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Abstract: In this contribution we place ILC in the realm of numerical optimization. This
clarifies the role played by the design variables and how they affect e.g. convergence
properties. We give a model based interpretation of these design variables and also a
sufficient condition for convergence of ILC which is similar in spirit to the sufficient
and necessary condition previously derived for linear systems. This condition shows that
the desired performance has to be traded against modeling accuracy. Finally, one of the
main benefits of ILC when non-minimum phase systems are concerned, the possibility of
non-causal control, is given a comprehensive coverage.
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1. INTRODUCTION

Tterative Learning Control (ILC) has proven to be
a, useful tool for feedforward based tracking prob-
lems where high precision is desired and where
the system is so complex that normal feedback
control is insufficient, c.f. robotics. The method
can be applied when the reference signal is given
over a finite time interval and thereafter repeated.
The idea is to use information about the con-
trol error from previous iterations to improve
performance in the next iteration (Moore, 1999).
Many publications have been written on ILC and
(Moore, 1993), (Moore, 1999) and (Norrlof, 2000)
provide good introductions. A commonly used
example is a robot arm, see e.g., (Norrlof, 2000),
where the trajectory of movement is repeated over
and over again.

The system is given by
yr(t) = P(ux(t)) (1)

where ug(t) is the input to the system P and
yx (t) is the corresponding output, both at the kth
iteration. Here, P is a general discrete-time single-
input single-output (SISO) system which may be
linear or a nonlinear!. The signal yu(t) is the
desired output and is given over a finite interval
t € [1,N]. Povided it exists, we will denote
the corresponding input by wug(t), ie. yq(t) =
P(uq(t)).

! With some abuse of notation we will use P(u(t)) to
denote the output of a nonlinear dynamical system with
u(t) as input.

The system input at the next iteration, ug41(t), is
computed as a function of the desired output y4(t)
and the system output y(t) at the kth iteration.
The main objective is to iteratively refine the
input ug(t) such that yx(t) becomes close to yq(t).

Remark 1: Note that if, at convdigence, u
uq(t),Vt € [1, N] and if the closed loop system is
one-to-one thét) is the inverse of the system

given yq(t).
Remark 2: The system is usually already under

some kind of feedback control. In this case P
denotes the closed loop system.

2. ILGERAIRID AND NOTATION
A first order ILC algorithm can be described by

up1(t) =Qu k(1) + Le(t)) (2)
ex(t) = ya(t) — yr(t)

wher€) andldenotes linear or nonlinear opera-
tors which can be seen as design variables chosen
by the user. Notation such as wy will be short-
hand for  ;}2,.

With uf = [ui(1),...,u(N)]T € RAwd
defined similarly, the algorithm in (2) can also be
described in matrix notation as

upyr = Qn (“fcv + LNekN) ©)

wher€) n, Ly, € RYFSr example, with =
L§) q( denotes the time-shift operator) being

causal and linear time-invakiant, then p is given
by a lower Toeplitz matrix based on the impulse

coefficientfpf



3. ILC FROM AN OPTIMIZATION
PERSPECTIVE

In this section we will take a fresh look at the
problem of finding a good feedforward control
sequence.

3.1 Numerical optimization

One way to determine a suitable input would be
to form some cost function based on the difference
between y; and y such as

1
V(") =5lya —y"I?
and try to minimize this function using gradient

based numerical optimization methods. This leads
to algorithms of the type

av (u™

upyr = uy — 7 R diN )
N yN N N
=up +m Reg 5 a —y7)

where the step-size v is a scalar and Ry is some
matrix. It is well known that the choice of step-
size and the matrix Ry has a profound impact on
the properties of the above algorithm.

Now assume that the system is linear such that

y" = Pyu® where Py is a lower Toeplitz matrix
formed from the N first impulse response coeffi-

cients of the system. Then dy” /du™ = Py and
hence

ulpy = ull + v RiPn(y) — ")

Here we see clearly that since knowledge of Py
is required, the algorithm cannot be used directly
unless the system is known. Below we will discuss
two approaches to circumvent this problem.

3.2 Iterative Learning Control

With v, = 1 and Ry = Ly Pﬁl we recover the
ILC algorithm (2) with Q@ the identity. Hence we
can interpret ILC in the framework above with a
very special choice of matrix Ry,.

A common choice of Ry, is to use the inverse of the
Hessian of V which in the linear caseis (Py P%)™1.
This gives

N N -1, N _ . N
Uppr =up + Py (va —y)

which converges in one step since the cost function

is quadratic in " when the system is linear. In

ILC this corresponds to using Ly = Pgl and Qn
the identity.

When the system is nonlinear, the cost function is
no longer quadratic in u?¥ and even if the Hessian
is used, convergence in a finite number of steps
cannot be expected.

An interesting observation here is that if the ILC
algorithm is modified slightly, then convergence
in one step can also be obtained. Instead of using
the control error e (t) explicitly as in (3) the ILC
algorithm can be written as

upyr = On(up +Lnv(yd) — La(yi)  (4)
For a linear L this makes no difference compared
to (3) but for a nonlinear L this is not true. Taking
Qn identity and Ly (yY) = Pyt (ylY) = up gives
convergence in one step.

3.8 Design variables in ILC

From the previous discussion in this section, it
should be clear that, in terms of convergence rate,
Ly should be taken as an inverse model of the
system P. In the next section we will see that
Ly can be given this interpretation also from a
stability point of view. Without loss of generality

we will set Ly = P&l so that
uphy = Qn(ug + P ) - PR wR)  (5)

Thus () and P are the two design variables and in
the following we will examine how they influence
stability and convergence of the algorithm. Due to
lack of space we will not discuss the inclusion of a
step-size parameter in the algorithm.

4. CONVERGENCE POINTS

We will begin our analysis of ILC by looking at
the possible convergence points of (5). We will
use U etc to denote the convergence points of
the signals. Using operator notation and assuming
that @ = 1 gives that P 1(ya) = P 1(yo)
and hence, if P! is bijective, that y,, = yq,
i.e. perfect tracking. In this case, of course, the
problem must be well posed in the sense that there
must be an input trajectory such that the output
matches the desired trajectory yq.

If @ # 1 but still linear, then
uoo(t) = Q@) (oo (t) + P (9a(t)) = P (yoo (1))

_ Q(q) S5—1 AH—1
= 1—7Q(q)(P (ya(t)) — P~ (yo (1)) o

This corresponds to the feedback system in Fig.

1. If in addition P~! and P are linear we get that
the error ex(t) = ya(t) — Yoo (t) can be written as

1
= - ya(t).  (7)
1+ 1?(81(),1) P-1(q)P(q)
From this we see that both ¢ and P-1 influence

the tracking accuracy. Notice that even if P=P
the tracking error will be non-zero when @ # 1.

€oo(t)

In general a small tracking error at a particular
frequency can be ensured by letting @ be close to
1 at that frequency. From now on we will assume
that @ is linear.

yd(t) R Q(q) Uoo (t)
- pl — " 1-Q@
R Yoo (t)
Pl e P(use(t))

Fig. 1. Block diagram of the ILC algorithm as
k — oo in the case @ # 1.

5. CONVERGENCE RESULTS FOR LINEAR
SYSTEMS

The ILC convergence criteria for linear systems
are given in (Norrlof, 2000) and can, with our

notation P = L, be written



. P-p
Joa-rp]_~[oZ;

where [|[H (e*)||oo = sup,e[o,x) |H (e™)]-

<1l (8)

oo

This reinforces our interpretation of L = P~1 as

the inverse of a model P of the system P. We
see that ILC will converge if the relative model
error is sufficiently small compared to @. In light
of Section 4 we see that the tracking accuracy will
be limited by the relative model uncertainty. If the
relative error is larger than one at some frequency,
the tracking cannot be perfect at that frequency.

Notice also that if the system has a zero on the
unit circle such that P(e’*) = 0 at some fre-
quency, then the stability condition is not satisfied
and convergence to zero error cannot be achieved.

6. CONVERGENCE RESULTS FOR
NON-LINEAR SYSTEMS

The stability and convergence of the ILC method
is a central issue and therefore covered in most
publications on ILC. Robustness and convergence
rates are, e.g., analyzed in (Wang, 1998) and
(Saab, 1999) where the convergence criterion is
based on certain assumptions. The most limiting
assumptions on the system are global Lipschitz
conditions. These assumptions do, e.g., not hold
for certain robotic applications as pointed out in
(Saab, 1999). It is therefore of interest to derive
convergence criteria without any global Lipschitz
assumptions.

The contraction mapping approach has previously
been used to establish convergence properties for
ILC using the specific choices of () = 1 and
L = 1, (Wang and Horowitz, 1985). Below we
will first use a feedback interpretation to establish
the convergence criterion. This will be followed
by a comparison showing that these results can
be interpreted as an extension of the results in
(Wang and Horowitz, 1985). Thus the similarity
between the feedback interpretation and the con-
traction mapping approach will be highlighted (in
Section 6.2). A motivation for using the feedback
approach is that it provides a stepwise derivation
of the criterion which gives valuable insight. The
approach taken will also provide connections to
the results in the linear domain.

Boundedness

Consider first the block diagram of the ILC algo-
rithm (5) depicted in Fig. 2.

To establish a condition for boundedness of the
sequence {up}72, we first let || - ||2 denote the

two-norm defined by |Ju|lz = \1/ (t)|2. Let
us further define the concept o Blﬁ(g stablllty in
the £5 sense (£>-stable).

Definition 1. BIBO /5-stability

A gystem is BIBO /y-stable if the output has a
finite two-norm provided that the input has a
finite two-norm, (Vidyasagar, 1993).

Theorem 2. Assume that the system P is BIBO
£y-stable. Then the system in (5) and Figure 2 is
BIBO /»-stable (in the iteration domain k) if

VS

— —1
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Fig. 2. Block diagram of the ILC algorithm in
the nonlinear case given by (5). The system
is denoted by Py transforming the vector

ul into yi, the model inverse Py’ acts in
similar way. Note that the shift operator g
acts w.r.t. the iteration index k (g, ‘ux(t) =

uk_l(t)).
af <1,
where

l1Qull2

p
w0 |[ull2
where @) is a linear mapping, and

[u = P7H(P())]l2

o =

= [1Qllco; 9)

B = sup (10)
w0 llull2
Proof: See (Markusson, 2002). O
Existence

We next ask the question when u(t) and the
corresponding output yoo(t) = P(ux(t)) defined
by (6), c.f. Figure 1, are well-defined in the case
Q@ # 1. The following theorem applies in this case.

Theorem 8. Assume that the condltlons of The-
orem 2 hold, that ) # 1 and that P~ is BIBO
stable. Then the system (6) (c.f. Figure 1) is BIBO
¢y-stable and the corresponding signals us, and
Yoo are well defined.

Proof: See (Markusson, 2002). O

The case when ) = 1 will also be covered below.

6.1 Convergence

In this section we present a convergence result
very similar to (8) in the linear case. Suppose that
yq is bounded, that the conditions of Theorem
2 are satisfied such that the system (5) is BIBO
stable and suppose also that u., is well defined,
meaning that the conditions for existence are
fulfilled as given above.

Under these assumptions it is possible to define
Ar(t) 2 uk(t) — uoo(t) and

(I)N(uga AkN) é
P71 (Py(AN +ul)) — P71 (Pn(ud)).
(11)
Now, combining (4) and (11), gives

N
Ak+1 = uk+1 U

= QNAY — QnON(ul, AY). (12)



The system in (12) is an unforced system, initial-
ized with a nonzero initial condition (A) # 0).
Convergence of the ILC algorithm in the nonlinear
case will be achieved if the origin is a globally
asy(mp)totically stable equilibrium of the system
in (12).

Theorem 4. Assume that the conditions in Theo-
rem 2 are satisfied such that (4) is BIBO stable
and u is well-defined for @ # 1. For Q = 1 as-
sume that the system is invertible, for the desired
output y4, such that u., = ug exists.

Assume that
ay<1 (13)

where « is the induced norm of @ (9) and ~ is the
induced norm of 1 — ®(-) given by

- sup 18— 2, )
AR TIAlL

(14)

The input error uX, — ug,; in the ILC algorithm
in (5) fulfills [|uf) —ufy,, || < avy[[ul] —uf || ie., it
is a monotonically decreasing difference with

lim sup ||ul, —ul|| = 0. (15)
k—oo
Proof: See (Markusson, 2002). O

Remarks:

e When P~! and P are linear, the norms (10)
and (14) are identical and the boundedness,
existence and convergence conditions all be-
come

||Q||oo||1 - PilP”oo <L

Thus the sufficient condition here is very
close in spirit to the necessary and sufficient
condition (8).

e Notice the similarity between (14) and the
relative model error

11— P~'Plls,

in the linear case. Hence, also in the nonlinear

case P should approximate the system dy-
namics as well as possible in a relative sense.
Notice, however that in the perfect tracking
case (@ = 1) a relative model error of up to
100% can be tolerated. This is, probably, one
of the main reasons for the success of ILC. An
accurate model is not required!

e The guaranteed convergence rate is geomet-
ric with rate a-y. Hence, for a given modeling
accuracy v, the convergence rate can be in-
creased by reducing q, i.e. by increasing the
tracking error.

6.2 The contraction mapping approach

There is a clear relationship between the re-
sults above and the contraction mapping theorem
(Vidyasagar, 1993). Recall the ILC algorithm rep-
resented as

uls = Qu (ulf — Py (Pu(ul)) + Qu Py i),

which is rewritten as

uls = Qn (u = PR (Pu () + Qn P ()
£ Tu) + QnPy ()
2 7). (16)

At convergence, (16) satisfies uY, = T'(ulY), hence,
ul is a fixed point to the mapping T. The
question is now under what conditions this is true
and under what conditions the fixed point can be
reached using the iterations uy,, = T(uy ). The
contraction mapping theorem (Vidyasagar, 1993)
states that assuming that there exists a fixed
positive constant p < 1 such that

IT(x) =Tl < pllz —yll, Vz,y €S, (17)

where S denotes the set such that z,T(z) € S.
Under these conditions there exists only one fixed
point z*, satisfying z* = T'(z*), and this fixed
point will be reached at convergence by zp41 =
T(xzy). A strength of the contraction mapping
approach is that it implicitly gives conditions for
both existence and convergence.

To compare the criterion for convergence derived
by the feedback approach we first consider the
criterion for a bounded solution. In Theorem 2
it was stated that the mapping

i = Qu (uf = PH(P@)) + QuP (u))

is bounded if a8 < 1, where « is defined in (9)
and § in (10). This is similar to the condition
IT () < llui’ll, 0<n<1,

which is a relaxation of (17) with T as in (16),
z =uf and with y = 0. In this case

lugsa I < nllu’ 1| + 1Qn PR (DI,

assuming that ||Qx Py (y]))|| < co.

The criterion for existence of a fixed point in the
case ) # 1 is stated in Theorem 3 but there
does not seem to be any specific relation to the
contraction mapping approach in this case.

Assuming that a fixed point uY. exists, the condi-
tion of the contraction mapping approach can be
relaxed to

IT(ug) = Tl < nllug —ulll, 0<n<1,
which is similar to the criterion in Theorem 4.
By strengthening the condition in Theorem 4 to
(17), i.e.,

|@n(d = =) — Qn Pyt (Py ()~

QP Py ()| < mllud = 221,
0<n<1, (18)

for any inputs u and 2z}, the assumption that

ul = ul exists when Q = 1 can be dispensed

with. The existence of the inverse then follows
from the contraction mapping theorem, i.e. (18)
implies existence of the inverse.



It can further be pointed out that if

T
sup‘dd—;m) <ax<l,

T

on a convex set S then T is a contraction map-
ping, which follows from the mean value theorem
(Luenberger, 1969). With T as in (16), we have

dT dT d -

— == In — —< Py (Pn (™)) ).
duN ~ dul Qn ( NT NN (Pn (u )))
Now define the sequence d(t) = u(t)—P~1(P(u(t))),
then gz—N =1Iy— MLNPJGI(PN(uN)). Since

dsN dsN
duN duN

we now have the following result.

?

‘ < lim
N—oo

Corollary 6.1. Assume that P~1 and P are two
times continuously differentiable. Define
7 = lim sup

doN
N—oo N duN

and let a be the induced norm of @ (9). Then the
conclusions of Theorem 4 hold if

ay <1l

Proof: Follows from the discussion preceding the
corollary.

It can further be noted that the condition in
Theorem 4 and Corollary 6.1 is a generalization of
a condition in (Wang and Horowitz, 1985). There
ILC algorithm

ursi(t) = up(t) +ya(t) —ye(t),  (19)
is analyzed, hence, @ = L = 1. Convergence of
(19) is guaranteed if
dPN(uN)
dul
for all inputs u € S where S is a convex subset
of C[1, N]. Here, C[1, N] denotes a normed linear

space consisting of continuous functions on the
interval [1, N].

sup || Iy — (20)

ulN

<1,

7. NON-CAUSAL ILC

In (2) the inverse of the model is used to itera-
tively find the inverse of the system. If the model
is non-minimum phase the inverse will be unstable
if causal filtering is used. However, by applying
non-causal filtering (exploring the batch nature
of ILC) the inverse will be stable. This is one very
interesting and useful feature of ILC. Let us start
by considering the linear case.

Inversion of linear systems

Consider a bounded signal u(t) with z-transform
U(z) filtered through a stable, albeit not neces-
sarily minimum-phase, linear system G(z) and
denote the resulting output y(t) with transform
Y (2). Then, Y(2) = G(2)U(z) in the region of
convergence which under the given assumptions
is a disc which includes the unit disc so that y(t)
is bounded. Consequently it holds that U(z) =

G(2)7! Y(2). Since both u and y are bounded,
G™! is here a stable operator, i.e. its region of con-
vergence includes the unit disc. Hence, when G(z)
has zeros outside the unit circle, G~!(z) must be
interpreted as a stable but non-causal operator
and to recover u from y non-causal filtering has
to be performed. This is done as follows: Factorize

G(z) as

G(z) = G+(2)G-(2) (21)
where G4 (z) includes the minimum phase zeros
and G_(z) includes the non-minimum phase ze-
ros. In this case the stable inverse of G (z) will
be causal while the stable inverse of G_(z) is
anti-causal and u is recovered by first filtering y
through the stable causal filter G (z)

w(t) =Gyl y(t)
and then anti-causal filtering of this result
u(t) = G_1 w(t).

The latter can be performed by filtering the re-
versed sequence p(t) = w(N —t) (N is the total
number of data) through the stable causal filter

v(t) = G_'(¢ ")p(t) and then reversing the result
again, i.e. u(t) = v(N —t), see e.g., (Oppenheim
and Schafer, 1989) for more details.

Nonlinear systems

Applying the inverse of nonlinear models to (2)
can be complicated, especially when the model is
non-minimum phase. We therefore suggest that
a linear approximation of the system (or model)
is used for the inversion in (2). Hence, in the
nonlinear case it is the linearized model which
is inverted, by the method described above, and
applied to (2).

Related work

In (Sogo et al., 2000) an ILC method for nonlinear
non-minimum phase systems is presented based
on optimization. The optimization is solved using
an adjoint system which is time-reversed, hence,
stable in the case of maximum phase systems. (For
a linear system maximum phase implies that all
zeros are outside the unit circle, in the nonlinear
case the poles of the linearized zero-dynamics are
outside the unit circle.) The idea of using time-
reversed filtering for maximum phase systems is
also explored in (Choi and Jeong, 2001).

The idea of using a linear model which is split
into a causal and an anti-causal part is also sug-
gested in (Ghosh and Paden, 1999) for continuous
time systems. In (Jeong and Choi, 2001) a simi-
lar matrix based method is presented. However,
the matrix based non-causal filtering introduces
limitations for certain systems.

8. MODELS SUITED FOR ILC

We have seen that P = L~ plays a crucial role in
the properties of ILC and that this quantity can be
interpreted as a model of the system which, both
from a stability and convergence rate perspective,
should be chosen as close as possible to the true
system.

8.1 Using nonlinear model

First of all, if a nonlinear model is available
and its inverse suitable for implementation, that



inverse should, of course, be used. However, if
the nonlinear model is, e.g., non-minimum phase,
it may be difficult to compute a stable inverse.
In this case a linear model can be preferable.
One option is then to use a linearization of the
nonlinear model at the origin. This linearization
can be used if the difference er(t) = ya(t) —
yr (t) is small. Here, the notion small implies that
the higher order terms of a series expansion of
P~1(ex(t)) are negligible. As we have seen in
Section 7 linear models, even non-minimum phase
ones, are easily inverted. It is further assumed that
@ is chosen such that convergence is maintained.

8.2 Identification of linear models for ILC

If, initially, a model is unknown, it is natural to
use the data from the ILC-iterations to identify
a model. In the case of a nonlinear system the
identified linear model will depend on the specific
set of input-output data. Hence, the analysis in
Section 6 suggests that a linearization of the
system around the current trajectory should be
used. Related work are found in, e.g., (Nijsse et
al., 2001) where a subspace method is presented
for the identification at successive iterations when
applying ILC on linear systems.

9. NUMERICAL EXAMPLE

Let us illustrate the tradeoff between model ac-
curacy and the design variable () to obtain con-
vergence. In this example we consider an inverted
pendulum on a cart and the unstable system is
stabilized by state-feedback. Details and further
results are provided in (Markusson, 2002).

The position of the cart is considered as the
output of the system and the reference trajectory
is accordingly the desired position of the cart.
No model is considered to be known prior to
applying the first ILC iteration. A linear model
was therefore identified using data from the first
ILC iteration. A model was estimated as

Pl) = 1075(—0.03822 + 0.977z — 0.99)
"~ 24 —3.8823 4+ 5.6522 — 3.662 + 0.89’

and applied to the ILC algorithm. This model
is non-minimum phase and the factorization sug-
gested in Section 7 is utilized.

From the first numerical experiments it followed
that convergence could not be obtained with @) =
1. It was then assumed that the model is not so
good for high frequencies and by letting @ be
a low-pass filter convergence could be obtained.
The tracking results are shown in Figure 3. We
conclude from the good tracking properties that
a linear model, identified at the first iteration, is
well suited to obtain a satisfying result. By letting
Q(z) be a low pass filter, model errors at higher
frequencies were neglected.

10. CONCLUSIONS

In this contribution we have highlighted the role of
the design variables in ILC. We have also shown
that ILC can be placed in the realm of numer-
ical optimization. We have presented conditions
for boundedness and convergence for non-linear
systems which are very close in spirit to the nec-
essary and sufficient conditions that previously
have been derived for linear systems. The analysis
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Fig. 3. Top: The desired output and the actual
outputs at different iterations for the inverted
pendulum. Bottom: Tracking errors.

shows that a relative model error of up to 100%
can be tolerated, even when perfect tracking is
desired. This is probably one of the reasons for
the success of ILC in applications. The benefits
of non-causal filtering for non-minimum phase
systems has been elaborated upon and the im-
plementational aspects of this covered.
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