GN−1||2 ≤

4σN(0)σN(T) exp

(∫ T

0
| d
dτ

logσN |dτ
)
.

which leads to (17).

This is a generalization of the well known bal-
anced truncation formula first derived in (Enns, 1984;
Glover, 1984). Here, however, there is no need to
worry about stability and the distinctness ofσi as will
be discussed in section 5. The monotonicity conditions
on Σ2(t) seem to be hard constraints. In section 6 it
will be discussed how the free choice of the bound-
ary conditions can be utilized to fulfill them. IfΣ2(t)
is restricted to be constant basically the error bound in
(Lall et al., 1998) is obtained.

5. INPUT-OUTPUT STABILITY OF TRUNCATED
REALIZATIONS

For asymptotically stabletime-invariantsystemsG, it
is well known that there exists a coordinate system
with a balanced realization, i.e. there is a constant
diagonal Gramian that fulfills

AΣ + ΣAT + BBT = 0

ΣA + ATΣ + CTC = 0.

In Theorem 1 stability is not mentioned explicitly,
still it gives predictions of input-output stability if
T → ∞. This might seem to be a contradiction
to known time-invariant results. There are examples
of truncated time-invariant balanced realizations that
loses asymptotic stability whenσr = σr+1, and have
poles on the imaginary axis, see for example (Zhou
and Doyle, 1998). However, with Lemma 1 it is seen
that those poles are unobservable or uncontrollable:

T 2
Assume the realization (1) is balanced and asymptoti-
cally stable. Then every truncated realization (4) con-
structed from removing amonotonicΣ2 is input-output
stable, and̂x1(t) is bounded.

Proof. The result will here be proven for constantΣ2.
The proof for time-varying monotonicΣ2 is essentially
the same but is a bit more technical.

For asymptotically stable and completely controllable
and observable systems (1),Σ(t) is positive definite
and bounded for allt. In Lemma 1 choose

P1 = Q1 = Σ1 = diag{σ1(t)I s1 , . . . , σN−1(t)I sN−1},
p = q = σN = 1

without loss of generality. By following the steps in
the proof of Lemma 1

d
dt
|x1 + x̂1|2Σ−1

1
+

d
dt
|x1−x̂1|2Σ1

+ 2
d
dt
|x2|2+

|y − ŷ|2 ≤ 4|u|2
(18)

is obtained. Next integrate the inequality and use the
fact the system is at rest att = 0. Also use the



inequality|a + b|2 ≥ 1
2 |a|

2 − |b|2:

1
2
|x̂1(T)|2

Σ−1
1 +Σ1

+

∫ T

0
|y − ŷ|2dt ≤

∫ T

0
4|u|2dt + 2|x1(T)|Σ−1

1 +Σ2
− 2|x2(T)|2.

If input signals of finite length in [0, τ] and finite

energy are applied, then
∫ T

0
|u|2dt ≤ K for all T ≥ τ.

From the asymptotic stability of (1):x1(T) → 0 and
x2(T) → 0 asT → ∞. Thus the left hand side of the
inequality is bounded by 4K. Notice that

∫ T

0
|y−ŷ|2dt is

increasing withT. Then it can be concluded thatx̂1(T)
is bounded for allT andŷ(t) → y(t) → 0. Thus (4) is
input-output stable.

6. NUMERICAL EXAMPLE

Here Theorem 1 will be applied on a simple time-
varying system.

E 1—T-   

The original second-order systemG has the following
realization

A(t) =

 et 1

1 2− et

 , B(t) =

1

0


C(t) =

 1 0
 , D(t) = 0,

(19)

on the intervalt ∈ [0,1]. The first step of the re-
duction is to find a suitable coordinate system. (5)-
(6) are integrated with equality, as linear matrix in-
equalities are more expensive to solve. ThenΣ(t) =

diag{σ1(t), σ2(t)} is computed, as

P(t)Q(t) = T(t)Σ2(t)T−1(t), (20)

i.e. the eigenvalues ofP(t)Q(t). It is desired that at least
σ2(t) is monotone. Here it will be made decreasing.
An ad hoc procedure to obtain this can be described as
follows: First choose a smallQ(1),

Q(1) =

 0.1 0

0 0.1

 ,
for example. Then integrate (6) backwards in time.
When Q(0) is known anyΣ(0) can be assigned, and
a correspondingP(0) can be found from (20). Then
integrate (5) forward in time. After this is done, check
if σ2(t) is decreasing. If not,Σ(0) can be increased and
the procedure repeated. Here

P(0) =

1.63 0.65

0.65 0.87

 .
solves the problem. There is no proof that this will
work in general or even generate good approxima-
tions, and there are many variations on this theme. Bet-
ter understanding and methods to obtain solutions is a
topic for future research.
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Fig. 2 The elements ofΣ(t) in Example 1.σ2(t) is decreasing.
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Fig. 3 The realization of the balanced truncated first order system
Ĝ.

The resulting elements ofΣ(t) are seen in Figure 2.
After a suitable solutionΣ(t) has been found, a balanc-
ingT(t) is calculated at time instantst, in the same way
as for time-invariant balancing, see (Zhou and Doyle,

1998). Now (A,B,C)
T−→ (Ã, B̃, C̃). The realization

(Ã11, B̃1, C̃1) is shown in Figure 3. From Theorem 1 it
is known that∥∥∥G − Ĝ

∥∥∥ ≤ 2 sup
t∈[0,1]

σ2(t) = 0.58.

To see how conservative this estimate is, the real value
of ||G − Ĝ|| can be calculated by a bisection algorithm
that involves repeated solving of time-varying Riccati
equations, see for instance (Tadmor, 1990). In this case
it is concluded that

0.057<
∥∥∥G − Ĝ

∥∥∥ < 0.058.

Thus the estimate is a factor 10 too large. To see
how well Ĝ works in practice a step response test is
performed, which is seen in Figure 4. As seen the
reduced model is very close to the original system.
Furthermore,

‖u‖2 = 1, ‖y − ŷ‖2 = 0.054

which is close to the worst possible case. It is con-
cluded that the error was overestimated, but the proce-
dure generated a fine approximation.
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Fig. 4 Step output response of original systemG and reduced
systemĜ.

7. CONCLUSIONS

Balanced truncation of time-varying systems has been
studied and an error bound for truncated realizations
was obtained. The proof was relatively direct and
also gave insight in the stability issue of truncated
models. The distinctness of the elements inΣ is not
necessary to obtain input-output stability of reduced
models. ThusΣ1 andΣ2 may have entries in common.
The bound also introduces a monotonicity condition
on Σ2(t), which gives more freedom in the search of
solutions than the bound presented in (Lallet al., 1998)
does.

How to obtain suitable solutions to the Lyapunov
inequalities in general should be further studied. To
further understand the monotonicity condition is also
of interest.

8. REFERENCES

Andersson, L. (1999):On Simplification of Models
with Uncertainty. PhD thesis, Department of Auto-
matic Control, Lund Institute of Technology, Box
118, SE-221 00 Lund, Sweden.

Beck, C., J. Doyle, and K. Glover (1996): “Model
reduction of multidimensional and uncertain sys-
tems.” IEEE Transactions on Automatic Control,
41:10, pp. 1466–1477.

Enns, D. (1984): “Model reduction with balanced real-
izations: an error bound and a frequency weighted
generalization.” InProceedings of the Confer-
ence on Decision and Control. IEEE, Las Vegas,
Nevada.

Glover, K. (1984): “All optimal hankel-norm approxi-
mations of linear multivariable systems and their
L∞-error bounds.”Int. J. Contr., 39, pp. 1115–
1193.

Lall, S., C. Beck, and G. Dullerud (1998): “Guar-
anteed error bounds for model reduction of lin-
ear time-varying systems.” InProceedings of
the American Control Conference, pp. 634–638.
Philadelphia, Pennsylvania.

Longhi, S. and G. Orlando (1999): “Balanced re-
duction of linear periodic systems.”Kybernetika,
35:6, pp. 737–751.

Rugh, W. J. (1996):Linear system theory. Prentice
Hall.

Shokoohi, S., L. Silverman, and P. van Dooren (1983):
“Linear time-variable systems: Balancing and
model reduction.”IEEE Transactions on Auto-
matic Control, 28:8, pp. 810–822.

Tadmor, G. (1990): “Input/output norms in general
linear systems.”International Journal of Control,
51:4, pp. 911–921.

Varga, A. (2000): “Balanced truncation model reduc-
tion of periodic systems.” InProceedings of 39th
Conference on Decision and Control. IEEE, Syd-
ney, Australia.

Zhou, K. and J. Doyle (1998):Essentials of Robust
Control. Prentice Hall.


