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Abstract: This paper shows that under some circumstances the so called BCU method
may not be able to find the true CUEP for a specific fault-on trajectory of a power
system. The reasons to that malfunction are analysed, and a methodology than can
improve the capability of the BCU method to successfully find the CUEP is presented.
Finally, several applications of the proposed method to power electrical systems, are
shown.  Copyright © 2002 IFAC

Keywords: power system, stability analysis.

1. INTRODUCTION

Transient stability analysis plays an important role in
the planning and operation of power electric systems
(PES). Recently, transient stability analysis had been
performed by utilities exclusively by means of the
numerical integration of non-linear differential
equations describing the fault-on system and de post-
fault system. An alternative approach to transient
stability analysis employing Lyapunov function
theory, called the direct methods, was proposed in
the 60’s (Chiang, et. al., 1994). Direct methods refer
to those methods that determine the stability of a
post-fault system based on energy functions without
explicitly integrating differential equations.
There exist a variety of methods that are classified as
direct methods. One of them, is the so-called
Controlling Unstable Equilibrium Point method
(CUEP method) (Chiang, et. al., 1994; Chiang, et.
al., 1987; Chiang, 1995; Fouad and Vittal, 1992).
The principal advantage of this method is that it is
able to approximate the part of the boundary of
stability that contains the point where the sustained
fault-on trajectory crosses the boundary of stability.
The CUEP method is a generic method. There are
distinct methods that actually are the CUEP method.
The main difference between those methods is the
way that they follow to find the CUEP.  As example
of them, there is the called Mode of Disturbance
Method (MOD) proposed by Fouad and Vittal,

(1992). The basis of this method is to find the
oscillation mode that makes the system unstable, and
the energy that is associated with that mode.
Another method called as BCU method (Boundary of
stability region Controlling Unstable equilibrium
point method), is based on the differential geometry
theory (Chiang, et. al., 1988, 1994, 1995; Zaborsky,
et. al., 1988). The BCU method has been very
attractive because it has a robust theoretical
background.
In this paper it is shown that in spite of the above
background the BCU method may be unable to
correctly find the CUEP under some circumstances,
and two motives that can cause this inability, are
demonstrated. This paper presents conditions that are
used to distinguish when the BCU method fails or hit
in finding the CUEP, and propose an algorithm that
may improve the capabilities of the BCU method.
This algorithm will be called as the EBCU method
(Extended BCU method) because it use the BCU
method algorithm in combination with a back-up
method. The last method will be used when the BCU
method fails in finding the CUEP.

2. THE CUEP METHOD

This section presents briefly the generic CUEP
method. The objective of the CUEP method is to
determinate the stability of a post-fault system.
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Definition 1. A power system is said to be stable if
after a disturbance it reaches an acceptable steady-
state condition.
In other words, a power system is stable if the fault-
on trajectory at clearing time lies inside the stability
region of a desired Stable Equilibrium Point (SEP) of
its post-fault system.
The point where the fault-on trajectory leaves the
stability region of the SEP is called the exit point.
This point is contained into the SEP’s boundary of
stability. It has been shown (see Chiang, et. al., 1988;
Zaborsky, et. al., 1988) that the SEP’s boundary of
stability of a PES is equal to the union of the stable
manifolds of the unstable equilibrium points (UEP)
that lies into the SEP’s boundary of stability.
Definition 2. The UEP whose stable manifold
contains to the exit point is called the Controlling
Unstable Equilibrium Point (CUEP).
It has been shown that the CUEP is an UEP whose
unstable manifold has dimension one, that is, the
Jacobian matrix evaluated into the UEP has only one
eigenvalue with real part greater than zero. This kind
of UEP is called as type-1 equilibrium point.
In order to make an approximation of the relevant
part of the SEP’s boundary of stability, it is necessary
to know the CUEP for a specific fault-on trajectory
(Chiang, 1995). Each fault-on trajectory together
with every post-fault system has a specific CUEP.
The issue of the CUEP method (and the issue of this
paper) is to find the true CUEP for the each condition
of the PES.
One of the methods developed to find the CUEP is
the BCU Method. This method is based on the
properties of a gradient system that is related with the
original PES model.

3. POWER ELECTRICAL SYSTEM MODEL

This section presents the PES mathematical model
and the gradient system of PES; this gradient system
is an approximation of the PES mathematical model.
3.1. Power electrical system model.

Synchronous machines will be modelled with the
classical model. Considering loads as constant
impedances that can be added to the transmission
network, and using a synchronous machine of the
PES (for simplicity, the nth machine) as reference, it
is possible to model a n-machine PES by the
following 2(n-1) differential equations system:

)(xFx =&                               (1)

where [ ]T
nnnnnn ,11,11 −− ωωδδ= LLx ,

( ) [ ]T
nnnnnnn DfDf ,1111,1010 )()( −−− ω−δω−δωωωω= LLxF

(2)

( ) 1,,1, −=
−

−
−

= ni
M

TeTm
M

TeTm
f

n

nn

i

ii
i Kδ  (3)

δin is the relative angle between the i-th machine and
the reference machine, ωin is the relative speed
between the ith machine and the reference machine,
ω0 is the synchronous angular speed, that is ω0 = 2πf,
Mi is the inertia constant, D is the damping
coefficient, Tmi is the mechanical torque applied, and
Tei is the electrical torque defined as
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Since the aim of this work is around the CUEP
method it is necessary to have an energy function of
PES mathematical model. The system (1) has a real
energy function only if transfer conductances, are
avoided. In other case, it is necessary to approximate
the energy function. The most common
approximation (Fouad and Vittal, 1992) of energy
function of (1) is based on the assumption that the
fault-on trajectories are straight lines. This expression
was derived under COI reference frame; using this
result an expression under the nth machine reference
frame has been obtained. The resulting expression is
fully equivalent to the given in (Fouad and Vittal,
1992) although it is different to the given in (Chiang,
et. al., 1994). The expression used in this work is
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Quantities super-indexed with s refer to post-fault
stable equilibrium point. All network quantities
(reduced admittance matrix, Gij and Bij) correspond
to post-fault system.
3.2. Gradient system of PES.

The gradient system can be derived from equations
(1) to (10) of the form (Chiang, 1995)

)(δδ gF=& (11)

where [ ] T
ng ff )()( 1010 δωδω= −LF . This gradient

system has an energy function that has the form
( ) ( ) ( )δ+δ=δ pathppot VVV (12)



where ( )δpV  and ( )δpathV  are defined in equations (7)
and (8) respectively. The energy function of the
gradient system is the potential energy function of
PES model. It is easy to see that if Eδ  is an
equilibrium point of (11) then the point ( Eδ , 0) is an
equilibrium point of (1).

4. THE BCU METHOD
4.1 The BCU method algorithm.

The BCU method consists on finding the gradient
system’s CUEP coδ . The PES model’s CUEP will be
( 0,coδ ). The ideal algorithm to find coδ  is

• First, to find the gradient system’s exit
point. It means to find the point where the
fault-on trajectory crosses the gradient
system’s boundary of stability.

• Then, this point is used as initial condition
to solve the gradient system. Since by
definition the exit point lies into the CUEP’s
stable manifold, the solution trajectory will
tend to the CUEP.

The exit point is not easy to find (in computation
terms). Therefore, an approximation to this point is
used instead of the true exit point. The point where
the gradient system’s energy function (12) reaches its
first maximum (along the fault-on trajectory)
approximates the true exit point. This point will be
represented by *δ . Because the information about
fault-on trajectory is a set of points, and it is not
continuous, a second point to approximate the true
exit point is used. This point, represented by +δ , is
the last point after the gradient system’s energy
function reaches its first maximum. The gradient
system’s solution trajectories ( )(* tφ  and )(t+φ
respectively) that are calculated using the points *δ
and +δ  as initial conditions, will not tend to the
CUEP, because they do not lie into the CUEP’s
stable manifold. Although, if the points *δ  and +δ
are sufficiently close to the true exit point then the
trajectories )(* tφ  and )(t+φ  will go towards the
CUEP for a while, and then will go away from the
CUEP. This behaviour is the basis to the BCU
method.
For simplicity, the Euclidean norm of (11) will be
named as the gradient function. Since the CUEP is an
equilibrium point of (11) the gradient function at
CUEP is equal to zero. Furthermore, while the
trajectories )(* tφ  and )(t+φ  tends to the CUEP, the
gradient function tends to zero. That happens until
the trajectories go away the CUEP, and at this
moment the gradient function reach a local
minimum.

Let be *
0δ  and +δ0  the points where gradient function

along )(* tφ  and )(t+φ  reach a local minimum
respectively. Then the point where gradient function
is the lowest, is the point closest to the CUEP, and it

can be used as a guest point to solve the algebraic
equation system

)(0 δ= gF (13)

Let iδ  be the solution of (13). Then iδ  is the
gradient system’s CUEP, and the CUEP of PES is
( 0,iδ ).
4.2 Troubles with the BCU method.

The success of BCU method in finding the CUEP is
mostly determined by its ability to find a suitable
guest point as a solution of (13). If this point is
unsuitable then the found equilibrium point (when
the used method can find one) could not be the true
gradient system’s CUEP.
In order to solve the equations (13) the Newton-
Raphson method is commonly used. It has been
shown that the vicinities of equilibrium points
obtained by this method are of fractal nature (Liu and
Thorp, 1997). This fractal nature implies that
although the guest point ( *

0δ  or +δ0 ) lies into a
vicinity of the CUEP, it is possible that the Newton-
Raphson method will find an equilibrium point
different from the CUEP. So, in order to find the true
CUEP, the guest point must lie into the fractal that
corresponds to the CUEP. Figure 1 shows the
Newton-Raphson method’s fractal nature when it is
applied to the gradient system of a 3-machine PES.
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Fig. 1.  Newton-Raphson method’s fractal nature in a 3-machine
PES.

Figure 1 shows all of the equilibrium points that lie
into the subspace defined by -4≤δ1≤8 and -8≤δ2≤8.
Each of them is surrounded by a set of points that
form their solution region. The interface between
these solution regions is composed by two kinds of
points. The first one is the set of points that do not
belong to any solution region. The points which have
a solution, but this solution can be very different for
two points although both points are closed each other
compose the second kind.

If the points *δ  and +δ  are very close to the true exit
point there is a great possibility that the points *

0δ
and +δ0  lie into the fractal that corresponds to the
CUEP. But it has been shown that in some situations

*δ  and +δ  could be far away the true exit point
(Struggs and Mili, 2001). When it is the case, it is
possible that the gradient function does not have a



minimum along the trajectories )(* tφ  and )(t+φ . If
this minimum exists it could be far away the CUEP
or it could lie outside the fractal that corresponds to
the CUEP. Moreover, it is possible that even though
the point *δ  or +δ  are close to the true exit point, the
gradient function along the post-fault gradient
system’s solutions )(* tφ  or )(t+φ  does not have a
local minimum. Figure 2 shows three different post-
fault gradient system trajectories in a 3-machine
system, and Figure 3 shows the gradient function for
the three post-fault trajectories.
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Fig. 2.  Post-fault gradient system’s trajectories in a 3-machine
PES.
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Fig. 3.  Gradient function along 3 post-fault gradient system
trajectories.

Each trajectory shown on Fig. 2 has as initial
condition a point that is close to a type-1 UEP’s
stable manifold, that is, close to a SEP’s boundary of
stability. Each trajectory moves nearly the stable
manifold for a while but only the second one passes
sufficiently close to the type-1 UEP as the gradient
function along the trajectory has a local minimum,
see Fig. 3. Trajectories 1 and 2 do not have a local
minimum of gradient function even their initial
conditions are close to the stable manifold.
Another situation that can cause a malfunctioning of
the BCU method can be found when the initial
condition to the post-fault gradient system is close to
a type-2 UEP. In this case it is possible to detect a
local minimum of gradient function because the
presence of the equilibrium point (which by
definition is not the CUEP), but this point will be
close to the type-2 UEP and the solution method will
find that point.

5. A DYNAMICAL METHOD TO FIND TYPE-1
UEP

Liu and Thorp have developed a method useful to
find the Closest UEP (Liu and Thorp, 1997). In order
to avoid the BCU method troubles that can happen
and using the property that the Closest UEP and the
CUEP are both type-1 UEP, that method was adapted
to find the CUEP instead of the Closed UEP
The only one condition to do it is that, the used guest
point must be adequate to find the CUEP instead of
the Closest UEP.
The basis of the method developed by Liu and Thorp,
(1997), is the spectral decomposition of Jacobian
matrix of gradient system (11), that is
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where )(δλ j  is the j-eigenvalue of J(δ), and Pj(δ) is
the vectorial product of the right and left j-
eigenvectors of J(δ).
The Jacobian matrix of gradient system has n-1 real
eigenvalues. Let )(1 δλ −n  be the largest eigenvalue.
Then an A-matrix can be constructed of the form
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to obtain the following  new dynamical system
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It can be shown that the new system (15) has the
same equilibrium points that the gradient system
(11). The Jacobian matrix of the new system (15) can
be calculated as
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where eδ  is an equilibrium point. Using the spectral
decomposition of J(δ) and the fact that  the matrices

iP , 1,...,1 −= ni are orthogonal, equation (16) can be
written as
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From (17) and (14) it is easy to see that if eδ  is a
type-1 equilibrium point of gradient system. Then eδ
will be a SEP of the new system (15). This property
of the new system is used to find the type-1
equilibrium points of the gradient system.
Dynamical Method. In order to find the type-1 UEP
it is necessary to solve the differential equations (15).
Let δ0 be the initial condition. Let the solution of (15)
tends to a SEP of this system. This SEP is equivalent
to a type-1 UEP of the gradient system.
Figure 4 shows the attraction regions of the SEP
when the proposed method (Dynamical Method) is
applied to a 3-machine PES. Since this method is
developed to find type-1 UEP, the number of
attraction regions contained into the intervals



-4≤δ1≤8 and -8≤δ2≤8, are less than the solution
regions of the Newton-Raphson method (see Fig. 1).
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Fig. 4.  Attraction regions of Dynamical Method in a 3-machine
PES.

The type-1 UEP are shown using a filled circle; the
SEP are shown with a non-filled circle, and type-2
UEP are shown with a non-filled square. A continuos
attraction region surrounds every type-1 UEP. The
boundaries between these attraction regions are
perfectly distinguished. Both SEP and type-2 UEP lie
into the boundary between two or more attraction
regions. If the attraction regions of the Dynamical
Method are compared with the solution regions of
Newton-Raphson method, then it is possible to see
that the possibilities to find a specific type-1 UEP by
means of the Dynamical Method will be greater than
using the Newton-Raphson method.

5. THE EBCU METHOD

The Dynamical Method (DM) can be used instead of
Newton-Raphson Method (NRM) under one of the
following conditions:
Condition 1. The solution founded by NRM,
corresponds to an equilibrium point that is not a type-
1 UEP. It means that the obtained solution is not the
true CUEP.
Condition 2. The solution founded by NRM ( eδ )
corresponds to a type-1 UEP, but the energy function
of the gradient system evaluated at eδ  ( )( e

potV δ ) is

less than its value at SEP ( )( spotV δ ). It means that eδ
is not the true CUEP.
Taking in consideration the above conditions, the
algorithm shown on Fig. 5, is proposed. This
algorithm conserves the fundamental idea behind
BCU method since it contains the BCU method and
additional steps in which the DM is used. DM is
required only when the BCU method was not able to
find the true CUEP. The resulting algorithm was
named EBCU method (Extended BCU method) since
it is an extension of the BCU method.

6. NUMERICAL RESULTS

The proposed EBCU method was applied to several
PES. In this section it is shown the results obtained
when the EBCU method was applied first to the 3-
machine WSCC system (Anderson, 1994), secondly
to the modified 4-machine WSCC system (Fouad, et.
al., 1981), then the 16-machine New England system

(Rogers, 2000), and finally the 50-machine IEEE
system (IEEE, 1992).
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Fig. 5.  EBCU method algorithm.

The 4 above cited PES were used in order to compare
the performance of the BCU and EBCU methods.
Both methods have been applied under several
operation and failures condition (3-phase short
circuits that are cleared tripping a transmission line),
presented in Table 1. The operation condition of each
system was modified through the change of their
generation and load power level. The 100% case
represents the base case of each system.  The
performance of the BCU and EBCU methods was
tested using a total of 1332 simulations.
Table 1. Simulations used to compare the performance of the BCU

and EBCU methods
Power level Applied failures

System
Bottom Top Steps Per step Total

3-machine 30% 260% 24 12 288
4-machine 30% 170% 15 14 210

16-machine 30% 130% 11 22 264
50-machine 75% 105% 15 38 570

Figures 6 and 7 show two bar graphs that resume the
obtained results. In Fig. 6 there are shown 3 result
categories. The first one indicates the number of
cases, which was solved successfully with BCU
method. The second category indicates the number of
cases, which fails to solve by BCU method, and it
was solved successfully using EBCU method.
Finally, the third category indicates the number of
cases, which was not solved.
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Figure 6 shows that the performance of these
methods depends on the system where they are used.
For example, the only 28.76% of 3-machine and
19.43% of 50-machine systems’ solved cases, was
required the use of EBCU method, while 45.41% of
4-machine and 63.97% of 16-machine systems’
solved cases, was required the use of EBCU method.
In the same way, the percentage of the considered
cases that have not been solved depends on the PES.

Additionally, Figure 6 shows that 219 simulations
were not solved of a total of 1332. Some of them
were not solved because the corresponded post-fault
system does not have a SEP. Another were not
solved because the post-fault SEP is far away from
the pre-fault SEP, and the remaining simulations
were not solved because the founded type-1
equilibrium point does not satisfy the above written
conditions. These kinds of troubles happen when the
generation and load power level or stress level is
high.

Since EBCU method include the original BCU
combining with the Dynamical method, it is able to
find the true CUEP in more or equal cases than the
original BCU. This is shown in Figure 7.
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7. CONCLUSIONS

In this paper the conditions under which the BCU
fails to find the real CUEP for a specific failure, are
derived, and the EBCU method to find the
Controlling UEP (CUEP), is proposed. This method
uses the Dynamical Method that pretends to be a
back up of classical algebraic equation systems
solution methods. It is shown that proposed method
has a better performance than the original BCU
method. This was demonstrated through the analysis
of a total of 1332 failures applied to 4 different
power electrical systems.
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