
COOPERATIVE PATH-PLANNING FOR
AUTONOMOUS VEHICLES USING DYNAMIC

PROGRAMMING 1

Matthew Flint, Marios Polycarpou,
Emmanuel Fernández-Gaucherand 2

Dept. of Electrical and Computer Eng. and Computer Science
University of Cincinnati, Cincinnati, Ohio 45221-0030, USA

flintmd@email.uc.edu, polycarpou@uc.edu,
emmanuel@ececs.uc.edu

Abstract: It is shown how to model a cooperative path planning system for multiple
autonomous air vehicles within the framework of a stochastic (dynamic programming)
decision process. The proposed approach allows the vehicles to cooperate and find
near-optimal search paths over a given environment in the presence of uncertainty
and constraints on movement and computational power.

Keywords: Agent, Autonomous Vehicle, Co-operative Control, Distributed Control,
Dynamic Programming, Stochastic Control

1. INTRODUCTION

1.1 Overview

This paper presents a stochastic decision pro-
cess formulation for cooperative control among
a team of distributed, uninhabited air vehicles
(UAV’s) which leads to a solution based on dy-
namic programming. The work presented here is
part of a larger research effort aimed at developing
cooperative control algorithms that will allow a
team of UAV’s to fly high-level missions with-
out direct human intervention, and in the pres-
ence of uncertainty (Pachter and Chandler, 1998).
This allows for missions that are particularly
suited for autonomous flying agents such as wide
area searches, in cases like searching for lost or
stranded persons in dangerous environments, or

1 This work was supported by DAGSI (Dayton Area
Graduate Studies Institue) and AFRL (Air Force Research
Laboratory).
2 Partially supported by a Faculty Research Support Pro-

gram Grant, University Research Council, University of

Cincinnati.

“smart” munitions that can be launched without
knowing precisely where the targets are (Jacques
and Leblanc, 1998).

What differentiates this problem from the classi-
cal or standard search problems is the fact that
optimal paths are desired, rather than an op-
timal allocation of effort, and those paths are
constrained. Additionally, the requirement of co-
operation among a team of vehicles makes this a
more challenging problem from those which have
already been well researched.

1.2 The Vehicle and the Environment

For simplicity, a typical vehicle is assumed to fly
at a constant velocity and altitude, and avoid
colliding with other vehicles; these are reasonable
assumptions in the case of ”smart” munitions
(Jacques and Leblanc, 1998). The ability of the
vehicle to make turns is constrained to a minimum
radius (or maximum turn angle.) The vehicle also
has the ability to communicate with other vehicles
over a non-perfect wireless channel.

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

? ?
?

t

? ? ?

? ? ?{

{

r

m

Time:

{q

? ? ?

t+1

? ? ?

?
?

?

Fig. 1. Illustration of the vehicle’s decision process
in time.

A vehicle carries a map of the environment in its
memory. This map contains all the information
that the vehicle knows about its environment,
and the information on this map is what the
vehicle bases its decisions on. Information from
this map can be shared with other vehicles, but
because communication is assumed not to be
perfect, all vehicles do not necessarily have the
same information on their maps. As a vehicle
passes over the terrain, a corresponding area of the
map is updated to reflect the information gained
from the vehicle’s sensor. The uncertainty about
that area decreases, and any threats or targets
found are recorded. The environment is given by a
bounded search region, about which some a priori
information may be available.

1.3 Search and Path Planning Requirements

The goal of each air vehicle in the search problem
is to move over the environment such that, at
the end of the search, the maximum amount
of information about the environment has been
gained by the team of vehicles. A vehicle must
therefore plan a local path over the environment to
meet this global goal. The path planning problem
is discretized in time by allowing the vehicle to
only make decisions at discrete time intervals. It
is further discretized in space by only allowing the
vehicle to make a limited number of choices at
each time step (such as: turn 15◦ left, go straight,
or turn 15◦ right.)

The amount of gain received for a single sensor
sweep (ρ) is one of the parameters that can
be adjusted as part of the scenario. However,
searching a region that has already been searched
does not produce as much of a gain as searching
an area that has never been searched before.
Nevertheless, unless a vehicle can get complete
certainty about an area with one pass, there is
still some gain from searching an area more than
once.

The lifetime of the vehicle, determined by the
amount of fuel it carries, will be N time steps. Ad-

ditionally, at each time step the vehicle must also
choose a path that is at least q steps ahead. Figure
1 shows an abbreviated search tree for a typical
vehicle. This planning ahead is particularly useful
for flying vehicles–ones that have to move forward
at all times and thus require something of a buffer
in their decisions on where to move next–and
is also useful in terms of allowing autonomous
vehicles to cooperate with one another, if the
moves that they plan can be communicated to
each other. At each time step, the vehicle aug-
ments its path plan by choosing a point from m
possible choices. Drawing the possible choices that
the vehicle can take produces a tree q steps ahead
of the vehicle. The tree is of depth r, which is how
far the vehicle searches in one time step.

2. THE DYNAMIC PROGRAMMING (DP)
APPROACH

2.1 The need for DP

Over the years, there has been a significant body
of research work on path planning and cooperative
control. Most of this research is based on robotic
systems. However, there are some important dis-
tinctions between cooperative control of robots
and air vehicles. One of the key differences is the
maneuverability constraint of air vehicles imposed
by the limited turning angle. Patek et al. (Patek et
al., 1999) use directed graphs to constrain the di-
rection of the vehicle, exploring the problem with
a (widely) different set of initial conditions. Other
methods, such as that employed in (Polycarpou et
al., 2001) develop a general framework for coop-
erative control and use heuristic policies to guide
the vehicles.

A basic dynamic programming, or stochastic con-
trol, model has three key elements which can be
found in this problem. First, the underlying sys-
tem is a discrete time stochastic dynamic system,
due to the discretization in time assumption. Sec-
ondly, the cost function is additive over time, since
a vehicle cannot “forget” things by moving to the
wrong areas, i.e. the least amount of gain a vehicle
can obtain is zero, even if it follows an unsuitable
path. And, the nature of the decision process is se-
quential in time, since the vehicle takes an action,
collects information, makes a decision based on
this information, and then acts on that decision,
sequentially repeating this process, looking for a
best path over all time. These place this prob-
lem and modeling paradigm within the realm of
discrete-time stochastic control, amenable to DP
solutions (Bertsekas, 2000).

DP provides a convenient modelling and analyt-
ical tool that many of the other, more intuitive
or heuristic, approaches sometimes lack. For ex-

ample, DP can achieve a provably optimal global
solution to the problem, at least in theory. In
practice this is rarely the case, since this may
be computationally infeasible in the absence of
further structural properties, but DP can nev-
ertheless serve as a blueprint for nearly optimal
solutions.

2.2 Modeling the Problem in a DP Framework

The first step in modeling the problem in a
stochastic control / DP formulation is to identify
a state, a control (decision options), and a cost
(or gain) function. In the problem described in
this paper, the state of the system comprises
the locations of all the vehicles and the current
state of the map that shows where the vehicles
have searched. However, the whole state will not
necessarily be known to each vehicle. Each vehicle
keeps track of its own state, i.e., its location and
where it has searched. This information can be
derived easily from the path list that the vehicle
followed, thus, xk, the path list, or the set of the
choices the vehicle has made so far, is defined to
be the state (at time step k). The state xk ∈ Sk,
where Sk is the set of all possible choices the
vehicle can make up to time k. The vehicle’s
decision, or control, at time k is uk, which is the
choice of which direction to follow. The control
uk ∈ U , where U is a set of size m and contains
the choices that the vehicle can take. U is not a
function of k since the vehicle is assumed to have
the same choices at every time step (for example:
turn left, go straight, turn right). Because the
vehicle chooses its path, the state it is in is
completely under its own control, so the system
evolves as a deterministic function of xk and uk,
in other words, xk+1 = f(xk, uk), where f(·, ·) is
a logical operator that concatenates the current
choice (uk) with the list of previous choices (xk).
Jk is defined as the “cost-to-go” function from
time step k to N , or equivalently, the gain to be
had from taking the path from time step 1 to k−1.

In the case where there is only one vehicle in
the environment and the vehicle has unlimited
computational power, the gain function, g(xk)
would be purely a deterministic function. In this
case, it would be possible to treat the problem in
an open-loop framework, which would be able to
be solved before the vehicle is put into flight by
letting the final cost (at step N) be JN = 0 (no
bonus for being in any particular state at time N),
and solving the DP recursion from time steps 1 to
N :

Jk(xk) = min
uk∈U

(Ewk
{g(xk, uk) (1)

+Jk+1(f(xk, uk)})

However, the vehicle is not assumed to have un-
limited computational power, nor to be alone.

2.3 Complexity – Limited Lookahead Policies

A strict DP approach will have to compute to
the very end of the vehicle’s search the state,
which would include every possible decision it
could make. Since this state is a location and
path on a map, it is natural to view this as a line
on the search map extending behind the vehicle,
connecting all the points the vehicle has travelled,
and to view the planning of the vehicle as a tree
starting from the vehicle’s current location, as in
Figure 1. This tree would then grow exponentially
as the depth of the search (the number of steps
ahead planned) increases. This quickly becomes
intractable when the idealistic assumption of un-
limited computation is removed.

To implement this scheme in a realistic setting,
then, there has to be some simplifying assump-
tions. To address the problem of expanding a
tree out to the end of the vehicle’s own lifetime,
N, a limited look-ahead policy is used, in which
rather than computing the state to the end of the
vehicle’s lifetime (a tree of depth N), it replaces
the cost-to-go at state k + r (Jk+r) with the final
cost (JN), as shown in (Bertsekas, 2000). This
allows the system to calculate the tree generated
by only going to a depth of r, and to choose the
best path visible in this sub-tree. The size of the
abbreviated tree is in general much smaller than
the size of the tree of the original problem (i.e.
mr � mN). Thus r can be chosen such that the
problem is tractable.

2.4 Adding Utility

The introduction of the limited look-ahead policy
can produce a sub-optimal solution. This arises
because of the now limited scope of the vehicle’s
planning, in which the best action to take is only
able to be discovered past the visible “horizon” of
the vehicle’s sight (planning).

Adding utility functions to the cost function al-
lows for taking steps to reduce the effects of these
so-called horizon problems. This can be illustrated
by a situation where a vehicle is forced to go out-
of-bounds because the out-of-bounds region does
not enter into its horizon in time for the vehicle
to turn away. Since the vehicle receives zero gain
for the time it searches out-of-bounds, this is a
situation that should be avoided. The solution to
this problem is to include a utility function in-
side the gain function that can utilize information
normally outside the vehicle’s horizon in order to
allow the vehicle to react to the information.

Consider as an example the case of a vehicle ap-
proaching a corner of a rectangular search region
from inside the region, where the vehicle detects
that there is an out-of-bounds region on either side
of it, but does not see that the point of the corner
also leads out of bounds, because this point lies
outside its depth of vision. In this example, the
utility function would have to take into account
the reduction in gain from leaving the search at
the corner point by reducing the gain from an
area within the vehicle’s horizon so that the total
reduction in gain visible to the vehicle will be
approximately the same as if it could see all the
way to the end of this horizon problem.

To do this, we define a function Γ such that
0 < Γ ≤ 1. The value of Γ is low when the vehicle
is on a path that would lead out-of-bounds, and
is unity when it is on a path that does not. Then,
the new cost function becomes

g(xk, uk) = Γ ∗ go(xk, uk) (2)

where go is the old cost function.

(Note: our choice of terminology has only tan-
gential relation to Utility Theoretic formulations,
e.g., as in risk-sensitive control.)

2.5 Interference – Random variable wk

Now the formulation is expanded to include the
presence of other vehicles. Because of the lim-
ited look-ahead and the limited communication
assumptions, each vehicle can no longer correctly
calculate where the other vehicles are going to
be, because each vehicle is now viewing only its
own section of the environment. Because there
are other vehicles in the search region over which
the searching vehicle has no control and cannot
accurately predict their positions, and because
actual gain comes q time steps after the vehicle
makes its choices, some consideration must be
given to the fact that a vehicle’s gain may not
be what it had expected. Consider, for example,
the situation depicted in Figure 2. Vehicle A’s
decision may have been optimal when it made
it, but now another vehicle might come through
the area, cause a certain region to be searched
twice, and the result would be a gain that is
less than if the vehicles were searching completely
different areas. This is taken into account with a
random variable wk, which represents the loss in
gain at time k+q (compared to what was expected
when the decision is made at time k) because of
interference by another vehicle.

The function σ is defined to be a function that
takes the state and a direction choice at time k
and returns the gain from making that choice.
The gain at each step is then what one would

?

?

?
? ? ?

Vehicle A

Vehicle B

Fig. 2. Illustration of potential interference by
other vehicles.

get if no interference were present minus the
amount of gain one would lose from another
vehicle interfering,

g(xk, uk, wk) = σ(xk, uk) − wk (3)

This modified gain is then used in the DP recur-
sion (Equation (1)) to determine the optimal path
on the sub-tree.

The reduction in gain from searching an area
where another vehicle is searching is dependent
on the uncertainty level in that area as provided
by the search map.

The amount of interference expected at a node
(nj) of the search tree is thus a function of σ(nj)
and the probability of the vehicle interfering. So

E(wk) = ρ × σ(nj) × P(nj) (4)

can be computed, where P(nj) is the probability
of vehicle j being at nj , and ρ is a scalar that
represents how much one sensor sweep reduces the
uncertainty (since this calculation is being done
by the second vehicle to sweep the area). It is
important to note that the interference factors are
not symmetric between interfering vehicles, since
the first vehicle to search a region will receive full
gain, even if the second vehicle will not.

2.6 Complexity – Simplifying wk

Calculating P(nj) exactly would require each ve-
hicle to expand every other vehicle’s planning tree,
and assign a likelihood to each path that would
cause that vehicle to interfere. Even assuming
that this information is correct, this approach
is impractical in the face of the computational
complexity requirements.

A simplification is therefore introduced in order to
produce an implementable solution. It is assumed
that the distribution of probability over the tree
has some structure in space. This structure is
simplified into several spatial regions where each

Vehicle B

Vehicle A

di

Node j
(nj)

Node j
(nj)

Qi

Vehicle B

P
33

P
32

P
31

P
32

P
31

P
23

P
22

P
21

P
22

P
23

P
13 P

13

P
12 P

12

P
11

Node j
(nj)

Q3

Q2 Q1

d3

d2

d1

0

Fig. 3. A node (nj) is checked for possible inter-
ference.

region represents a certain fixed probability of the
vehicle causing an interference. Figure 3 shows a
typical situation when this process would be used.
Vehicle A has created a tree of possible paths
to travel, and is checking to see to what degree
Vehicle B may interfere, if any. At the end of
each of these paths is a node (nj). At each node,
the distance to another vehicle (B in this case),
called δi, is checked. If this distance is less than
d3, the maximum distance at which vehicles might
interfere with one another, then the distance is
compared to other distances, (d1, d2, and d3

from the figure). Then the angle from the line
extending along the interfering vehicle’s current
trajectory (θi) is compared to certain angles (θ1,
θ2, and θ3). These distances and angles form the
regions from which the P(nj) is drawn. If the node
turns out to be outside of these regions, then the
process produces a zero probability of interference
term (P (nj) = 0). Once this approximated P(nj)
is known, then E(wk) can be calculated using
Equation (4).

Thus cooperation is achieved without the need for
a vehicle to expand any planning trees but its own.
The cooperation is of a passive sort, also, since the
vehicles do not negotiate. Instead, they use the
communication channel only to send knowledge
of their locations and headings. The structure of
the regions, also, is flexible, and the values can
be tuned for better results or to incorporate new
information, opening up the possibility of online
adjustment.

3. SIMULATION

The simulation presented here show the proposed
DP formulation in use. The environment used for
this example, in Figure 4, shows a typical scenario

a vehicle may face when searching an area for
ground targets e.g. as part of a military strike.

The vehicle’s paths are overlaid on top of the map
of this environment. The lightly shaded round
region represents a lake that is known a priori to
have no value to be gained by being searched (and
starts at 0% uncertainty), since, in this example,
the ground targets are known not to be able to
float. The dark shaded square regions are forests
that are known a priori to have a low (25% un-
certainty) likelihood of having targets of interest,
justified in this example by saying that the targets
have difficulty moving through rough terrain. The
thin bar running vertically across the terrain (and
through a forest) represents a road, which a priori
is known to provide a large gain when searched
(100% uncertainty), since the targets are most
likely to have moved here. The remaining terrain
has no a priori information associated with it, and
is assumed to be of some importance to search
(95% uncertainty). This represents flat ground
that can easily have something of interest.

For this scenario, ρ = 50%, so one pass of the
vehicle over a region with 100% uncertainty would
make it become 50%; a region with 50% would
become 25%, and so on. A best-first label cor-
recting method was used to search the path trees
(Bertsekas, 2000). A vehicle’s visible planning
horizon (r) was six time steps ahead, or 30 units
(they fly at 5 units per time step.) The utility
function discussed in this paper was also included
in the cost function, in which Γ was proportional
to the distance from a vehicle to the corner if the
vehicle was heading towards the corner and was
within a minimum range (30 units).

The vehicle’s paths in Figure 4 show a sample
of some of the typical behaviors of the vehicles,
after running the simulation for a short time.
Desired behavior for the vehicles are for them to
avoid the areas with low uncertainty, and also
to make sure to search the road, which a priori
information indicated should be searched well.
Logically, they should also avoid searching the
same area searched by another vehicle. Due to the
interest of space constraints, just this one example
is provided to show how the algorithm can make
the vehicles behave in an efficient manner, in
which the vehicles avoid the low gain areas. Also,
one vehicle finds the road and travels along it for
most of its length. Initially the vehicles spread out,
and after that, whenever their paths cross, it tends
to avoid low angles of intersection in order to keep
the amount of overlap as small as possible.

Figure 5 shows the proposed DP search algo-
rithm, the results of a standard, or lawnmower,
type search, and a random type search, all after
running for a short time. A lawnmower search,
in which the vehicles systematically traverse the

0 20050 100 150

0

50

100

150

200

DP Search Algorithm -- 5 Vehicles
100 Time Stepsp

x

y

Fig. 4. Five vehicles searching an environment
where the a priori information is shown in
the darker shapes.

environment in lanes (just like someone who is
mowing a lawn,) is very effective in the case where
no a priori information is known, but Figure 6
shows that, in the presence of a priori information
such as that shown in the problem of Figure 4, the
search algorithm that is proposed in this paper
gives better results. The bottom scale in Figure
6 is the time spent searching. The vertical scale
shows the average uncertainty of a unit on the
map of the environment, where lower uncertainty
is the desired outcome. Note that the time spent
searching in Figure 6 is longer than that displayed
for the other figures. Note also that the map
does not start at 1 (100%) uncertainty at time 0
because of the a priori information. As expected,
both types of structured search perform better
than a purely random search, in which the vehicles
simply travel without regard for the environment
or each other unless they reach an out-of-bounds,
when they turn around.

4. CONCLUSION

Modeling the cooperative path planning problem
in a Stochastic Dynamic Programming frame-
work produces a unique and powerful approach
that provides many tools for the problem of au-
tonomous agents planning in an uncertain en-
vironment. It provides a platform for not only
feasible solutions to existing problems but also a
flexible framework to expand upon.

5. REFERENCES

Bertsekas, D. P. (2000). Dynamic Programming
and Optimal Control. Vol. 1. 2nd ed.. Athena
Scientific. Belmont, Massachusetts.

Jacques, D.R. and R. Leblanc (1998). Effective-
ness analysis for wide area search munitions.

50 0 50 100 150 200 250

50

0

50

100

150

200

250

x

y

Random Search -- 5 Vehicles
200 Time Steps

(a)

0 50 100 150 200

0

50

100

150

200

x

y

DP Search Algorithm -- 5 Vehicles

(c)

50 0 50 100 150 200 250

50

0

50

100

150

200

250

x

y

Lawnmower Search -- 5 Vehicles
200 Time Steps

(b)

Fig. 5. Examples of the (a) random search (b)
standard (lawnmower) algorithm (c) DP al-
gorithm.

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time steps

A
ve

ra
ge

 u
nc

er
ta

in
ty

 o
f a

 u
ni

t o
n

th
e

m
ap

DP Search
Lawnmower Search
Random Search

Fig. 6. Performance comparison of the proposed
DP algorithm to other types of search algo-
rithms.
In: Proceedings of the AIAA Missile Sciences
Conference. Monterey, CA.

Pachter, M. and P. Chandler (1998). Challenges of
autonomous control. IEEE Control Systems
Magazine pp. 92–97.

Patek, S.D., D.A. Logan and D.A. Castanon
(1999). Approximate dynamic programming
for the solution of multiplatform path plan-
ning problems. In: In: Proceedings of the
IEEE International Conference on Systems,
Man, and Cybernetics. 1999. Vol. 1. pp. 1061–
1066.

Polycarpou, M., Y. Yang and K. Passino (2001). A
cooperative search framework for distributed
agents. In: Proceedings of the 2001 IEEE In-
ternational Symposium on Intelligent Con-
trol. pp. 1–6.

