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Abstract: The purpose of this paper is to present a linear quadratic simultaneous multi-model stabilizing approach 
based on simulated annealing algorithm. This method is developed to design robust control laws for AC drives. A 
specific application to a synchronous self-controlled motor is detailed. The main objective here is design a robust 
controller with predetermined structure. Experimental results are given showing the efficiency of the proposed 
approach.  Copyright © 2002 IFAC 
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1. INTRODUCTION 

 
AC synchronous servomotors are commonly used for 
precision positioning applications in place of DC 
drives. Efficient control laws are needed to guarantee 
stability and performance requirements. These 
constraints impose a good knowledge of the system’s 
parameters. However, due to varying conditions such 
as temperature, magnetic saturation,… etc, the 
sought control laws must take into account the 
uncertainties in the model.  
Multi-model robust control techniques can be tackled 
using several approaches such as H∞ methods 
(Banerjee, 1995), (Courties et al., 1999), Pareto game 
approach (Tarvainen, 1986) or fuzzy fusion (Ksouri 
et al., 1999) 
The purpose of this paper is to present a robust multi-
model control design method based on simulated 
annealing optimization algorithm. The proposed 
approach allows the design of control laws having a 
predefined structure, which stabilize a set of linear 
models. The simulated annealing algorithm leads to 
an optimal solution, if it exists, guarantying the 
simultaneous stability and performance for all 
considered models. 
The paper is structured as follows: in section 2, the 
AC drive is described and a linear model is proposed 
along with the parameters uncertainties. The 
synchronous motor is associated with a three phases 
PWM inverter. In section 3, the robust control design 
approach is presented; it is based on solving 
simultaneously several linear quadratic problems. A 
unique static feedback control law is obtained by 
iterative optimization: either using an α-stabilization 
method or simulated annealing. The structure of our 
controller is justified in section 4 where the multi-
model approach gives different design possibilities. 
Experimental results and robustness analysis are 

presented in section5. Concluding remarks make up 
section 6. 
 

2. MODELING OF THE AC DRIVE SYSTEM 
 

We consider a 2.2 kW synchronous self-controlled 
servomotor with permanent magnets. The AC drive 
is fed by a three phase PWM inverter (see in Figure 
1). 
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Figure 1: Experimental system 

 
A state model can be obtained as follows (Leonard, 
1985): for the electrical part, the differential 
equations describing the relations between the rotor 
and stator fluxes, currents and voltages are written 
first en the statoric frame (or (a,b,c) frame). In a 
second step, Park transformation is used to obtain an 
image of these equations in a frame rotating 
synchronously with the rotor (or (d,q) frame). This 
leads to: 
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When Ω, the mechanical speed of the rotor, is taken 
as constant (i.e. when Ω is varying slowly with 
respect to the dynamics of the currents), equation (1) 
can be reduced to the following linear state model. 
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Where (id,iq) represent the components of the 
currents (model states) and (Vd,Vq) the component of 
the voltage (model inputs) in the (d,q) frame. 
It should be noted that the parametric of such a 
model (R, Ld and Lq) cannot be measured with 
precision and are subject to wide variations due to 
temperature (for the winding resistance) and 
magnetic saturation (for the inductances). 
 The parametric variations modify the closed loop 
response of the system. This can be easily seen in 
Figure 2 where the poles of the system are shown for 
a 50% variation in the measured values of the 
parameters. 
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Figure 2: Pole of the system 
 
In our application, 27 models are defined by 
considering ±50% variation in each measured 
parameter values i.e.: 
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The three phases PWM inverter is modeled, in the 
(d,q) referential, as a gain. The two statistical time 
delays of the PWM: half of the average switching 
period T and one more time delay of one sampling 
period (computation time) are taken into account 
through a delay margin. 

3.  MULTI-MODEL LINEAR QUADRATIC 
SIMULTANEOUS CONTROL ALGORITHM  

A classical approach to the stabilization problem of a 
linear time-invariant system is the Linear Quadratic 
“L.Q.” method, which consists of minimizing a 
quadratic energetic function of the states and inputs 
of the system.  
The Linear Quadratic Simultaneous “L.Q.S.” 
stabilization is an efficient approach (Anderson and 
Moor, 1989), (Bonnassieux, 1998) providing stability 

and robustness with respect to parametric 
uncertainties.  

3.1. Problem formulation 
Consider the M Linear Time models Invariant 
& ( ) . ( )x t A x ti i1 = + B . u (t)
y (t) = C . x (t) 

i i

i i i

      i M= 1K  (4) 

Where: 
iyuiii N*N

i
N*N

i
N*N

i C,B,A ℜ∈ℜ∈ℜ∈  
We suppose that: 
- (Ai, Bi) is stabilizable and (Ci, Ai) is detectable 
- Ci has full rank, 

The synthesis problem of an L.Q.S. regulator is 
defined as follows: 
 A static output feedback control law has to be 
found:

yu N*N

optiopti
K),t(y.K)t(u,M,...,1i,i ℜ∈−==∀ (5) 

Which:  
- Asymptotically stabilizes the M linear time 

invariant    models, 
- minimizes the closed-loop quadratic function: 
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Where γi>0 are scalars and Qi, Ri are weighting 
matrices satisfying Qi>0, Ri>0 for each i (i=1...M). 
“E” being the mathematical expectation. 
The initial condition vectors xi0 are zero mean 
random vectors with: 
 { } 0X.XE)M,...,11(,i T

i0i0 >=∀  (7) 
We can note that the following criterion can also be 
written as: 
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Where Pi is the symmetric real non-negative definite 
solution of the set of Lyapunov equations: 
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3.2. The LQS Algorithms  
The "L.Q.S." algorithm is an iterative method based 
on non-linear optimization It is well known (Blondel 
et al., 1994)] that there is no theoretical result 
guaranteeing the existence of static output or full 
state feedback control stabilizing simultaneous M 
linear models as given in (3). We propose in this 
paper two approaches witch converge to a optimal 
stabilizing solution Kopt (if it exists). 
 

3.2.1. “α−stabilization” algorithm 
The main problem in a multi-model stabilizing 
algorithms is to find an initial regulator which 
stabilizes all considered models. To avoid such 
difficulty “α-Stabilization” technique is used to shift 
the eigenvalues of unstable models such that the 
algorithm could start with a zero regulator. Figure 3 
give the different stages of the proposed algorithm, 
which could be summed up as: 

a- Initialize the algorithm by,  K = 0Nu*Ny  



     

b- Determine the  scalar α for which the 
regulator K asymptotically stabilizes 
the M models  (Schmittendorf, 1989) 
(Ai+αI, Bi, Ci): 

 α λ ε= − − −
≤ ≤
≤ ≤

max(Re( ( )))
1
1

j N
i M

j i i i
i

A B KC  (10) 

With 0 1< <<ε  
Indeed, α translates the closed-loop eigenvalues in 
the left haft plant. 

c- A local minimum of the I0(K) criterion 
is find by the Simplex method (Nelder 
and Mead, 1965). This leads to a new 
regulator Km which αm stabilizes the M 
systems with αm<α (Bourles, 1986.) 

d- Go to step (b) and repeat this algorithm 
till α=0. Then The regulator Kopt 
stabilizes the original models (Ai, Bi, 
Ci) 

This algorithm has been successfully tested on 
several examples (Bonnassieux, 1998). However, it 
rather slow to converge and it could stop at a local 
minimum. 
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Figure 3 :α-stabilization algorithm 

 
 

3.2.2. “Simulated annealing” algorithm 
Another approach can be used to define the initial 
stabilizing regulator: the simulated annealing. This is 
a Monte Carlo approach for minimizing such 
multivariate functions. 

a- Define the initial regulator K=0Nu*Ny and a 
high temperature Tini=109. 

b- Define the cost function: 
 )))CKBA((Re(maxN_Cost

isiij
Mi1
Nj1 i

−λ=
≤≤
≤≤

 (11) 

The simulated annealing process lowers the 
temperature by slow stages until the system “freezes” 
and no further changes occur. At each temperature 
the algorithm must proceed long enough to minimize 
the cost function. This is known as thermalization. 

c- At each temperature, a new regulator is 
constructed by imposing a random 
displacement. 

 Ks=Ks+2*0.1*ξNu*Ny  (12) 

ξNu*Ny is a matrix with elements ξi,j where  
–1 < ξi,j <1  i=1,…,Nu  j=1,…,Ny 

 
� If the cost function of this new state is 

lower than that of the previous one, the 
change is accepted unconditionally and the 
system is updated.  

� If the cost function is greater, the new 
configuration is accepted probabilistically 
with the condition defined by (13). This is 
the Metropolis step, the fundamental 
procedure of simulated annealing  

 
 ]1,1[)

T
)1j(N_Cos)j(N_Costexp( −∈ξ∀ξ<+−   (13) 

 
This procedure allows the system to move 
consistently towards lower cost function, yet still 
`jump' out of local minima due to the probabilistic 
acceptance of some upward moves. If the 
temperature is decreased logarithmically, simulated 
annealing guarantees an optimal solution: an optimal 
L.Q.S. regulator Kopt  
Moreover the time for convergence is much less that 
the α-stabilization algorithm. For several examples, 
the computation time has been divided by a factor 
100. 

4. REGULATOR SYNTHESIS  

4.1. Closed-loop objectives 
First, we note that, using the Park model of a 
synchronous drive, the torque is linear of Iq when the 
current Id is zero. 
 Γ Φ Φ= − + ≅p L L I I p Id q d f q f q[( ). ]. . .   (14) 
Thus, in the sequel, instead of tracking the motor 
torque, we will control the current Iq, Id being tracked 
to zero. 
To design an efficient robust regulation, we define 
the following robustness and performance criteria: 
� Tracking the step reference without any static 

error, 
� Assuring the satisfaction of settling time and 

overshoot for all parametric variations. 
� Achieve a delay margin of greater than 1.5 

switching periods. 
� Achieve a modulus margin higher than 6 dB 

to assure robustness with respect to non-
linearities. 

� Stability robustness of the closed-loop for the 
system modes despite parametric uncertainties 
and low switching-sampling frequencies. 

� Robustness with respect to the neglected 
dynamics.  

4.2. Topology of the robust controller 
Since the controller has to be implemented in real 
time, its topology must be as simple as possible. The 
reference tracking (Iq, Id) criterion imposes an 
integrator on each error (εq, εd). The gain K is 
therefore a 4*2 real matrix as could be seen in Figure 
4. 



     

  
Figure 4: Topology of our controller 

4.3. The M parametric models 
To satisfy all design criteria, an iterative approach is 
used to introduce at each step the worst-case model. 
For our application only three parametric models 
were necessary to synthesize a stabilizing optimal 
controller for the whole set of 27 models.  
These three models )3,2,11(,i =∀  (Ai, Bi, Ci) 
correspond to the following parameter values: 
 [ ]

[ ]
[ ]mH2,4L;mH4,1L;9,0R3nModel

mH2,4L;mH7,0L;3,0R2nModel
mH4,1L;,mH4,1L;6,0R1nModel

qds

qds

qds

==Ω==°
==Ω==°
==Ω==°  (15)

   

4.3. The performance models 
The settling time and the damping ratio are translated 
by means of two performance models for each 
parametric model (Ai, Bi, Ci): 
� The settling time is imposed when 

stabilizing the synthesis model (Ai+α.I, Bi, 
Ci). As we can see in (Figure 5), the impulse 
response of each output decreases faster 
than e-αt (the real part of the closed loop 
eigenvalues is lower than -α    ( Figure 5) 

� The damping ratio is imposed when 
stabilizing the synthesis model ((j+βi)Ai, 
(j+βi)Bi, Ci) where βi>0 Then, the real part 
of the closed-loop eigenvalues of the ith 
system is included on a (-ξi, ξi) sector, with 
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Figure 5: Eigenvalues locus and pulse response of 

the ith closed loop model. 

 

4.5. The  Mi synthesis models 
Thus, the LQS method leads to 6 synthesis models 
(two performance models for each parametric 
models). 
 

model γi αi βi 

n° 1 1 300 0 
n° 1 0.001 0 0.7 
n° 2 1 300 0 
n° 2 0.001 0 0.7 
n° 3 1 300 0 
n° 3 0.001 0 0.7 

 
� The γi weighting coefficient assures a 

domination of the settling time ratio over the 
damping ratio. 

� The coefficient αi assures a settling time 
near 5 ms. 

� The coefficient βi assures an overshoot 
lower than 20 %. 

 

4.6. The weighting matrices  

For the L.Q.S. method, we choose Ri as the identity 
matrix. The robustness with respect to neglected 
dynamics is obtained through the delay margin 
(Anderson and Moore, 1989). To achieve such 
requirement the diagonal elements of Qi matrix 
associated with the currents are set lower those 
associated with the regulator dynamics. 
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5. ANALYSIS AND EXPERIMENTAL 
RESULTS  

5.1. Robustness margins and µ-analysis 
To check the efficiency of the designed controller, 
modulus and delay margins were computed for the 
27 parametric models (§II.2).  
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Figure 6: modulus and delay margins 

 
As it can be seen in Figure 6, the modulus margin 
provides an efficient robustness to non-linearities 
and is always ≥4 dB. The delay margin (≥4 ms) 
assures stability robustness despite the PWM and 
the computation delays.  
 
In a second time, µ-analysis is used for global 
robustness analysis. Introduced by Doyle in 
(Doyle,1982), structured singular value, also called 
µ value, has proved to be a powerful tool for 
system robustness analysis. 
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Figure 7: Generalized plant 

By linear fractional transformation, we can define for 
our system and parameters variations, a generalized 
plant.  Where P(s) includes all the known parts of the 
system and ∆ all the uncertainties. Assuming ∆ has a 
particular structure i.e. ∆∈E∆ with: 
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Where R and C are respectively the sets of real and 
complex numbers.  
Structured singular value µ of the system P is defined 
by 
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µ value is the inverse of the size of the largest 
uncertainty capable to turn the system unstable. 
Assuming that ∆ is of H∞ norm inferior to one, 
robustness is guarantee if µ < 1. 

 
To build the generalized plant, as defined on Figure 
7, we choose 3 pairs of weighting 
function/uncertainties. 

� 

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
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δ

δ
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Modelized by a multiplicative 
uncertainty the effect of parametric 
variations on state matrix A and B. 

� The delay of the inverter can take into 
account by an input multiplicative 
uncertainty (δond) on each voltage Vd and 
Vq. Then we defined the weighting function 
Wond(s): 

 2x24
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� The closed-loop system performance can be 
describe by output multiplicative 
uncertainties and the weighting function 
Wperf(s): 
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Finally, the following generalized plant is obtained:  
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Figure 8: generalized plan with structured 
uncertainties 

On Figure 9 are shown upper and lower bounds of µ 
for a large scale of angular frequency. Upper bound 
is less than one, showing that robustness constraints 
are satisfied.  
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Figure 9: Upper and lower bounds of µ 

5.2. The experimental results 
 
The experimental benchmark presented in Figure 10, 
is composed, for the power part, of a 2.2 kW 
synchronous servomotor with sinusoidal winding and 
flux concentrator rotoric structures associated with a 
three phase MOS inverter (120V, 30A) with 150 ns 
dead times. Currents are measured by two Hall effect 
sensors and the mechanical position by a 1024 pt. 
incremental optical encoder. The control board, built 
around a 32 bit 40MHz floating point Digital Signal 
Processor (Motorola DSP96000) and 8 bit Analog-to-
Digital converters, Digital-to-Analog converters and 
8 bit timers, achieves the PWM MOS-grid signals. 
 

 
Figure 10: experimental benchmark 



     

Experimental results are shown in Figure 12 & 13. 
The measured currents are given for two 
temperatures and two magnetic states. These results 
prove the good behaviour of the proposed controller. 

  
Figure 11:  experimental result for currents Iq and Id 
for 2 thermal states (290°K& 350°K), with magnetic 

saturation 

 

  
Figure 12: experimental result for currents Iq and Id 

for 2 thermal states (290°K& 350°K), with linear 
magnetic state  

 

6. CONCLUSION 
The Linear Quadratic Simultaneous method for 
controlling a synchronous drive associated with a 
PWM inverter assures good stability, high 
performance and robustness, despite high parametric 
variations. The time delay due to the PWM and the 
computation time has been taken into account.  
The simulated annealing algorithm allows a very fast 
and optimal convergence despite local minima. 
To analyze the effects of parameter uncertainties, a 
generalized model including real uncertainties, 
suitable for µ-analysis, has been developed. The 
robustness and performance of this 'L.Q.S.' is 
checked by µ-analysis. Experimental results show 
the efficiency of this approach 
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