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Controller performance monitoring and diagnosis is beneficial to ensure profitable 
implementation of control in practice. The goal of this paper is share the experience of the 
author with respect to useful technology that has been developed in this field. Particular 
attention is given to the problem of monitoring industrial multivariable controllers. 
Industrial examples and opportunities for further research are presented.    
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1. INTRODUCTION 
 
Automated process control (APC) has long been 
recognized as beneficial for improved process 
operation. With the increased penetration of process 
control technology in recent decades it has become 
evident that the realization of APC benefits require 
that routine monitoring and maintenance be carried 
out both effectively and efficiently. The reasons 
include incorrect a priori design assumptions, 
changing (time variant) process operating conditions, 
process nonlinearities, and changes/problems 
associated with instrumentation and equipment.    

 
The last decade has seen significant attention 
devoted to this topic by both the academic and 
industrial communities. Evidence of this was shown 
at the Chemical Process Control 6 Conference (CPC 
6) (Tucson, 2001) where an entire session was 
devoted to the topic of controller performance 
monitoring. Readers interested in an excellent source 
of review material are asked to refer to these papers 
(Harris and Seppala, 2001; Desborough and Miller, 
2001; Shah et al, 2001).  The purpose of this paper is 
to provide feedback on some of the relevant work 
that we have found useful in our business practice. 
Some discussion will be provided on the state of 
monitoring with respect to single input / single 
output (SISO) control (e.g. base level). Particular 
attention will be given to the problem of monitoring 
optimizing multivariable controllers. Examples will 
be demonstrated with data from industrial 
applications. It will be shown that, despite recent 
significant advances, there still exists research 
opportunities for improved technology for controller 
monitoring and diagnosis in practice. This is 
especially true for the optimizing multivariable 
controller problem. 
 
 

2. UPTIME 
 
Historically, loop uptime, or in service factor, has 
been the most frequently utilized statistic for 
monitoring the performance of control systems. 
Uptime reporting makes minimal use of available 

process data.  It can be viewed as the extreme form 
of data compression with respect to controller 
performance monitoring.  Only the state of the 
controller (On/Off) is used to calculate the statistic. 
Nevertheless, this first, low level information is 
essential in any effective controller monitoring 
strategy.  Loops with low uptimes are usually given 
higher priority with respect to maintenance work. 
The most frequent causes of low loop uptime are 
often associated with instrumentation, actuator, and 
process equipment problems.  
 
While controller uptime information can always be 
considered essential for monitoring performance, 
experience has shown that this information alone is 
not sufficient to ensure optimal performance. Loops 
operating at uptimes greater than 95 % are often 
encountered which yield stable, but poor dynamic 
response characteristics. Miller and Desborough 
(2001) carried out a comprehensive audit of 
thousands of industrial base level control loops. Their 
results led to the conclusion that, despite high 
uptime, there was a significant opportunity for 
improved performance with a large percentage of 
loops investigated. Another issue that poses problems 
with uptime reporting is the lack of consistency with 
its calculation. This is especially true for the 
multivariable case. In this case, some weighted 
average of CV and MV uptime is used. In extreme 
cases, uptime is reported based on the controller 
being on, with complete disregard for the number of 
inactive CVs and MVs. 
 
The discussion that follows will be concerned with 
statistical information that will serve to compliment 
the limited information provided by controller 
uptime.  
 
 

3. SINGLE CV/MV CONTROL 
 
3.1 Preliminaries 
 
The single input / single output (SISO) controller 
problem has been the most thoroughly investigated 
case, and where most of the applications experience 
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lies. The unconstrained, SISO case can be described 
by  
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where, at sampling interval t,  yt is the control output 
(CV), ut is the manipulated control input (MV), di,t is 
an i’th measurable disturbance, υt represents the net 
additive effect of noise and unmeasured disturbances 
on the CV, st is the CV set point, and et is the 
controller error from set point. )( 1−zP , 

)( 1−zC , )( 1−zDi , and )( 1
,

−zC if are the discrete time 
transfer functions representing the effect of ut, et, and 
di,t on either the CV or MV response. Using these 
equations, The closed loop CV error from set point 
and MV response will be 
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For the purpose of SISO controller performance 
monitoring and diagnosis, the dynamic response 
characteristics associated with (4) and (5) are of 
concern.  
 
 
3.2 ARMA Time Series Modelling  
 
The net dynamic response associated with et can be 
described by an Auto-Regressive, Moving Average 
(ARMA) time series model of the form 
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where at is a white noise time series model arising 
from any zero mean distribution.  These models can 
be easily identified from process response data using 
minimum variance, prediction error criteria (Box and 
Jenkins, 1976).  A similar time series model can be 
identified for ut, or measured loop disturbances. The 
impulse response for (6) provides some average et 
response for the data window of observation. The 
dynamic characteristics of the estimated models are 
determined by the trend features that contribute most 
to the variance of the trend. As can be observed from 
(4) and (5), the estimated ARMA model properties 
will be determined by both the relative magnitudes 
and dynamic features of υt, st and di,t’s in the window 
of observation, and transfer functions 

)( 1−zP , )( 1−zC , )( 1−zDi , and )( 1
,

−zC if . 
 
ARMA model average response estimation has been 
found useful in practice.  It is now reaching the point 
of widespread use, particularly with respect to SISO 
base level applications. Our experiences have led us 
to conclude the following: 
 
• Average response modelling greatly facilitates 

the task of loop monitoring and auditing. 
Performance can be easily accessed in a very 
short time span with software that automates 
model estimation and provides the results in a 

user-friendly fashion. We have seen a 
tremendous reduction in manpower effort 
relative to the sole use of visual trend analysis 
and intrusive procedures. 

• Relative to auto-correlation and spectral 
analyses, ARMA average response modelling 
has been considered far more straightforward to 
use. The former procedures, while providing 
similar information, have been considered far 
more challenging to interpret by control 
engineers in the chemical engineering field. 

• Performance information that was not readily 
apparent has been exposed with theses analyses. 
Hence, significant opportunities for performance 
improvement were identified. It has also been 
helpful in arriving at optimal loop tuning. 

• The success of using this method in practice 
requires a critical threshold of training. It does 
not replace process know how or use of trend 
data. It compliments this information. The 
results of the analyses are a function of data 
chosen. Hence, the data must be informative, 
requiring good judgement on the part of control 
engineers carrying out the analysis. The results 
can also be a challenge to interpret when 
significant multiple disturbance sources are 
present, and when time variant conditions 
prevail. Nevertheless, our experience has been 
that the information provided is beneficial 
relative to its limitations and initial training 
hurdles.  

 
 
3.3 Minimum Variance Estimation 
 
Historically, standard deviation monitoring of CV 
error from set point has often been carried out, and 
found useful. From the perspective of controller 
performance monitoring, experience has shown this 
information can be both limited and misleading. Set 
point error standard deviation is a function of the 
magnitude of loop upsets. Changes in this statistical 
information can be a function of changing process 
conditions, and may not necessarily reflect 
performance of a controller. During periods of large 
plant upsets, higher standard deviations are to be 
expected despite the fact that controllers are 
responding as designed. During calm periods of 
operation, low standard deviations can be observed 
with poorly design controllers.  
 
Harris (1989) showed that the lowest achievable 
variance under feedback control, referred to as the 
condition of Minimum Variance Feedback Control 
(MVC), can be easily estimated by fitting an ARMA 
time series model to et data. Relative to (6), the 
estimated MVC response is given by  
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where k is the whole number of sample periods of 
continuous time delay, tMVCe , is the estimated MVC 

response, and 2
mvcσ is the estimated MVC closed loop 

variance for the data window of observation. By 



     

making use of 2
mvcσ , the estimated error from set 

point standard deviation can be compared to this 
theoretically lower bound that will change according 
different process/disturbance conditions.  This 
relative comparison of statistics can be viewed as 
normalization in some sense with respect to 
controller performance. This has lead to the 
introduction of various variance ratio statistics that 
have been advocated for performance monitoring 
(see references). 
 
There has been considerable hoopla, particularly by 
academics, concerning the usefulness of MVC with 
respect to monitoring controllers. Relative MVC 
standard deviation/variance monitoring is hardly as 
informative as the information provided by more 
detailed ARMA average response curves. Our 
experiences with this type of analysis are listed 
below. 
 
• The MVC lower bound can be useful for 

separating control related problems from process 
ones. Situations arise when problems external to 
a particular control loop are yielding higher 
variation than can be accepted (e.g. upstream 
disturbances). Higher variation without 
accompanying poor relative MVC performance 
strongly indicates that root cause corrections 
should investigated external to the control loop. 

• Automation of the MVC assessment, along with 
other statistical information, can serve as a first 
pass-monitoring layer to bring obvious problems 
to immediate attention. By itself, it does not 
provide sufficient useful information. 

• The MVC lower bound can assist in setting 
reasonable performance targets.  Specification of 
overly optimistic and conservative performance 
targets can be avoided with this information. 
MVC information can also be beneficial in 
incentive studies.   

 
 
 3.4 SISO Example  
 
To illustrate the application of these concepts 
consider some data collected from an industrial SISO 
base level controller as shown in Figure 1. The top 
plot shows the CV trend (black) and its set point that 
is fixed at a constant value. The second plot shows 
the MV trend. Since the set point is constant, the goal 
will be to evaluate controller disturbance regulation 
in the data time range. The significant drifting MV 
trend indicates that disturbances are present. The 
third plot shows sliding window calculations of CV 
error from set point (black) and the MVC estimated 
standard deviations (grey). The width of the bars 
indicates the time span of the sliding windows used 
to carry out the standard deviation calculations. The 
dashed line in this plot shows the required upper 
bound limit for the CV error from set point that must 
be met. The localised, windowed standard deviation 
statistics indicates that performance throughout the 
entire data range appears to been consistent. The 
relative ratios of the MVC to CV error from set point 
standard deviation bars indicate performance not far 

from minimum variance feedback. However, the 
standard deviation performance specification is not 
being met. The results shown in the third plot clearly 
indicate that the performance specification would not 
have been met even if the tightest possible, minimum 
variance feedback control were applied.  

CV

MV

CV ERROR & MVC STD  
Fig. 1. SISO Loop Response 

 a) CV/Set Point Trend; b) MV trend; 
c) CV error & MVC standard Deviations 

 
More insight can be gained by looking at the average 
response curves for both the CV error response (top) 
and MV trend (bottom), as shown in Figure 2. 
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Fig. 2. Average Responses 

 a) CV Error From Set Point; b) MV trend 
 
The estimated average response curves were 
generated by fitting ARMA models to the entire data 
set. In Figure 2, the black curves indicate the 
estimated average response trends while the grey 
lines provide a 95% confidence interval. The rapid 
decay of the CV error relative to the time scale of 
concern clearly indicates tight control. For this 
process, there is no MV/CV deadtime. Hence, the 
absence of MVC control from the information in 
Figure 1 is confirmed by the average response 
analysis since CV error does not decay to zero at the 
first sampling interval. However, the response is not 
far from this condition. The MV average response 
can be observed to be very good. The MV rises 
rapidly close to its final steady value with only a 
slight amount of overshoot.   
 
These analyses lead to the conclusion that the 
performance of the controller is good. The problem 
with the performance specification not being met 
cannot be addressed by a better feedback controller. 
Disturbance variance reduction at the source in this 
case needs to be investigated. This conclusion would 
not be easily arrived at without the analyses carried 
out. 
 



     

 
3.5 Closed Loop System Identification   
 
While ARMA time series modelling has been proven 
useful in practice, the information it provides can be 
limited because the contributing effects of all loop 
disturbances and set points become confounded. 
Kozub (1996) advocated the use of closed loop 
identification to take advantage of measured loop 
disturbances to identify models of the form: 
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The interpretation of each of these transfer functions 
can be easily arrived at by comparing (9) with (4). 
Equation (9) can be used to provide predicted 
average responses to individual, measured 
contributions, as well as the residual unmeasurable 
disturbance/noise contribution. This information can 
provide far more insight about the performance 
properties of a controller. Refer to Kozub(1996) for 
an example application to industrial data. Closed 
loop identification has been proven useful to us, and 
the concept extends easily to multivariable problems. 
The lack of more reported use of closed loop 
identification remains a mystery to this author.  
 
 

4. MULTIVARIABLE CONTROL 
 
The state of research and applications experience in 
the area of multivariable controller performance 
monitoring is much less evolved compared to the 
SISO case. In this section, some opinions/feedback 
will be offered on this subject based on our 
experiences.    
 
 
4.1 MIMO Extension of MVC 
 
While the concept of MVC is straightforward in the 
SISO problem, the multivariable extension is far 
more challenging from both a theoretical and 
applications viewpoint. Huang and Shah (1999) have 
advocated the use of a weighted output error variance 
metric for MVC estimation since it is closely related 
to the cost function employed in multivariate, 
unconstrained linear quadratic controller designs. 
The solution for this case is non-trivial, and requires 
the estimation of a unitary interactor polynomial 
matrix from the matrix transfer function, and the 
solution of a polynomial, multivariate diophantine 
equation. Readers interested in the details are asked 
to refer to the cited reference.  
 
For the multivariable case, the use of a weighed LQ 
MVC measure is somewhat controversial, and has 
not been widely applied for various reasons.  Some 
of the issues are listed below: 
 
• Significant process transfer function 

information, other than deadtime alone, is 
needed relative to the univariate case.  The 
integrity of the MVC calculation in the presence 
of modeling error is unknown. 

• The output weighted, linear quadratic cost 
function is often viewed as a convenient 
mathematical formulation to arrive at some 
analytical solution for a feedback controller.  
Hence, the output LQ weights are often tuning 
weights that don’t truly reflect relative 
performance in practice. One important practical 
concern with respect to online implementation is 
that these weights can change significantly, 
depending on where CVs and MVs are 
positioned relative to constraint limits. This 
makes the computation of MVC more of 
challenge to carry out because of time variant 
weighting changes. 

• Most industrial multivariable controllers are 
non-square, finite horizon, constrained model 
predictive controllers with simultaneous 
optimization carried out with the steady state 
gains.  The optimization problem is typically 
solved using a linear program(LP).  Although 
these controllers have some features in common 
with L.Q. control, important significant 
differences must be taken into account when 
monitoring these applications. This will be 
illustrated in an example that will follow bellow. 

• At this time, there is an absence of readily 
available, quality/friendly code for out carrying 
out the advanced MIMO MVC calculations. 
Adequate software is needed for practitioners to 
get a better feel for the value of the analysis on 
commercial applications. 

 
 
4.2 MIMO Times Series Average Response  
 
The SISO idea of fitting CV error trend data to time 
series models for the purpose generating average 
response information has been extended to the 
multivariable/multi-loop problem. Harris & Seppala 
(2001) discuss the use of vector auto-regressive 
(VAR) time series models of the form 
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where et is the error from set point vector, at is a zero 
mean white noise vector, and )( 1−Φ z is an auto-
regressive, full matrix polynomial. For multivariate 
and multi-loop systems, impulse response analysis 
can potentially provide valuable information related 
to multivariate interactions and propagation of the 
disturbances relative to their effect on the outputs. 
An application of VAR to industrial data is shown by 
Harris & Seppala (2001) where the usefulness of this 
analysis is demonstrated. While limited work and 
experience has been carried out with VAR, and 
closely related approaches (e.g. subspace), it is the 
opinion of this author that this approach is useful for 
continued research and evaluation.  
 
 
4.3 Example MPC Control  
 
To exemplify some of the issues related to 
multivariable controller monitoring, consider some 
data acquired from a commercially available MPC 
controller. The characteristics of this controller are: 



     

number of CVs is 18; number of MVs is 10; and the 
number of feedforward disturbances is 4. As far as 
industrial multivariable controllers are concerned in 
the petrochemical industries, this controller can be 
considered small. Nevertheless, for the purpose of 
this paper, it is sufficient for illustrating some 
important points. The CV versus MV step response 
model used by the controller is shown in Figure 3. 
Blacked out boxes indicate a zero CV/MV response. 
The time span is 90 minutes for the responses. As 
can be seen in the Figure, the multivariate model is 
sparse, which tends to be common with most of these 
applications. Similar step response models for the 
CV/feedforward responses were employed by the 
controller.  
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Fig. 3. CV versus MV Step Response Models 

 
The MPC controller has both a steady state LP 
optimization layer and a multivariable feedback 
control layer that operates at the same execution rate. 
The LP utilizes the gains from the step response 
model with LP cost factors specified. High and low 
limit constraints for all CVs and MVs are specified, 
and can be adjusted during operation.  The feedback 
controller is an unconstrained MPC formulation. 
Hence, constraints are dealt with at the projected 
steady state by the LP that passes targets to the 
feedback controller. Approximately, two weeks of 
data were collected for this application. The data was 
considered representative of routine operation.  
 
Figure 4 provides information on the % time that 
each CV (top) is being driven to a constraint. The 
bottom plot show the % time that each MV is not set 
to a constraint, and therefore, available for feedback. 
From the CV information, it is apparent that only 5 
to 6 CVs are driven to LP limits by the controller. 
The remaining CVs float between high and low LP 
limits. From a feedback controller standpoint, a CV 
driven to an LP limit can be considered to have a set 
point during these periods as specified by the 
constraint bound. The CVs at LP limits are 
intuitively more important from a monitoring 
perspective relative to CVs which are floating within 
constraint bounds. During floating periods, we have 
found from experience, that the associated LP targets 
tend to follow/track the CVs within bounds. These 
CVs are often assigned 0 (or near 0) weighting in the 
feedback controller which essentially puts them into 
an open loop state. Furthermore, the L.P. targets tend 
to be noisier relative to their CVs due to the inherent 
poor steady state projections.  Hence, from a 
monitoring viewpoint, error from LP target during 

these periods is essentially meaningless, or relatively 
unimportant. Nevertheless, CVs trends that 
erratically change between floating and LP limit 
states are a characteristic that is important to detected 
and monitor. From the MV bar plot (bottom) in 
Figure 4 it can be observed that 4 to 5 MVs appear to 
be significantly free from constraints for feedback 
control. The remaining MVs appear to be fixed at LP 
constraint limits, and therefore, remain at an open 
loop state.  
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Fig. 5. Dynamic Constraint Activity Trends 
a) Number CVs Time at L.P. Limit Trend 
b) Number MVs not at  L.P. Limit Trend 

 
Figure 5 provides additional insight into the 
performance of the controller LP layer. The top plot 
shows the number of CVs being driven to an LP 
bound as a function of time. The bottom plot shows 
the number of MVs free for feedback control (not at 
limit) as a function of time. This information shows 
how the LP is driving the dimension of feedback 
control as a function of time. The dimensionality can 
be observed to be swapping from mainly 2, 3, and 5, 
with 3 being the most frequent case (3 by 3 control). 
The figure also reveals that considerable chattering is 
occurring with respect to the controller dimension. 
Based on experience, this can be a cause for concern 
because often the economics/plant conditions are not 
expected to change at such a rapid time scale.  
Overall, these two simple-minded plots have 
indicated that there may be LP stability problems. 
Furthermore, the dimension of the controller seems 
to vary mainly between 2 to 4, involving mostly 6 



     

and 5 CVs and MVs respectively. If the data is truly 
representative, the implication of this observation is 
that there might be an opportunity to prune the 
controller size, which would yield a smaller, simpler 
controller to maintain. The information is also 
helpful for prioritizing CVs and MVs for monitoring 
analysis.   
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Fig. 6. CV number 9: a) Trend Plot; b) Average CV 

Error Response (LP bound only) 
 
Figure 6 (top) shows trend information associated 
with CV 9 in the controller. The CV trend is 
indicated in black. The LP high and low limits are 
indicated in gray. The LP target is shown by the (--) 
trend. This CV is the second most frequent CV (see 
Figure 4) that rides LP limits. Using only data when 
the LP target (set point) is at a bound the average 
error response, as discussed in section 3.2, can be 
estimated. This is shown in the bottom plot in Figure 
6. The performance of the controller in holding the 
CV at the upper target can be observed to be poor. 
The settling time is about 400 minutes, which is very 
sluggish relative to the 90-minute open loop step 
response models. As discussed earlier, inclusion of 
the data during CV floating target periods yields 
misleading information.  A similar dynamic response 
analysis can be carried out on the remaining 5 CVs 
that spend significant time being driven to LP 
bounds. Based on our experiences, this analysis has 
proven to be very useful, provided the state of the 
CV with respect to the LP is accounted for. 
 
The results from this relatively simple example serve 
to show that the scope of MIMO controller 
monitoring is far more involved relative to the SISO 
case. Some important issues for the reader to 
appreciate are: 
 
• The amount of the data that needs to analyzed 

and interpreted accurately is nontrivial. 
• The LP layer, being integrated with the feedback 

controller, cannot be ignored when carrying out 
monitoring analysis. Both its dynamic properties 
and effect on the feedback layer must be 
examined. 

• Models are always available for analysis. 
Although this issue was not discussed here, it 

would be highly beneficial to make effective use 
of this information. 

• Some of the univariate concepts have been 
shown to extend to these problems, However, 
issues, such as MIMO MVC need to be 
reconsidered relative to the framework of 
commercial MPC in order to be proven useful. 

 
It is the opinion of the author that far more research 
is needed to find effective solutions to MIMO 
controller monitoring. The role of MIMO 
performance is felt to be important to the future of 
MPC control. The optimization formulation and size 
of these controllers in practice has been somewhat 
controversial in the MPC community. Quantitative 
monitoring has the potential of providing some 
important insight in addressing these issues. 
 
 

5.  CLOSING REMARKS 
 
Controller performance monitoring is important to 
ensure the success of process control technology. The 
information presented in this paper has shown that 
useful technology has been proposed that is now 
becoming adopted in practice. While the significant 
progress has been made with univariate (base level) 
control, far more challenging research opportunities 
still remain to address the practical issues concerned 
with industrial multivariable control.    
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