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Abstract: In this paper a Lyapunov technique is presented for the synthesis of controllers 
characterised by control signals that, for construction simplicity and/or in order to attain a 
better efficiency, may only assume a finite number of values. In particular, a design 
technique of a control law with prescribed control levels for a class of continuous-time 
SISO uncertain nonlinear systems is provided, which guarantees the tracking of a given 
reference trajectory, with a prescribed maximum error norm, a prescribed rate of 
convergence and a low switching frequency. Copyright © 2002 IFAC 
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1. INTRODUCTION  

 
The use of the traditional continuous and stationary 
feedback control laws does not allow solving the 
tracking problem for many nonlinear systems, see 
(Aeyels, 1985; Antsaklis, et al., 1995; Itkis, 1976). 
Moreover, there exist various industrial processes 
(especially power systems) that, for construction 
simplicity and/or in order to attain better efficiencies, 
may only be controlled through control signals 
assuming a finite number of different values, with a 
relatively slow switching. 
 
Systems that contain both continuous and discrete-
valued variables or signals are called hybrid systems, 
see (Antsaklis, et al., 1995). The scientific 
community interest about hybrid control laws 
synthesis is relatively recent and the recently 
published papers document how both theoretical and 
practical problems are still open, see (Sastry, 1999) 
and the rich bibliography therein. In (Nikitin, 1993; 
Nikitin, 1994; Sontag, 1990) controllers with control 
signals without constraints on their amplitude, but 
constant in prescribed intervals of time, are 
discussed. Vice-versa, in (Itkis, 1976) control laws 
are proposed with two or infinite number of levels, 
with an infinitely fast switching, see also (Khalil, 

1996; Utkin, 1992) for a detailed discussion on 
variable structure control.  
 
This paper deals with the problem of robust tracking 
control law synthesis for a class of hybrid systems, 
consisting of continuous-time SISO uncertain 
nonlinear plants, whose control inputs take value 
from a finite set. To this aim, a Lyapunov 
methodology is presented for the design of control 
laws with prescribed levels, which guarantee the 
tracking of a sufficiently regular trajectory with a 
prescribed maximum norm of the tracking error 
vector, a prescribed rate of convergence and good 
performances in terms of robustness and switching 
frequency. A numerical example illustrates the 
effectiveness of the proposed technique. 
 
 

2. PROBLEM FORMULATION AND 
PRELIMINARY RESULTS  

 
Throughout this paper, the following notation is 
used: 
 

( ) ( )[ ]Tn
n ssssD 1−= �

�

for each signal s(t)∈ ( )1−nC , 
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nnnT
P

RPRzPzzz ×∈∈= ,,  symmetric and 

positive definite (p.d.), 
 

( )=Pmaxλ maximum eigenvalue of the matrix P, 

supposed positive definite. 
 
Consider the continuous-time SISO nonlinear system 
with uncertain parameters: 

( ) ( )( ) ( )( )uyDptFyDptfy nn
n ,,,, +=  (1) 

 
where R

�
t ⊆∈  is the time variable; RUu ⊂∈  is 

the control input, which may assume a finite number 
l of different levels liUui ,,2,1, �=∈ ; Ry ∈  is the 

output to be controlled; p is the vector of m uncertain 

parameters ranging into a compact set mR⊂℘ ; F is 

a real scalar smooth function in its arguments, which 
has the following property: 
  

nR⊂∀ℵ , ℵ compact set,  
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and, analogously, f is a real scalar smooth function in 
its arguments, which has the following property: 
  

 nR⊂∀ℵ , ℵ compact set, 
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Assume that ( )⋅ŷ  is the reference trajectory and that 

( ) ( )1ˆ −∈ nCty , with a bounded n-th derivative. 

 
By imposing that:   
 

 ( ) ,ˆ, yyeeDn −==ε  (4) 

 
it is easy to verify that the state equation of the 
tracking error vector ε may be expressed in the form:  
 
 BwE −= εε�  , (5) 
 
where: 
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niRk i ,,2,1, �=∈  

[ ]TB 100 �=  (7) 
( )nT yKfFuw ˆ−−+= ε , (8) 

[ ]TnkkkkK �321= . 

 

For the error system (5)-(8), the subsequent practical 
tracking problem may be formulated.  
 
Problem 1. (Practical tracking problem) 
Given the system (1) and the reference trajectory 

( )⋅ŷ , design a control law with a finite number of 

levels, which guarantees that the tracking error is 
uniformly bounded and tends asymptotically to an 
arbitrarily small neighbourhood of the origin of the 
error space, with a rate of convergence not greater 
than a given τ , ℘∈∀p .  

 
In order to solve the Problem 1, the following 
preliminary Lemmas are introduced.  
 
Lemma 1. Consider the system (5)-(7) and assume 
that the matrix E has only eingenvalues with negative 
real part. If the signal w satisfies the inequality: 
 

{ }0,:,,0 >≤=∉∀≥ ρρεεε
P

SSvw  (9) 

 

where εPBv T=  and P is the solution of the 
Lyapunov equation 
 

.., dpQQPEPET −=+ , (10) 

 
then the error ε remains uniformly bounded and 
converges to the hyper-elli psoide S with a rate of 
convergence not greater than an exponential one 
characterised by a time constant:  
 

( )PQ 1
max2 −= λτ . (11) 

 
Moreover, the time of convergence of ε  to S is not 
greater than:  
 

tc = 
( )












ρ
ε

τ P
t0

ln , (12) 

 
where 0t  is an assumed initial instant of time.  

 
Proof. By choosing as Lyapunov function for the 
system (5): 
 

( ) 2

P
T PV εεεε ==  (13) 

 
and by using (10), it is:  
 

( ) vwQV T 2+=− εεε
�

 , (14) 

 
which, for (9) and the hypothesis of stabilit y about E, 
gives: 
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Since, see (Gantmacher, 1959): 
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it is: 
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where τ  has the expression (11). Finally, from (9) 
and from (17), the (12) easily follows. 

♦ 
 

With regard to the time constant τ , it may be 
rendered dependent only on the eigenvalues of the 
matrix E through a suitable choice of matrix Q in 
(10), as pointed out by the following:  
  
Lemma 2. If the roots nii ,,2,1, �=λ , of the 

characteristic polynomial of the matrix E: 
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are real, distinct and negative, and the matrix Q in 
(10) is chosen as: 
 

( ) 11
2 −−

Λ−= ZZQ T , (19) 

 
with the matrix Z such that:  
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then: 
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and 
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 (22) 
 
Proof. The proof is omitted due to paper space 
constraints.  

♦ 

3. CONTROL LAW SYNTHESIS  
 
The following theorem resolves the practical tracking 
problem of Section 2. 
 
Theorem 1. Consider the error system (5)-(8), 
associated to the system (1) and to the reference 
trajectory ŷ , and assume that the components of the 

vector K are chosen such that the matrix E is 
Hurwitz. The finite-valued control law: 
 

( ) UR
�

tu n →×:,ε  (23) 

 
defined as follows, Tt ∈∀ : 
 
• if S∉ε , u equal to one of the levels Uui ∈ such 

that: 
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or 
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• if S∈ε , u equal to any level Uui ∈ ,  

 
provides a signal w in (8) that satisfies the condition 
(9) of the Lemma 1 and that hence resolves the 
problem of practical tracking.  
 
Proof. The proof directly follows from Lemma 1 and 
the expression of w in (8), by the light of the 
assumptions (2) and (3), and the compactness of ℘.  

♦ 
 

Clearly, the convergence of 
P

ε  also implies the 

convergence of yye −= ˆ . If a specific bound on e is 

imposed, the following theorem may be used.  
 
Theorem 2. In order to obtain that the tracking error 

yye −= ˆ  fulfils the condition ee ≤ , the value of 

ρ  in the control law has to be equal to: 

 

ip

e

11

=ρ , (26) 

 

where ip11  is the (1,1) element of the matrix 1−P . 

 

Proof. Let ε  be the tracking error vector when 

ee = . Taking into account that εεε PT
P

=2
, with 

the intention of having ee ≤ , it is necessary that: 
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where the question marks denote elements which, for 
the purpose of the proof, do not need to be specified.  
 
From (28) follows: 
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and therefore: 
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After all:  
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which gives the (26). 

♦ 
 
Remark 1. Note that by virtue of (2), (3), (11), (17), 
(24) and (25), the needed maximum and minimum 
levels of u depend on the reference trajectory ( )tŷ  

and its first n derivatives, on ( )0tε  and on the 

required velocity of convergence.  
 
Remark 2. The error bound ρ may be chosen as low 
as one would desire. Nevertheless, if the value of ρ is 
decreased, the error ε tends to exit from the region S 
in less time. This implies that the average switching 
frequency of the control increases till it becomes 
prohibitive from a realisation point of view.  
 
Remark 3. When S∈ε , in order to reduce the 
switching frequency among the control levels, it may 
be chosen as control u the closest level, among the 
available ones, to the nominal control value 
calculated on the base of the nominal knowledge of 
the parameters p. In the case where this information 

is not available, the last level assumed on the 
boundary of S may be selected and initially, if 

( ) St ∈0ε , the null l evel. 

 
Remark 4. In principle, the conditions (24)-(25) of 
the Theorem 1 are fulfill ed by using, of the available 
levels, the maximum and the minimum levels only. 
The intermediate levels are not indispensable for the 
reference trajectory tracking, but they are useful for 
alleviating the average switching frequency. Indeed, 
by adopting the strategy of selecting the closest level 
which satisfies the (24)-(25), the escaping velocity of 
ε from S diminishes and therefore also the switching 
frequency.  
 
Remark 5. On the basis of Lemma 2, if the vector K 
in (24)-(25) is suitably chosen,  it is possible to 
obtain any prescribed maximum rate of convergence 
τ  of ε.  
 
Remark 6. If the system (1) is linear: 

( ) ( ) upypypy n
n

n
01

1 +−−−= − �  (32) 

and ℘⊆ Rn+1 is an hyper-rectangle, then the 
maximum and minimum values in (24) and (25) are 
attained in correspondence of one of the vertices of 
℘, see (Celentano, et al., 1993). 
 
Remark 7. In practice, the control law (24)-(25) may 
be easily implemented by digital computers. To this 
end it is necessary to have at one’s disposal the 
signals y and its first n-1 derivatives and the sign of 
F. Nevertheless, because of the inequaliti es in 
Theorem 1, with the increase of the sampling period 
and of the I/O and elaboration delays, the term vw  in 

the Lyapunov function derivative V�− , defined in 
equation (14), diminishes S∉∀ε , in general, and 
consequently the actual rate of convergence of the 
tracking error vector increases until the system 
becomes unstable.  
 
Remark 8. If the matrix P is chosen as in Lemma 2, 
taking into account the (21), the value of ρ in (26), 
which allows having ee ≤ , becomes: 

 

n

e=ρ   . (33) 

 
 

4. EXAMPLE  
 
Consider the uncertain system:  
 

upypypy 012 +−−= ���  (34) 

 
with ( ) ( ) ,0,0,1 000 ==−= ttyty � and the reference 

trajectory: 
 

( ) ( )tty cosˆ = . (35) 



     

By choosing 2,1 21 −=−= λλ , it is consequently: 
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and finally, by virtue of Theorem 1: 

 
• if S∉ε , u equal to one of the levels 

Uui ∈ such that: 
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• if S∈ε , u equal to any level Uui ∈  (see 

Remark 3). 
 
Suppose that the parameters 10 , pp and 2p  are 

unitary and known. In the hypothesis that: 
 

 e =  0.2,  
 U ={ }5.1,1,5.0,0,5.0,1,5.1 +++−−− , 

 
the reference trajectory and the obtained control u 
and output y are reported in Fig. 1 . The error phase-
plane trajectory is shown in Fig. 2 .  
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Fig. 1. The output y (solid line), the reference 

trajectory ŷ (dash-dotted line), and the finite-

valued control u. 
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Fig. 2. The error trajectory in the phase plane.  
 
Vice versa, supposing that a realisation of the 
uncertain parameters is:  
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and that the control law designer only knows an 
estimate of the belonging set ℘, in the hypothesis 
that: 
 
case a 
 
 e = 0.2,  
 U ={ }5.1,0.1,5.0,0,5.0,0.1,5.1 +++−−− , 

 [ ]1.1,9.02 ∈p , [ ]1.1,9.01 ∈p , [ ]1.1,9.00 ∈p , 

 
the control u and the output y that are obtained are 
reported in Fig. 3. 
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Fig. 3. The output y (solid line), the reference 

trajectory ŷ (dash-dotted line), and the finite-

valued control u.  



     

case b (a reduced number of control levels) 
 
 e = 0.2,  
 U ={ }5.1,0,5.1 +− , 

 [ ]1.1,9.02 ∈p , [ ]1.1,9.01 ∈p , [ ]1.1,9.00 ∈p , 

 
the control u and the output y that are obtained are 
reported in Fig. 4. 
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Fig. 4. The output y (solid line), the reference 
trajectory ŷ (dash-dotted line), and the finite-

valued control u.  
 
case c (a reduced maximum error, larger control 
levels and larger amount of uncertainty on the 
parameters) 
 
 e = 0.1,  
 U ={ }2,0,2− , 

 [ ]3.1,7.02 ∈p , [ ]3.1,7.01 ∈p , [ ]3.1,7.00 ∈p , 

 
the control u and the output y that are obtained are 
reported in Fig. 5. 
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Fig. 5. The output y (solid line), the reference 
trajectory ŷ (dash-dotted line), and the finite-

valued control u.  
 
 

5. CONCLUSIONS  
 
In this paper a Lyapunov methodology has been 
presented for the design of control laws with 
prescribed finite values for a class of uncertain 
nonlinear SISO systems. In particular, the necessary 
theoretical results have been provided for the 
solution of a practical tracking problem, guaranteeing 
the tracking of a suff iciently regular trajectory, with a 
prescribed maximum tracking error, a prescribed 
convergence velocity and good performances in 
terms of robustness and switching frequency. A 
numerical example has ill ustrated the applicabilit y of 
the technique.   
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