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Abstract: An LQ optimal tracker will achieve zero tracking error when the input
penalty is removed. However, the problem becomes singular, and a solution hides
behind several coordination transformations. We will highlight a discrete time
version of this singular LQ optimization. We will also present data-based formulas
to design this optimal tracker at the absence of a parametric plant model. We
will show that numerical formulas which use input and output data from open-
loop system tests are constructed in the way as to eliminate the need for explicit
knowledge of plant model parameters. Copyright c© 2002 IFAC
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1. INTRODUCTION

In many control system synthesis, it is often desir-
able to have the system output follows certain ref-
erence signal. Normally, this synthesis will involve
change of system poles through feedback designs
and also change in system zeros through feedfor-
ward compensations. Moreover, explicit knowl-
edge of a parametric plant model must first be esti-
mated, often from input and output data through
system identification processes (Åström and Wit-
tenmark, 1989; Ljung, 1987). However, by per-
forming the model estimation and the controller
design in two separate steps, we have complicated
the whole task considerably. It is also true that
”identification and control are often performed with
independent, and possibly noncoherent, working
criteria, hence necessitates a complicate joint de-
sign process to reach an acceptable final design”
(Gevers, 1983).

Recently, Chan (1995a, 1995b, 1994) has achieved
data-based synthesis of signal trackers that totally
obviate the need for explicit knowledge of plant
model parameters. However, these methods re-
quires that the system is open-loop stable, and
the designs are not optimal.

On the other hand, data-based formulas that en-
ables linear LQ regulator design with unknown
plant model has also been developed (Chan, 1996;
Chan, 2000). In this work, we extend the previ-
ous data-based LQR formulations for an optimal
signal tracker design.

The proposed LQ tracker design different from the
data-based LQR synthesis in three folds. First,
the output penalty of the LQR synthesis is re-
placed with the tracking error penalty. Also, be-
cause an exact signal tracking is sought, penalty
in the control input is set to zero. However, set-
ting the control input penalty to zero causes the
optimization problem to become singular. In or-
der to resolve the difficulties, several mathematical
transformations are proposed for continuous time
systems (Kelly, 1964; Goh, 1967; Speyer, 1971; Ja-
cobson, 1971; Moore, 1971), and later for discrete
time systems as well (Chan, 1986). The proce-
dure leading to the minimization of this new func-
tional is termed singular linear quadratic (SLQ)
optimization. In this paper, a discrete-time SLQ
optimization is highlighted. Secondly, omitting
the input penalty also generates numerical diffi-
culty for the data-based LQ synthesis, when the
plant is inverse unstable. Resolving this numeri-
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cal problem will require modifications to the pre-
vious data-based LQ formulas. Thirdly, construc-
tion of a data-based signal tracking pre-filter will
be added. This data-based pre-filter will achieve
perfect signal tracking in finite time.

2. LQ TRACKER FOR SISO DISCRETE
SYSTEMS

2.1 The singular LQ formulation.

Consider the following SISO discrete system:

x(k + 1) = Ax(k) +Bu(k), y(k) = Cx(k) (1)

where y is the output, u is the input, x is a n× 1
state vector and A, B and C are constant matri-
ces. We seek a signal tracker design by minimizing,
with respect to the control input u and subject to
the constraint equations (1), a cost functional

J =
1
2

∑p

k=0
(yf (k)− y(k))2 (2)

where yf (k) is the signal to be tracked and p is the
final time. Note that we have set the tracking error
penalty to unity and omitted the control penalty
from the standard LQ formulation, in order to
fully exploit the control input resources available
to perfect the signal tracking performance.

However, the Euler-Lagrange equations for this
functional becomes linear in u(k), and will yield no
information on the optimal u(k). In other words,
the problem is singular. The difficulty can be re-
solved through mathematical transformations on
the defined problem, a highlight of this technique
is quoted from Chan (1986) as follows.

2.2 Highlights of a discrete SLQ optimization.

Introduce the following change of variable trans-
formation for q = 1, 2, · · · (Chan, 1986):

uq(k) = uq−1(k − 1), Bq = AqB, Eq = CTCBq−1,

Rq = (CBq−1)2, xq(k) = xq−1(k)−Bq−1uq(k)

where x0(k) = x(k), u0(k) = u(k) and B0 = B.
Then, the plant dynamics will be transformed into

xq(k + 1) = A∗xq(k) +Bqu∗(k), (3)

and the transformed cost functional becomes

J =
1
2

∑p

k=0

(
xq(k)TQ∗xq(k) + u∗(k)2Rq

)
(4)

where

A∗ = A−BqR−1
q E

T
q , Q∗ = CTC − EqR−1

q E
T
q

and
u∗(k) = uq(k) +R−1

q E
T
q xq(k).

The transformed J will be quadratic in u∗, and the
problem is reduced to a standard LQ formulation,
when CBq−1 �= 0 for some q > 0. This value
of q is then called the order of singularity of the
formulation. For single variable systems, this q
equals the relative order of the z-domain transfer
function C(zI −A)−1B (Chan, 1986).

However, the transformed system is not control-
lable, and the existence of a steady state solution
is not ensured. To resolve the difficulties, an order
reduction transformation is introduced as follows:

xq(k) = Ω
[
xr(k)
xd(k)

]
, Ω = [ Φ1 Φ2 ] (5)

where Φ2 = [Bq−1 · · · B1 B ] and Φ1 is a n×
(n− q) matrix which makes Ω full rank. Also, the
dimension of xr is n− q and that of xd is q.

It can shown that xd corresponds to the q uncon-
trollable null poles of xq. Moreover, the following
independent dynamics of xr and the associating
reduced order LQ problem are defined:

xr(k + 1) = Arxr(k) +Brur(k) (6)

and

Jr =
1
2

∑p

k=0

(
xr(k)TQrxr(k) + ur(k)2Rq

)
(7)

where

ur(k) = uq(k) +R−1
q E

T
q Φ1xr(k) = u∗(k),

Ar = ΨA∗Φ1, Qr = ΦT1Q∗Φ, Br = Ψ1Bq

and Ψ is the upper n− q rows of Ω−1. Then, the
reduced matrix pair, (Ar, Br), is controllable, and
a steady state LQ solution is ensured (Chan, 1986).

2.3 The controller structure and the closed-loop
system of a SLQ optimization

By solving the LQ problem of xr and transform
the solution back to space of x, we obtain the fol-
lowing steady state SLQ control law:

u(k) = −Kx(k) + F
{
yf (k)

}
(8)

where K is an 1 × n constant feedback gain and
F{} is a dynamic filtering on yf (k).

In general, the closed-loop system of (8) will be

y(z) = h̄cl(z)r̄(z)

where r̄(z) is the Z-transform of F
{
yf (k)

}
and

h̄cl(z) = C(zI −A+BK)−1B.

For SISO systems, we also have Qr = 0 and

|zI −Ar| × bq = b(z) =
∣∣∣∣ zI −A −B
C 0

∣∣∣∣ , bq ∈ R.
Consequently, if we decompose b(z) into a real
gain bq, a monic and Hurwitz portion b∗(z) and



another monic portion, b◦(z), which contains only
unstable roots, then the following property of h̄cl(z)
is obtained from a symmetrical root locus analysis
(Vaughan, 1975)

h̄cl(z) =
b(z)

zqb◦(z)b∗(z)
=
bqb◦(z)
zqb◦(z)

(9)

where b◦(z) is a Hurwitz polynomial derived from
b◦(z) by inverting all of its roots. In addition, the
factor, zq, in the denominator corresponds to the
q null poles of xd. The presence of this factor also
indicates that this is a true SLQ result. However,
unlike a continuous SLQ optimization, in which a
true SLQ result would resort to bang-bang type
control laws, a finite feedback gain is maintained
in a discrete SLQ solution (Chan, 1986).

The following dynamics of the feedforward filter
also result from the SLQ optimization:

r̄(z) =
ȳf (z)
zqh̄cl(z)

=
b◦(z)
bqb◦(z)

ȳf (z), (10)

or

F
{
yf (k)

}
= Z−1

{ b◦(z)
bqb◦(z)

ȳf (z)
}

(11)

where Z−1
{ }

denotes the inverse z-transform. As
a result, a perfect signal tracking is obtained.

When the plant is of minimum phase, we will have
b◦(z) = b◦(z) = 1; hence, F

{
yf (k)

}
= b−1

q yf (k)
for all k. In this case, signal tracking will be
achieved in q steps. For nonminimum phase plants,
(11) defines an unstable filtering of yf (k). In order
to implement this filter, a finite-horizon reversed-
time filtering technique (Chan, 1986) can be used.
In this case, future values of yf (k) are needed and
the signal tracking will be achieved asymptotically.

3 DATA-BASED SYNTHESIS OF THE
SLQ OPTIMAL DESIGN

3.1 Foreword.

We can see from (8) that a SLQ design consists
of two parts: feedback regulator, −Kx(k), and
feedforward tracker, F{yf (k)}. The state feed-
back portion can be realized with the following
output feedback design (Chan, 1996):

ū(z) = − f(z)
g(z)

ȳ(z) +
zm

g(z)
r̄f (z), (12)

f(z) =
m∑
i=0

fiz
m−i, g(z) = zm +

m∑
i=1

giz
m−i

where ū(z), ȳ(z) and r̄f (z) are the z-transforms of
{u(k)}, {y(k)} and F{yf (k)}, and fi and gi are
real constants to be computed as follows:

[ g1 · · · gm f0 · · · fm ]

= − [uslq(1) · · · uslq(k) ]W [WTW ]−1
(13)

where

W =




uslq(0) · · · uslq(−m)
...

uslq(k− 1) · · · uslq(k−m)

yslq(1) · · · yslq(1−m)
...

yslq(k) · · · yslq(k−m)


 .

Note that k is some integer larger than 2m+1, and
uslq(k) and yslq(k) are the output response and the
input response of the SLQ closed-loop system to
an unit pulse command. Moreover, the closed-loop
stability of this design is ensured, if the following
criterion is satisfied (Chan, 1996):

ξ =
k

max
k=1

∥∥ ε(k)∥∥ < 1 (14)

where {ε(k)} is the discrete Fourier transform of
the sequence {e(k)}, defined as follows:

[ e(1) · · · e(k) ]

= [uslq(1) · · · uslq(k) ]

×
[
I +W [WTW ]−1WT

]
.

(15)

This criterion is used in designs using trail values
of m, a procedure that is necessary due to the
absence of a parametric plant model.

We can see that neither (13) nor (14) involve ex-
plicit knowledge of the plant model. However,
implementation of (13) and (14) requires data of
uslq(k) and yslq(k). In the absence of a system
model, these data are prepared from open-loop
plant test response through data-based computa-
tions. For LQR designs, formulas for this compu-
tation has been developed (Chan, 1996). For the
SLQ synthesis, modifications to data-based LQR
formulas are essential to cope for the missing of
input penalty in SLQ optimization. The modi-
fied formulas for a data-based SLQ computation
is shown in Section 3.2. The other unique fea-
ture of this work, a data-based version of the SLQ
tracker design then follows, in Section 3.3.

3.2 Data-based SLQ computation.

Let the input and the output data of an plant test
be denoted as {rc(k)} and {yc(k)}, respectively.
Then, data of {uslq(k)} and {yslq(k)} can be com-
puted from {rc(k)} and {yc(k)} as follows:


uslq(1)

...
uslq(k)


 = −

(
HTH

)−1

HT



h(2)

...
h(p)


 (16a)

and 

yslq(1)

...
yslq(k)


 = Pk




uslq(0)
...

uslq(k− 1)


 (16b)



where k < p−1 for both equations and uslq(0) = 1
for (16b). In addition,

H =




h(1) h(2− k)
...

...
h(p− 1) · · · h(p− k)


 ,



h(1)

...
h(p)


 =




rc(0)
...

. . .
rc(p− 1) · · · rc(0)



−1 


yc(1)

...
yc(p)




and Pk is a subscript dependent square convolu-
tion matrix of {h(k)} defined as follows:

Pl =



h(1)

...
. . .

h(l) · · · h(1)


 , l = 1, 2, 3 · · · .

Equation (16a) is derived from modification of a
data-based LQR formula (Chan, 1996) in which(
HTH

)−1 takes on a general form
(
qPTp Pp+rI

)−1

where r > 0 and q ≥ 0 are scalars, I is an identity
matrix and Pp is the Pl at l = p. Besides setting
r = 0 and q = 1, the key point in modifying the
LQR formulation into (16a) is the omission of the
last p − 1 − k columns from Pp. This arrange-
ment is equivalent to forcing uslq(k) to vanish for
all k > k, an arrangement that is necessary to
make (16a) valid for nonminimum phase systems
where an unrestricted SLQ solution, the inverse of
a square Pp, will grow indefinitely with p. More-
over, the existence of

(
HTH

)−1 is ensured even if
the first few h(k) are zero. As a result, the for-
mula is applicable for systems with an arbitrary
(and unknown) relative order.

3.3 Data-based SLQ tracker design

A data-based SLQ feedforward tracker is synthe-
sized here. This synthesis will use the SLQ re-
sponse data computed in Section 3.2.

From (14), we have

Z
{
F

{
yf (k)

}}
=

1
zq h̄cl(z)

ȳf (z). (17)

Denote b◦(z) = (z−γ◦1 ) · · · (z−γ◦ ) for some % ≤ q,
then we also infer from (13) that

1
z−q h̄cl(z−1)

=

∏
i=1

1
z − 1

γ◦
i

bq
∏
i=1

1
z − γ◦i

=
1
d2
zq h̄cl(z) (18)

where
d = bq × γ◦1 × · · · × γ◦ .

These equations indicate that the reversed-time
transfer function of F

{
yf (k)

}
is proportional to

h̄cl(z). In addition, {yslq(k)} is in fact a time se-
quence of h̄cl(z). As a result, if we denote rf (k) as
the filtered sequence of F{yf (k)} and yslq(q) the
first nonzero data of {yslq(k)}, then the following
reversed-time convolution formula is inferred:

rf (k) =
1
d2

∑∞

i=0
yslq(q + i)yf (k + i). (19)

Also, the constant d can be computed as follows:

d = ‖ h̄cl(z) ‖z=1 =
∑∞

k=0
yslq(k). (20)

In practice, yslq(k) will become negligible for all
k > k. Hence, a finite-horizon implementation of
(19) may be formulated as follows:

rf (k) =
1
d2

∑k

i=0
yslq(q + i)yf (k + i). (21)

Note that (21) is applicable also for minimum phase
systems. In that case, we have yslq(k) = 0 for all
k �= q; hence, rf (k) = yf (k)/yslq(q).

It is also possible to rewrite (21) into as follows:

rf (k) =
1
d2

∑k

i=0
yslq(q + i)yf (k + i+ q). (22)

This is equivalent to multiply (10) with zq, making
F{yf (k)} a noncausal filter. In (22), future val-
ues of yf (k) are required even if the system is of
minimum phase. However, the design will be ben-
efited in that a steady-state signal-tracking will be
achieved without time delay. In addition, an esti-
mate of q is obtained from the first nonzero h(k).

4. A DESIGN EXAMPLE

The proposed method is tested on an example
plant defined by the following open-loop transfer
function:

h̄ol(z) =
z2 + 1.1z + 1.25

z4 + 0.9z3 + 0.8z2 + 0.7z + 0.6
.

We assume that h̄ol(z) is not explicitly known.

The plant response to rc(k) ≡ 1 is generated. A
set of {yc(k)} up to p = 200 is collected. A set of
{uslq(k)} and a set of {yslq(k)} are then computed
from (16a) and (16b), with k = 120.

A trial process for the computation of fi and gi
has the following results:

m = 1 2 3
ξ = 2.95 1.27 0

Obviously, a third order controller is the solution;
its parameters are as follows:

f(z) = −0.1159z3 + 0.0954z2 + 0.04z + 0.3708

and

g(z) = z3 − 0.02z2 + 0.1339z − 0.7724.

This set of {uslq(k)} and f(z) and g(z) match a
model-based design using MATLAB.



A test with noisy data is also included by injecting
into the data of {yc(k)} an unbiased and pseudo-
random noise; the root-mean-square noise-to-signal
ratio of the data is 1.2%. Following the same pro-
cedure of the noise free test, the following results
are obtained from a trial process for the computa-
tion of fi and gi:

m = 1 2 3
ξ = 1.67 116 0.04

Note that the presence of data noise causes ξ �= 0
even at m = 3. However, an abrupt drop in ξ is
still evident at m = 3. As a result, the following
3rd order controller is chosen:

f(z) = −0.1202z3 + 0.0973z2 + 0.0429 + 0.368

and

g(z) = z3 − 0.0223z2 + 0.1364z − 0.7709.

It is also observed that data of {yslq(k)} decays
down to the noise level for k > 60. As a result, the
following signal-tracking SLQ controller is formed:

u(k) = 0.0223u(k − 1)− 0.1364u(k − 2)

+ 0.7709u(k − 3)− 0.1202y(k)

+ 0.0973y(k − 1) + 0.0429y(k − 2)

+ 0.368y(k − 3) +
1
d2

60∑
i=0

yslq(i+ 1)yf (k + i)

and
d =

∑60

l=1
hcl(l).

The result of the noisy data test is verified through
a closed-loop simulation with yf (k) = sin(0.1k).
The result shows a maximum tracking error of less
than 2% and a root-mean-square tracking error of
less than 0.35%. These results are quite encourag-
ing, in view of the fact that the row data used in
the controller design has a noise-to-signal ratio of
1.2%. A finite and bounded control input is also
recorded, with maxk ‖u(k) ‖ < 1.2.

5. CONCLUDING REMARKS

A method for computing a discrete time SLQ out-
put tracking controller for single variable systems
has been presented. In this method, the controller
is computed directly from input and output data
from an open-loop system test in such a way that

explicit identification of plant model parameters
becomes unnecessary. As a result, SLQ tracker
design and open-loop system testing can be com-
bined into one procedure; thereby, greatly reduc-
ing the effort and the time spent for the task.
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