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Abstract: We address the problem of state estimation in linear time invariant systems when the
measurements are subject to unknown random delays. In cases where the measurements are
“time stamped” the delays can be computed on-line. In such cases, the estimation problem
reduces to a standard Kalman Filtering problem. Here we will study the more challenging
case when the measurements are not time stamped. We show that the latter case can be
formulated as an errors in variables problem.
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1. INTRODUCTION

The standard formulation of the linear state estimation
problem assumes that the measurements arrive having
a known fixed delay. This case has an elegant solution
via the Kalman filter (Anderson and Moore, 1979).
Here, we will consider the more challenging case
where the measurements suffer an unknown random
delay. We assume throughout that synchronous sam-
pling is used and that data arriving between sampling
intervals is buffered until the next clock pulse. This
allows us to use a discrete formulation. Under these
conditions it is straightforward to extend the standard
Kalman filter to the case when the data experiences
a random delay provided the data is “time stamped”.
Essentially all one needs to do to cover this case is
to set up a delay line which covers all possible de-
lays (assuming, of course, that there exists a known
upper bound on the delay). When processing a given
measurement on arrival, one canread the time-stamp
and assign the appropriate entry to theC in the delay
chain read-out. To explain this idea more fully, say that
the known upper bound on the delay isL sampling
periods. The system model is taken to be

x [k + 1] = Ax [k] + Bu [k] + w [k] (1)

y[k] = Cx[k − d] + υ[k] (2)

whereu [k] , w [k] , υ [k] denote the known system
input, process noise and measurement noise respec-

tively. The process and measurement noise have zero
mean and covariance matricesΓv, andΓw respectively.
In the sequel we takeu[k] = 0 for simplicity in the
presentation. Comments are made regarding the case
u[k] �= 0 later. To account for variable delay,d, we
write the model as:

z [k + 1] = Az [k] + e [k]

y [k] = C [k] z [k] + v [k] (3)

A =


A 0 · · · 0

I 0 · · · 0

0
. . . · · · 0

0 · · · I 0

 ∈ R
n×n; (4)

e [k] =


I

0
...
0

 w [k] = Gw [k] (5)

C [k] = C
[
α0 [k] I · · · αL [k] I

] ∈ R
1×n (6)

andn = no (L + 1) whereno is dimension of the
original statex [k]. Notice that we setαi [k] = 0 for
i = 0, . . . , L save forαd [k] = 1 if we know that the
sampley [k] has experienced a ‘d’ sample delay. The
latter information can be readily determined from time
stamped data. Note that the state estimation problem
is then a standard (time-varying) Kalman filtering
problem (Anderson and Moore, 1979).

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain



Here, we will examine the case when the data is
not time-stamped and can experience nondeterminis-
tic delays. One potential application of these ideas is to
process control where the “sampling system” for some
process variables requires the use of off-line analyzers
which can lead to random delays in the measurements.
Another potential application is to Networked Control
Systems where the data is transmitted over a com-
munication network. Due to the asynchronous time-
division multiplexing of common network protocols,
time varying and possibly stochastic delays are in-
troduced in the control system. (See (Branicky and
Zhang, 2000; Chan and̋Ozgűner, 1995; Hong, 1995;
Kaplan, 2001; Krtolica and Liubakka, 1990; Luck and
Ray, 1990; Nilsson and Wittenmark, 1998; Ray, 1987;
Walsh and Bushnell, 1999; Bushnell, 2001; Nair and
Evans, 2000)). Our formulation is relevant to the case
of random delays between sensors and controller.

There are many ways that one could formulate the
estimation problem where data is subject to random
delays. For example, if the delays themselves sat-
isfy a discrete time Markov model, then one could
set this up as a Hidden Markov Model estimation
problem (Krtolica and Liubakka, 1990). The approach
that we adopt will be based on “Errors in Variables”
or “Total Least Squares” (Van Huffel and Vande-
walle, 1991; De Moor, 1993; Golub and Loan, 1980).
It is known, that such methods do not readily lend
themselves to recursive solutions. We will thus adopt
a “receding horizon” approach (Muske K. R. and
Lee, 1993; Michalska and D.Q.Mayne, 1995; Rao and
Lee, 2001) in which the data is processed in blocks.
Thus, if we consider the situation at timek, we have
accumulated data in the time interval [k − N, k] and
this data block will be used to generate the estimate we
need. The reason for using a fixed block length for the
errors in variables analysis is to constrain the “size” of
the associated computational problem.

2. REPARAMETERIZATION OF THE PROBLEM

Equation (3) represents a set of constraints for our
estimation problem. This constraint can be written in
matrix form as follows (for simplicity, in this paper,
we only treat the scalar observation case):

Y = Mθ1 + η (7)

where

Y =



y [0]
0

y [1]
0

y [2]
...

y [N]
0


∈ R

(no+1)(N+1) (8)

M =



C [0] 0 0 0 0 · · · 0 0

−GT A GT 0 0 0 · · · 0 0

0 C [1] 0 0 0 · · · 0 0

0 −GT A GT 0 0 · · · 0 0

0 0 C [2] 0 0 · · · 0 0
...

...
...

...
...

. . .
...

...
0 0 0 0 0 · · · C [N] 0

0 0 0 0 0 · · · −GT A GT


∈ R

(no+1)(N+1)×n(N+2) (9)

θ1 =


z [0]

...
z [N]

z [N + 1]

 ∈ R
n(N+2) (10)

η =



v [0]
w [0]
v [1]
w [1]
v [2]

...
v [N]
w [N]


(11)

whereη has zero mean and known covarianceΓ (we
assume for simplicity that bothw [k] and v [k] are
stationary i.i.d sequences).

Remark 1. In the above definition ofθ1 there is sub-
stantial redundancy. In fact, we can write

θ1 = L1θo
1 (12)

where

θo
1 =



x[−L]
...

x[0]
x[1]

...
x[N + 1]


∈ R

no(N+L+2)

L1 =

N+1∑
k=0

L∑
l=0

no∑
m=1

e
n(N+2)
kn+lno+m

(
e

no(N+L+2)
(L−l)no+kno+m

)T

(13)
andei

j is thejth column of ani × i identity matrix.

When the sequence {C [k]} is known, i.e., when the
matrix M is known, then the Best Linear Unbiased
Estimate (BLUE) ofθo

1 is

θ̂o
1 =

[
LT

1MT Γ−1ML1

]−1 [
LT

1MT Γ−1Y
]

(14)

Indeed, it can be readily shown that this estimate
corresponds precisely to the Kalman filter solution
(De Moor, 1993). Our interest here, however, focuses
on the case whereM is not known exactly. In this case,
the elements ofM are themselves random variables
with some known mean value (which we take to be
a “pseudo measurement”) and some known covari-
ance structure. In this case, we see that the estimation



problem implicit in equation (7) is in the form of an
Errors in Variables problem (Van Huffel and Vande-
walle, 1991), since bothY andM are measured with
errors. The idea of using Errors in Variables methods
for Kalman filtering problems where the model (i.e.,
[C, A]) contains errors has been previously discussed
in (De Moor, 1993) where a first-order state space
system was analyzed. Novel aspects of our problem
are the physical motivation via delayed measurements
and the implications this has on the special structure
of the system matrices and the error covariance struc-
ture associated with the Total Least Square problem.
Indeed, this leads to the class of problems referred to
as Structured Total Least Squares (STLS). These key
aspects will be further developed in the next section.

3. THE STLS PROBLEM

We next recast our estimation problem as a STLS
problem. To do that, let

θ =

[
−1

θ1

]
∈ R

n(N+2)+1

Φ =
[
Y M

]
(15)

Since, as seen in equations (6) and (9),M (henceΦ)
depends on values of{α [k]}

L
i=0 which are not avail-

able, we will instead, use “pseudo measurements”,
based on their mean values{ᾱi = E{αi}}. The calcu-
lation of these means, as well as the covariance matrix
of {α [k]}

L
i=0 is described in the Appendix.

We are ready now to formulate the optimization prob-
lem as that of minimizing

J =

N∑
k=0

Γ−1
v (y [k] − ŷ [k])

2
+ (α − α̂ [k])

T

Γ−1
α (α − α̂ [k]) + ŵ [k]

T
Γ−1
w ŵ [k] (16)

with respect to{ŷ [k] , α̂ [k] , ŵ [k]}
N
k=0 andθ̂, subject

to the constraints
Φ̂θ̂ = 0 (17)(

e
n(N+2)+1
1

)T

θ̂ + 1 = 0 (18)

Note that (18) constrains the first entry ofθ̂ to be
nonzero. We also impose other structural constraints
implicit in the wayΦ̂ depends on{ŷ [k] , α̂ [k] , ŵ [k]}

N
k=0.

To make this dependence concrete, let us define the
following set of matrices:

By [k] = e
(no+1)(N+1)
k(no+1)+1

(
e

n(N+2)+1
1

)T

(19)

Bi
w [k] = e

(no+1)(N+1)
k(no+1)+1+i

(
e

n(N+2)+1
1

)T

(20)

Bl
α [k] = e

(no+1)(N+1)
k(no+1)+1 C

n0∑
r=1

eno
r

(
e

n(N+2)+1
1+kn+r+nol

)T

(21)

and

Φo =



0 0 0 0 · · · 0

0 −GT A GT 0 · · · 0

0 0 0 0 · · · 0

0 0 −GT A GT · · · 0

0 0 0 0 · · · 0

0 0 0 −GT A · · · 0
...

...
...

...
. . .

...
0 0 0 0 −GT A GT


(22)

It can then be shown using (5)-(9), (15) and (19)-(21)
that:

Φ = Φo +

N∑
k=0

[
y [k] By [k] +

L∑
l=0

ᾱl [k] Bl
α [k]

]
(23)

The structural constraint we impose onΦ̂ is expressed
as:

Φ̂ = Φo +

N∑
k=0

[
ŷ [k] By [k] +

n0∑
i=1

(ŵ [k])i Bi
w [k]

+

L∑
l=0

α̂l [k] Bl
α [k]

]
(24)

In summary, our optimization problem is described by
equations (16)-(18) and (24). We note that the struc-
tural constrained does not fully utilize the prior infor-
mation. Specifically, the fact thatα[k], for everyk, has
at most one entry equal to one and all other entries are
zero is not used. An attempt to impose this prior as
well, would lead to a mixed integer-continuous, op-
timization problem which would be computationally
formidable. Instead, we relax the problem by treating
α[k] as an i.i.d. sequence with meanα and covariance
Γα. This will give a superior result to that obtained via
a traditional Kalman filter with the choiceα[k] equal
to the nominal value. However, it will be inferior to
incorporating the full structure ofα[k].

4. SOLUTION OF THE STLS PROBLEM

Different methods have been proposed in the litera-
ture to solve theSTLS optimization problem outlined
above: Structured Total Least Norm (STLN), Rieman-
nian Singular Value Decomposition (RiSVD), Con-
strained Total Least Squares (CTLS). TheSTLN ap-
proach solves the problem as a nonlinear constrained
optimization problem (Van Huffel and Lemmerlimg,
2002). The other two approaches first transform the
problem into an equivalent form prior to solving it.
TheRiSVD transforms the nonlinear constrained op-
timization problem into an algebraic non-linear prob-
lem called The Riemannian singular value problem.
The CTLS approach transforms the problem into a
nonlinear unconstrained problem. The latter approach
is the one used in this paper. The details are given in
the following theorem:



Theorem 1. The non-linear constrained optimization
problem (16)-(18) and (24) can be transformed into
the following non-linear unconstrained optimization
problem:

min

[
−1

θ̂o
1

]T

LT
2ΦTD−1

θ

(
L2

[
−1

θ̂o
1

])
ΦL2

[
−1

θ̂o
1

]
(25)

Proof. The proof of this theorem follows the same
general line as that presented in (Lemmerling, 1999).

Using Lagrange multipliersΛ andλ we introduce the
following cost:

L = J + 2ΛT Φ̂θ̂ + 2λ

((
e

n(N+2)+1
1

)T

θ̂ + 1

)
whereJ is as in (16). The necessary conditions for a
constrained minimum ofJ are then:

∂L
∂ŷ [k]

= 0 ⇒ ŷ [k] = y [k] − ΓvΛTBy [k] θ̂ (26)

∂L
∂α̂l [k]

= 0 ⇒ α̂ [k] = ᾱ [k] − Γα


ΛTB0

α [k] θ̂

ΛTB1
α [k] θ̂
...

ΛTBL
α [k] θ̂


(27)

∂L
∂ (ŵ [k])i

= 0 ⇒ ŵ [k] = −Γw


ΛTB1

w [k] θ̂

ΛTB2
w [k] θ̂
...

ΛT Bn0
w [k] θ̂


(28)

∂L
∂θ̂

= 0 ⇒ Φ̂T Λ + λe
(N+2)n+1
1 = 0 (29)

together with equations (17) and (18). Premultiplying
(29) by θ̂T and using equations (17) and (18) we
immediately conclude that

λ = 0 (30)

From (17), (24), and (26)-(28) we have

Φ̂θ̂ =

Φo +

N∑
k=0


(
y [k] − ΓvΛT By [k] θ̂

)
By [k]

−

n0∑
i=1

(en
i )

T
Γw


ΛT B1

w [k] θ̂

ΛT B2
w [k] θ̂
...

ΛTBn0
w [k] θ̂

Bi
w [k] +

L∑
l=0

ᾱl [k}

−
(
eL+1

l+1

)T
Γα


ΛTB0

α [k] θ̂

ΛTB1
α [k] θ̂
...

ΛTBL
α [k] θ̂


 Bl

α [k]


 θ̂

= 0

Then, using equation 23:

Φθ̂ =

N∑
k=0

 ΓvΛTBy [k] θ̂By [k] θ̂

+

n0∑
i=1

(en
i )

T
Γw


ΛTB1

w [k] θ̂

ΛTB2
w [k] θ̂
...

ΛTBn0
w [k] θ̂

Bi
w [k] θ̂

+

L∑
l=0

(
eL+1

l+1

)T
Γα


ΛTB0

α [k] θ̂

ΛTB1
α [k] θ̂
...

ΛTBL
α [k] θ̂

Bl
α [k] θ̂


or

Φθ̂ = Dθ(θ̂)Λ (31)

where

Dθ(θ̂) =

N∑
k=0

By(k)θ̂Γvθ̂TBT
y(k)

+
[

B0
α(k)θ̂ · · · BL

α(k)θ̂
]
Γα

 θ̂TB0
α(k)T

...
θ̂TBL

α(k)T



+
[

B1
w(k)θ̂ · · · Bn0

w (k)θ̂
]
Γw

 θ̂T B1
w(k)T

...
θ̂TBn0

w (k)T


(32)

Similarly, using equations (29), (30),we have

ΦTΛ = DΛ (Λ) θ̂ (33)

where

DΛ(Λ) =

N∑
k=0

By(k)T ΛΓvΛTB(
yk)

+
[
B0

α(k)T Λ · · · BL
α(k)T Λ

]
Γα

 ΛTB0
α(k)
...

ΛTBL
α(k)


+

[
B1

w(k)T Λ · · · Bn0
w (k)T Λ

]
Γw

 ΛT B1
w(k)
...

ΛTBn0
w (k)


(34)

As noted earlier (see Remark 1) we are in fact inter-
ested inθo ∈ R

no(N+L+2)+1. Thus, we define

L2 =

[
1 0

0 L1

]
(35)

whereL1 is as in (13). We then reexpress the problem
in terms of the reduced parameter vector

θ = L2θo (36)



In summary, to solve our estimation problem we need
to solve the following equations.

ΦL2θ̂o = Dθ(L2θ̂o)Λ

LT
2ΦTΛ = LT

2DΛ(Λ)L2θ̂o (37)

(θ̂o)1 = −1

Using the definition of the cost function (16), and
equations (26)-(28), we have:

J = ΛTDθ(θ̂)Λ (38)

Then using (37) we have:

J = ΛT ΦL2θ̂o

= (θ̂o)T LT
2ΦTΛ

= (θ̂o)T LT
2ΦTD−1

θ (L2θ̂o)ΦL2θ̂o (39)

=

[
−1

θ̂o
1

]T

LT
2ΦT D−1

θ

(
L2

[
−1

θ̂o
1

])
ΦL2

[
−1

θ̂o
1

]
This is the result given in (25).�

Note that the result of the above theorem is that the
original cost function (16), which is a function of the
variables (ŷ(k), α̂(k), ŵ(k)) has been transformed
into a function of the variable(θ̂) which appears in
the constraints (17), and (18) of the original problem.

Finally, since a receding horizon approach will be
used to estimate the statesθ̂o

1 , the above optimization
problem has to be solved for every sample, and only
the last value of this vector (x̂[N + 1]) will be used.

5. A SIMPLE ILLUSTRATIVE EXAMPLE

In order to examine the advantages of the method
developed in this paper, we consider state estimation
for the following system:

x(k + 1) = 0.8x(k) + w(k)

y(k) = x(k − d) + v(k) (40)

whereE{w(k)w(k)T } = 1, E{v(k)v(k)T } = 10−2,
andd is an uniform random variable,d ∼ Unif(0, 4).

We will compare the estimates obtained with the
STLS algorithm with those obtained by a standard
Kalman Filter based on the average delay.

Using N = 10 as the prediction horizon, the results
are shown in figure 1.

Table 1 gives the total quadratic error for the two
estimators. We see that the performance achieved by
the state estimator proposed here is significantly bet-
ter than the performance achieved using the Kalman
Filter.

0 10 20 30 40 50 60 70 80 90 100
−3

−2

−1

0

1

2

3

k (samples)

0 10 20 30 40 50 60 70 80 90 100

0

1

2

3

4

k (samples)

d 
(d

el
ay

)

Fig. 1. State estimation:x(k) (continuous thick line),
x̂d=2

kalman(k) (dash line), x̂stls(k) (continuous
thin line)

Table 1. Comparison between the traditional
Kalman Filter and the technique proposed

in this paper.

∑100
k=10 (x(k) − x̂(k))2

Kalman Filter 73.9
STLS Filter 35.1

Remark 2. For simplicity of exposition, this paper has
considered the case when the inputu[k] is equal to
zero. However, it is possible to extend the results to
cover the caseu[k] �= 0. Indeed, it is anticipated
that having a non-zero known input will significantly
enhance the performance of the algorithm.

Remark 3. Again for simplicity, the paper has consid-
ered the case when the vectorα(k) (which is a selector
for the delay) is non-correlated at different samples,
i.e. E{[α(k) − ᾱ][α(k − τ) − ᾱ]T } = 0 for τ �= 0.
In practical problems, it is more likely that succes-
sive delays will be correlated. For example the delay
encountered in a networked communication system is
likely to change slowly depending on network loading.
These more general cases can be treated by including
a correlated delay structure in the cost function (16).

6. CONCLUSIONS

This paper has shown how the problem of state es-
timation with random (and unknown) delays can be
formulated as an errors in variables problem. Partic-
ular emphasis has been given to issues arising from
the special structure of the problem including prior
knowledge regarding the error covariance structure.
In the simple example presented, it has been shown
that the mean quadratic error reached for the state
estimator proposed here is smaller than that reached
by the traditional Kalman Filter.
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Chan, H. andŰ. Őzgűner (1995). Closed-loop con-
trol of systems over a communications network
with queues.International Journal of Control
62(3), 493–510.

De Moor, B. (1993). Structured total least squares and
l2 approximation problems.Linear Algebra and
its Application 188,189, 163–205.

Golub, G.H. and C. Van Loan (1980). An analysis of
the total least squares problem.SIAM Journal of
Numerical Analysis.

Hong, S.H. (1995). Scheduling algorithm of data sam-
pling times in the integrated communication and
control systems.IEEE Trans. on Control Systems
Technology 3(2), 225–230.

Kaplan, G. (2001). Ethernet’s winning ways.IEEE
Spectrum pp. 113–115.
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Appendix A. APPENDIX A

Recall that the data is received with a random delay
taking values in[0, L] with equal probability 1

L+1 .
At each time instancek, there are two possibilities.
Either no data is received, in which case we have
αi [k] = 0 for all i, or, a number of data values
arrive simultaneously. In the latter case, one data point
corresponding to say, delay0 ≤ d ≤ L is picked at
random. This means thatαd [k] = 1 andαi [k] = 0

for i �= d. It can readily be shown that the probability

that all αi [k] = 0 is given byp =
(

L
L+1

)L+1
and

the probability that anyαd [k] = 1 is the same for all
d. Hence the latter probability is given byq = 1−p

L+1 .
Thus,

αi = E{αi [k]}

= q (A.1)

and

Γα = cov




 α0 [k]
...

αL [k]



 = cov {α [k]}

= q
(
I − q11T

)2

(A.2)

Note that, sinceq < 1
L+1 , Γα is nonsingular.


