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Abstract: This paper deals with the problem of fault detection and isolation for non-
linear Hessenberg systems. In particular, the first part of the FDI problem associated
with the disturbance decoupling transformation is considered. The approach is based
on a relation between the relative degree from the unknown input to the output
variables for nonlinear Hessenberg systems. The major advantage for this class of
systems is that a decoupled system can be obtained analytical without solving partial
difference equations. Moreover this transformation can be used to define the structure
of a reduced observer for the system where different observer design procedures can
be used, since the subspace is uniform observable.
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1. INTRODUCTION

In the last decade, the interest to determine re-
duced order models decoupled of unknown input
for nonlinear systems has been increased. One of
the reason, is that the robustness in the fault
detection and isolation, FDI, problem for dynamic
nonlinear systems requires a model without dis-
turbance. The success of a robust FDI design
is strong related with the accuracy and assump-
tions of the model used in the residual generator
(Isermann, 1997).

Moreover, the disturbance decoupling solution re-
quires the existence of m independent measure-
ment to isolate m−1 unknown inputs in both lin-
ear and nonlinear case (Massoumnia et al., 1989).
In the case of state affine systems the sufficient
conditions for the existence of a FDI solution us-
ing geometric approach are given in (Hammouri et
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al., 1998). Seliger proposed to determine in a more
general case the nonlinear transformation with a
recursive approach (Seliger and Frank, 2000).

On the other hand, a general theory for the non-
linear FDI systems as well as the design of robust
nonlinear observers is still missing. At present,
there are attempts to overcome the difficulties of
robust nonlinear analytical procedures by using
diverse tools and particular class of nonlinearities
as example (Hammouri et al., 1998), (De-Persis
and Isidori, 2000), (Seliger and Frank, Decem-
ber, 1991), (Alcorta, 1999), (Shields et al., 2001).
Some authors, as Wunnenberg (Wunnenberg, 8-
222, 1990) tackled the robust design for FDI in
an integrated way i.e. the existence conditions of
the residual generation using observer with dis-
turbance are determined. This formulation makes
more difficult to satisfy in some cases the dynamic
specification of the estimator error. Moreover, this
fault diagnosis formulation do not help to study,
which additional assumptions are required to get
a residual generator.
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This problem has been overcame dividing the ro-
bust FDI procedure in three steps. The first asso-
ciated to the disturbance decoupling approaches,
the second related with the synthesis of observers
or filter for nonlinear systems and finally build a
residual generator according the estimation error.
This separation of tasks has the advantage that
allows to consider more general class of systems
and to benefit from diverse approaches in each
part of the problem.

On the other hand, there are some physical models
associated to biological and transport processes
with structural coupled properties in the states
which can be exploited to simplify the task of
the observer design (Olivier et al., 1998). Sim-
ilarly, the structural properties of this kind of
systems can be used to simplify the procedure
to determine the decoupling transformation. This
fact motivated this contribution in which is shown
that in the particular case of an upper and lower
nonlinear Hessenberg system with a relationship
between relative degree of the unknown input to
the outputs, exists a decoupling transformation
with a fixed structure which can be determined
without the solution of a partial differential equa-
tion, PDE. Moreover, the structure of the de-
coupled subspace and measurement space can be
directly obtained. Therefore, one can construct a
fixed gain observer or if the system is control affine
a high gain observer (Gauthier et al., June, 1992)
or a Kalman-like observer.

The paper is organized as follows. In section 2
the reduced unknown input decoupling problem
is formulated and solved in section 3. Section 4
shows the useful of the procedure to define the
decoupled subsystems required to solve the leak
detection an isolation problem in a pipeline with
multi-leaks. Finally in section 5 the conclusions
and significance of the transformation are given.

2. PROBLEM STATEMENT

Let U be the set of admissible controls. Consider
the differential system defined on a domain Ω ∈
<n

Σ


ẋ=f(x, u) + F1(x)p1 + F2(x)p2

x(0)=x0 u ∈ U
y=h(x) ∈ <2

(1)

where

(1) The system is both strictly linked lower and
upper Hessenberg. This means for any in-
dexes (i, j) such that

j > i+ 1, ∂fi(x,u)
∂xj+1

= 0, ∂fi(x,u)
∂xi+1

6= 0
and if

j < i+ 1, ∂fi(x,u)
∂xj−1

= 0, ∂fi(x,u)
∂xi−1

6= 0

(2) The system has only 2 outputs and for any

x ∈ Ω, y1 = h(x1) with
dh(x1)
dx1

6= 0

and y2 = h(xn) with
dh(xn)
dxn

6= 0. These
output properties are called upper and lower
measured respectively.

(3) The system satisfies some kind of bounded-
input/bounded-output properties.

(4) Independent on the set of admissible u(t), the
existence of a fault pi produces a deviation of
the output such that the ky(t)− y0(t)k 6= 0,
where y0(t) is the output of the system with-
out fault pi. It means each fault produces a
deviation of the nominal value of the output.
This property is called the detectability of
the fault (Chen and Patton, 1999).

(5) The distribution vector Fi(x) of the faults
has n− 1 zero elements.

(6) f, F1, F2 and h are smooth functions.
(7) Assuming as unknown input pj , the relative

degrees from pj to the output y1 and y2
satisfies the relation ρ1 + ρ2 = n + 1. This
disturbance property plays an important role
to determine the decoupling transformation.

From property (2) it is concluded that the system
is uniformly input observable with any of the
two outputs (Olivier et al., 1998). It is to note
that, in the case of more than 2 sensors, once
the decoupled transformation proposed here is
done, the extra measures can be used to reduce
the dimension of the subspace. Moreover from
properties (2) and (4) one concludes that the
faults are detectable and can be isolated, since y1
and y2 are independent (White and Speyer, 1987).

Property (7) seems to be restricted, however it
satisfies for processes which involve a transfer
phenomena. Its lack means that the state space of
the system cannot be described by n-2 derivatives
of the outputs and only 2 states which depend
on the unknown input pj and combinations of the
output derivatives.

In general, the FDI of Σ with relation to pi
admits a solution if exists a dynamic system called
residual generator

ż = F (u, z, y) (2)

r = H(y, z)

satisfying

(1) if pi 6= 0 then r(t) 6= 0
(2) if pi = 0 then lim

t→∞ r(t) = 0 for any xo and zo
and pj , j 6= i.

According to the approach given in (Frank et
al., 1999) to design the residual generator (2), the
first step is to separate the disturbed from the



undisturbed portion of the model using a decou-
pling transformation T (x, u) with pj assumed as
disturbance. The second task is the filter design
for the smaller system obtained before. The exis-
tence condition to solve the FDI problem are given
in the following theorem.

Theorem 1: (Frank et al., 1999) Exists a transfor-
mation in the space z = T (x, u) ∈ <p called dis-
turbance decoupling transformation and an out-
put transformation yn = hx (x, y) that generates
a subspace decoupled from p1 and sensitive to p2
for the system

ẋ = f(x, u) + F1 (x) p1 + F2 (x) p2 (3)

with output y = h (x), if and only if

∂T (x, u)

∂x
F1(x) = 0 (4)

rank

µ
∂T (x, u)

∂x
F2(x)

¶
= rank (F2(x)) (5)

for all (x, u) with x = Ψ(z, ya) and ya = ha (z, y).
Moreover, if the system is uniform observable
exists an observer sensitive to p2, and then exists
a residual generator (2).

3. DECOUPLING TRANSFORMATION

There are diverse algorithms to find the trans-
formation T (x, u) and the output space ha (z, y)
which generate an observable subsystem that is
affected by the fault and not affected by the
disturbance; in some cases condition (4) implies
the analytical solution of PDE (De-Persis and
Isidori, 2001), (Hammouri et al., 1998).

Here, one exploits the strictly upper and lower
Hessenberg structure of the system (1) to get
the decoupling transformation without solving a
PDE.

Considering property (5) and that the disturbance
p1 affects directly the state xi, the three states
equations associated to xi can be written by

ẋi−1 = fi−1(xi−2, xi−1, xi, u)

ẋi = fi(xi−1, xi, xi+1, u) + F1i(x)p1 (6)

ẋi+1 = fi−1(xi, xi+1, xi+2, u)

From the structure of this set of states, one notes
that the decoupling of the state xi from the whole
system (1) is sufficient to solve the decoupling for
p1, reducing its dimension to nr = n−1. i.e. xi can
be contemplated as a disturbance in the reduced
system

ẋ= fr(x, u, d) + Fr2(x)p2 (7)

y =

·
h1(x1)
h2(xnr)

¸
(8)

where fr(x, u, d) = f(x, u) without the element i,
d = xi, and Fr2(x) = F2(x) without component i.

For the deduction of the decoupling transforma-
tion for xi, without loss of generality, one can
assume the autonomous case neglecting input u
and p2; then the formulation for the decoupling
problem of (7) and (8) is equivalent to find the
nonlinear transformation which generates a dy-
namic subset decoupled from d for

ẋ= fr(x) + gi(x)d (9)

y =

·
h1(x1)
h2(xnr)

¸
(10)

where the two state equations associated to the
disturbance d in the reduced system are

ẋi−1 = fi−1(xi−2, xi−1, d) (11)

ẋi = fi(d, xi, xi+1)

The form of this dynamic relationship between
states comes from the strictly upper and lower
Hessenberg structure assumed for the system.
This form together with (7) allow to construct a
subspace decoupled from d.

The Lie derivative of h along f, written as Lfh, is

defined by Lfh =
∂h
∂xf and thus, LgLfh =

∂Lfh
∂x g.

Theorem 2: Consider the nonlinear uniform ob-
servable reduced system given by (9) and (10),
where the disturbance d = xi and with relative
degree from the state xi to the outputs, ρ1 = i−1,
ρ2 = nr − ρ1 respectively. Under these conditions
if ρ1 ≥ ρ2, the nonlinear transformation

T (x) =



L0frh1
...

Lρ1−2fr h1
Lρ1−1fr h1 − κLρ2−1fr h2

L0frh2
...

Lρ2−2fr h2


(12)

and if ρ2 < ρ1 the mapping

T (x) =



L0frh2
...

Lρ2−2fr h2

Lρ2−1fr h2 − 1
κ
Lρ1−1fr h1

L0frh1
...

Lρ1−2fr h1


(13)



satisfies the condition ∂T (x)
∂x gi(x) = 0 with

κ(x) = LgiL
ρ1−1
fr h1(x)/(LgiL

ρ2−1
fr h2(x))

β1(x) = L
ρ1−1
fr h1, bρ1(x

∗) = Lρ1frh1

β2(x) = L
ρ2−1
fr h2, bρ2(x

∗) = Lρ1frh2

and the subspace decoupled from d is given by

ẋ∗ =





x∗2
...

L
ρ1
frh1 − κL

ρ2
frh2

...
x∗nr

 if ρ1 ≥ ρ2



x∗2
...

Lρ2frh2 −
1

κ
Lρ1frh1

...
x∗nr


if ρ2 > ρ1

(14)

with an auxiliary output injection

ya =

½
y2 if ρ1 ≥ ρ2
y1 if ρ2 > ρ1

(15)

Moreover, if ρ1 = ρ2 and bρ1(x
∗) is linear in

x∗ρ1 the minimal realization of the subspace is of
dimension ρ1.

Proof: The proof is constructive for any state. Let
the state i be the disturbance, under considera-
tion. Because of the uniform observability with
y1 = h1(x) = x1 and the relative degree of d with
respect to y1, the mapping

z = Φ(x) =

 ΦU (x)Lρ1−1fr h1
ΦL(x)

 =



x1
...

Lρ1−1fr h1
−−−
φi(x)
...

φnr(x)


(16)

with φi(x), . . . ,φnr(x) chosen such that the Jaco-
bian matrix of Φ(x) is nonsingular, transforms the
system to

ż1
...
żρ1−−
żρ1+1
...
żnr


=



z2
...

bρ1 (z) + aρ1 (z)d−−−
bi(z) + ai(z)d

...
bnr(z) + anr(z)d


(17)

with aρ1 = LgiL
ρ1−1
fr h1 = aρ1 (z1, z2, . . . , zρ1).

Similarly for the output y2 = h2(x) = xnr, the
mapping

w = Ψ(x) =

 ΨU (x)Lρ2−1fr h2
ΨL(x)

 =



xn−1
...

Lρ2−1fr h2
−−−

ψn−i+1(x)
...

ψnr(x)


(18)

with the functions ψn−i+1(x), . . . ,ψnr(x) chosen
such that its Jacobian matrix is nonsingular,
transforms the system to

ẇ1
...
ẇρ2−−
ẇρ2+1
...
ẇnr


=



w2
...

bρ2 (w) + aρ2 (w)d−−−−
bn−ρ

2
(w) + an−ρ

2
(w)d

...
bnr(w) + anr(w)d


(19)

with aρ2 = LgiL
ρ2−1
fr h2 = aρ2 (w1, w2, . . . , wρ2 ).

Taking into account that the state zρ1 in (17) and
wρ2 in the representation (19) depend on d, and
aρ1 (z) and aρ2 (w) are different from zero (from
the relative degree property), one can combine
the states zρ1 and wρ2 to generate a new state
decoupled from d, holding the rest of the states of
the two normal forms which are independent on
d. In particular, one suggests x∗ = T (w, z) =

T (x) =



 ΦU

β1 − aρ1
aρ2

β2

ΨU

 if ρ1 ≥ ρ2

 ΨU (x)

β2 − aρ2
aρ1

β1

ΦU (x)

 if ρ1 < ρ2

(20)

in which x∗²<nr−1 and its Jacobian matrix has
the structure

TJ =



1 · · · 0 0 | 0 0 · · · 0
...
. . .

...
... | ...

...
...
...

× · · · × 0 | 0 0 · · · 0
× · · · × ∂β1

∂xi−1
| −κ∂β2

∂xi
× · · · ×

0 · · · 0 0 | 0 0 · · · 1
...
. . .

...
... | 0 0 · · · ...

0 · · · 0 0 | 0 × · · · ×


if ρ1 ≥ ρ2, and



TJ =



0 · · · 0 0 | 0 0 · · · 1
...
...
...

... | ...
... · · · ...

0 · · · 0 0 | 0 × · · · ×
× · · · × − 1

κ

∂β1
∂xi−1

| ∂β2
∂xi

× · · · ×
1 · · · 0 0 | 0 0 · · · 0
... · · · ... ... | ...

...
...
...

× · · · × 0 | 0 0 · · · 0


if ρ1 < ρ2. From the structure of gi(x) one can see
that

if ρ1 ≥ ρ2, aρ1 =
∂β1
∂xi−1

gii−1 = −κ
∂β2
∂xi

gii

and

if ρ1 ≥ ρ2, aρ2 =
1

κ

∂β1
∂xi−1

gii−1 = −
∂β2
∂xi

gii

and then, it is concluded that the product of
the Jacobian matrix TJ by the column vector
gi(x) satisfies (4), and this proves that T (x) is
a decoupling transformation for d.

Finally, from the structures (17) and (19), one
obtains using the auxiliary output injection (15)
the subspace:

ż1
...

żρ1−1
żρ1 − κẇρ2

ẇ1
...
ẇρ2


=



x∗2
...

x∗ρ1 + κx∗nr−1
bρ1(x

∗)− κbρ2 (x
∗)

x∗ρ1+2
...
x∗nr


(21)

If ρ1 ≥ ρ2 with ya = w1. On the contrary, if
ρ2 > ρ1

ẇ1
...

ẇρ2−1

ẇρ2 −
1

κ
żρ1

ż1
...
żρ1


=



x∗2
...

x∗ρ2 +
1

κ
x∗nr−1

bρ2(x
∗)− 1

κ
bρ1(x

∗)

x∗ρ2+2
...
x∗nr


(22)

with ya = z1. This state representation corre-
sponds with the subsystem given in (14). Since
the condition used to write eqs. (7) and (8) is only
sufficient, in some cases, the transformation could
be conservative.

To be sure that the maps (12) and (13) solve
the decoupling problem and the sensitivity to the
faults the rank condition (5) must be verified.

The demonstration of the dimension reduction
for the case ρ1 = ρ2 is based on the fact that
bρ2(w)

¯̄
w=Γ(x∗) = bρ1(z)

¯̄
z=Γ(x∗) .

4. EXAMPLE

Consider a model of a pipeline with 3 leaks given
in (Verde, 2001), in which one seeks a subsystem
which is decoupled of the middle leak, i.e. i = 2.
In this case the smooth function fr ∈ <6 in (9) is
given by

ẋ =


−µx21 − α1x2
α2 (x1 − x3)
−µx23 + α1x2
−µx24 − α1x5
α2 (x4 − x6)
−µx26 + α1x5

+

0
0
−1
1
0
0

 d (23)

with y = [x1 x6]
0
and it satisfies all the assump-

tions ((1) to (7)). Calculating the relative degree
of the disturbance d to the 2 outputs one gets
ρ1 = ρ2 = 3 and κ = −1. Applying Theorem (2)
to (23), one obtains the following structure of the
system decoupled of d

ẋr1 = xr2

ẋr2 = xr3 − ya
ẋr3 =L

3
frh1 + L

3
frh2 = b(xr, ya) (24)

ẋr4 = xr5

ẋr5 = ya

y= xr1 (25)

in which only the derivatives of h1 and h2 along f
must be evaluated. In this case the auxiliary out-
put injection is given ya = ẍ6 and the nonlinear
function b(xr, ya)

=−2µ(x2r2 + x2r5 + xr1(xr3 − ya) + xr4ya)
−2a ¡xr2 + xr5)− µa(x2r1 + x2r4¢
4µ2

a
(xr1xr2(xr3 − ya) + xr4xr5ya)

µ

a

¡
(xr3 − ya + axr1)2 + (ya + axr4)2

¢
−4µ2(x2r1xr2 + x2r4xr5)

−4µ
3

a

¡
(xr1xr2)

2 + (xr4xr5)
2
¢

with a = α1α2 and

x1 = xr1

x2 =
−1
α1
(xr2 + µx

2
r1)

x3 =
1

a
(xr3 − ya + 2µxr1xr2 + axr1)



x4 =
1

a
(ya + 2µxr4xr5 + axr4)

x5 =
1

α1
(xr5 + µx

2
r4)

x6 = xr4

This example shows the simplicity of the proposal,
since the subspace structure is given by the rela-
tive degrees of the outputs (i.e property (7)) and
only b(xr, ya) must be calculated. Note that for
this example does not exist a linear decoupling
transformation and therefore, the fault detector
nonlinear filter for polynomial systems proposed
by (Ashton et al., 1998) cannot be applied. To
design the nonlinear estimator of (24) diverse pro-
cedures can be used, as example (Gauthier and
Kupta, 1994) or if the system is control affine a
high gain or a Kalman-like obverver. This shows
the advantage of the tasks separation in the resid-
ual generator problem for fault detection.

5. CONCLUSIONS

It has been introduced, without solving a PDE, a
decoupling transformation for strictly upper and
lower Hessenberg nonlinear systems when exists a
relationship between the relative degrees from the
perturbation to the outputs. Moreover, the struc-
ture of a subsystem which is not affected by the
disturbance by the coordinate change in the state
and output spaces is given. The results developed
in this paper can be used directly in the design of
FDI filter for a class of nonlinear systems, allowing
the application of diverse procedure to design the
residual generator. Therefore, for a system with
a Hessenberg structure, the advantage to divide
the robust residual generator problem in steps is
evident. The transformation is applied to the case
of isolation of leaks in a pipeline. The solution
allows to determine analytical expressions for any
number of leaks and parameters of the pipeline
without any constraint in the procedure to design
the residual generator. The key of the proposal is
that each output allows to define a set of states in
which the derivatives of the outputs are the states
and in each subspace the disturbance is injected
only in on state (zρ1 and wρ2).
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