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Abstract: This paper presents an adaptive determination method of the information sharing 
factors employed in the federated Kalman filtering algorithm. This approach is based on 
generalised eigenvalue decomposition of the covariance matrix of the estimated errors 
associated with individual sensors. The paper begins with a discussion of the structural 
features and information sharing principle of the Federated Kalman filtering approach. 
Following development of the new method, simulation results demonstrate its capability to 
provide a considerable improvement in robustness to changing plant conditions, at the cost of 
a minimal loss in accuracy under ideal plant behaviour. Copyright © 2002 IFAC 
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1. INTRODUCTION 
 
The Kalman filter is a statistical estimator which 
provides a reliable best estimate and error matrix for 
problems involving the evaluation of sensor readings 
corrupted by noise. Kalman filtering can be applied in 
both a centralised and distributed format, both of which 
have been reported extensively in literature (Lawrence 
and Berarducci, 1994). 
 
The centralised Kalman filter has been the subject of 
extensive research and application, particularly in the 
area of autonomous or assisted navigation (Grewal and 
Andrews, 1993; Brown and Hwang, 1994). In chemical 
engineering, the extended centralised Kalman filter, 
which uses local linearisation to extend the scope of the 
Kalman filter to systems described by nonlinear 
ordinary differential equations, is by far the most 
widely used estimation technique (Yang and Lee, 1997, 
Leu and Baratti, 2000; Oisiovici and Cruz, 2000). 
Nowadays, navigation systems and chemical processes 
almost always employ many sensors and their 
respective outputs are combined to provide one or more 
integrated outputs which are enhanced in some sense 
with respect to their component individual sensor 
measurements. Integrated multi-sensor systems have 
the potential to provide high levels of accuracy and 
fault tolerance. However, that potential has not been 

fully realisable via application of classical (i.e., 
centralised) Kalman filtering techniques. Classical 
techniques applied to multi-sensor systems can yield 
severe computational loads when implemented in a 
strictly optimal fashion. Moreover, the results obtained 
can be subject to poor accuracy, instability, and even 
divergence under certain operating conditions (Carlson, 
1988; Carlson, 1990; Lawrence and Berarducci, 1994).  
 
For these and other reasons, there has been 
considerable interest in the development of 
decentralised Kalman filter architectures (Carlson, 
1990; Wei and Schwarz, 1990; Lawrence and 
Berarducci, 1994, Sasiadek and Hartana, 2000). The 
decentralised Kalman filters consist of one or more 
sensor-dedicated local filters, generally operating in 
parallel, plus a master combining filter. The master 
filter periodically combines the local filter solutions to 
form a global solution. As such the decentralised 
Kalman filter provides an effective method of 
implementing multi-sensor fusion technology. Among 
the approaches in developing decentralised Kalman 
filtering, the federated Kalman filtering method 
provided by Carlson (1988) is a very efficient example. 
This approach is based on information-sharing 
principles and applies a rigorous “conservation of 
information” principle which yields an estimator that 
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has both a high level of accuracy and is tolerant to 
faults in the system. 
 
Carlson (1988) suggested four different information-
sharing strategies for four different design 
configurations and indicated that the information-
sharing factors play a very important role for the 
performance of federated Kalman filtering. However, 
current applications have not provided an all-purpose 
method to decide the information-sharing factors to suit 
a variety of conditions. This paper presents a new 
adaptive determination method of the information 
sharing factors based on eigenvalue decomposition of 
the covariance matrix of the estimated error in order to 
enhance the adaptability of the federated Kalman 
filtering algorithm.  

 
Fig. 1 Federated Kalman filtering architecture 
 

 • Using parallel operation of local filters to 
increase the total amount of data passing 
through the filtering systems; 

The following section provides an introduction to the 
federated Kalman filtering algorithm. This is followed 
with a description of the proposed adaptive 
determination method of the information sharing 
factors based on generalised eigenvalue decomposition. 
The approach is then applied to a simulation of an 
integrated navigation system and the results compared 
with those obtained using previously proposed 
approaches. Finally the conclusions from this work are 
provided. 

 
• Using local filters for data compression  to 

further increase the amount of data processing; 
 

• Maintaining multiple component solutions 
usable as back-ups to improve overall system 
reliability; 

 
 • Using a theoretically correct formulation to 

reduced system development, test and 
maintenance costs. 

 
2. FEDERATED KALMAN FILTERING 

ALGORITHM   The remainder of this section will illustrate how the 
federated filter applies information-sharing principles 
to a system with n  local filters (LFs) and one master 
filter (MF), as illustrated in Figure 1. 

The standard Kalman filter, which processes the data 
from different systems in one step, is referred to as a 
centralized Kalman filter. Gelb (1974) provides full 
details of this form of filter, which for space limitations 
is not repeated here.  

Consider the following system:  
 Decentralised filtering is a two-stage data processing 

technique which processes data from multi-data 
systems. In the first stage, each local processor uses its 
own data to make a best local estimate. These estimates 
are combined in a parallel processing mode. The local 
estimates are then fused by a master filter to make a 
best global estimate of the state vector of the master 
system.  

))w(kG(k))x(kΦ(k,kx(k) 1111 −−+−−=     (1) 
 
Where ( ) nRkx ∈  is the state vector, φ  is the state 
transition matrix, G is the process noise distribution 
matrix, and w(k  is the system noise with 
covariance matrix . 
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If there are N measurements from separate external 
local sensor subsystems, then accordingly N local 
filters are needed to implement the local Kalman 
filtering in parallel. 

Federated Kalman filtering is a decentralised filtering 
algorithm with a two-level structure as shown in Fig 1. 
The difference between the federated Kalman filter and 
other decentralised filters is that the former contains an 
information sharing process. During this process, the 
total system information is divided among the local 
filters based on an information-sharing principle. The 
basic concepts of information-sharing also include that 
it can perform local time propagation and measurement 
update processing (adding local sensor information) 
and it can recombine the updated local information into 
a new total sum. 

 
The discrete i-th ( Ni ,,2,1 "= ) local subsystem can be 
described as: 
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Where, is the i-th measurement;  is the 
i-th state vector; H  is the sensor i measurement 
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The advantages of information sharing, as implemented 
by the new federated filtering technique, are these: 

     



Where iβ , ( )mni ,,,1…=  are information-sharing 
factors. The “conservation of information” principle 
dictates that the information-sharing factors iβ  sum to 
unity: 

observation matrix, v  is the i-th measurement 
noise with covariance matrix . 
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The initial state estimate x  and the sequential 
values  are uncorrelated, as per the following error 
statistics. 
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for each local filters and master filter:  
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Because the LF solutions are statistically independent, 
the measurement noises are uncorrelated as described 
in equation (5). 
 

{ } }( ) ( ) ( ) 0i mE v k v k j= =  ( )mi ≠  (5)  
3). Each local filter uses the measurement from the 
corresponding local sensor to update:   

Let the full (centralized) filter solution be represented 
by the covariance matrix P  and the state vector ; 
the local filter i  solution by  and ; and the master 
filter solution by  and . 

fx̂

ix̂

mP

 
ˆ ˆ( 1) ( 1, ) ( 1)

ˆ[ ( 1) - ( 1) ( 1, )]
i i i

i i i

x k x k k K k

Z k H k x k k

+ = + + +

+ + +

⋅
            (13) 

  

1)]1()1(),1()1([

)1(),1()1(
-

i
T

iii

T
iii

kRkHkkPkH

kHkkPkK

+++++

⋅++=+
(14) Now, if the LF and MF solutions are statistically 

independent, they can be optimally combined by the 
following additive information algorithm, where the 
inverse covariance is the “information matrix”: 

 
),1()]1()1([)1( kkPkHkKIkP iiii +++−=+   (15)  

 111 −−− + mf PP                (6) Where i 1, , n= … . Note that there is no measurement 
information available to update the master filter, 
therefore: 

 

mmnff xPxxP ˆˆˆ 111 −−− +=       (7) 
  

),1()1( kkPkP mm +=+                    (16) The key to the federated filtering method is to construct 
individual LF and MF solutions so they can be 
combined or recombined at any time by the above 
algorithm. In particular, the construction avoids the 
need to maintain local/local or local/master cross-
covariances. The procedure for doing so is the essence 
of the information-sharing approach. 

 
4). The above results are combined by the fusion 
algorithm (6) to yield the correct total solution, i.e., the 
solution that would be achieved by a single centralized 
filter processing all of the i  sensor 
measurement sets: 

n,,1…=

  
A typical procedure for the specification of a federate 
Kalman filter can be described as follows: 
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1). Divide the full (global) filter solution P ,  and 
the common process noise covariance Q  so that the 

 LFs and the MF each receive non-negative 
fractions 
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 3. AN ADAPTIVE DETERMINATION METHOD OF 

INFORMATION SHARING FACTORS BASED ON 
EIGENVALUE DECOMPOSITION 

x                              (8) 
 

 
iP                            (9) Information-sharing factors play a very important role 

in determining the performance of the federated 
Kalman filter. Choosing different information-sharing 
factors can change the performance of the filter and 

i                         (10) 

     



The eigenvalues of matrix P  in the Kalman filtering 
equation represent the covariances of their 
corresponding state vectors or their combination.  

thus satisfy different requirements in various 
conditions. 
 
Carlson (1988) presented four different approaches to 
specifying the information-sharing factors according to 
different strategies. These approaches are: Fusion-Reset 
mode, No-Reset mode, Zero-Reset mode and Rescale 
Mode respectively. Each mode derives from different 
performance criteria that suggest a different-sharing 
strategy. The advantages and disadvantages of each of 
the approaches are discussed in his paper (Carlson 
1988). Unfortunately, there is still no effective method 
for determining the information-sharing factors to suit a 
particular application. In practical applications, the 
conditions of the subsystems can alter greatly over time 
subject to disturbances. Fixed information sharing 
factors cannot reflect these changes, resulting in 
deterioration of the performance of the associated 
Kalman filters. The research carried out in this paper is 
aiming to address this issue. 

 
This implies that the estimation performance of the 
local filter to the state vectors or combination of the 
state vectors can be obtained by analysing the 
eigenvalue and eigenvectors of the covariance matrix 

. The bigger the eigenvalue of P , the bigger the 
estimation covariance of the corresponding state 
vectors or their combination would be and thus the 
worse would be their filtering performance. On the 
other hand, the smaller the eigenvalue of P , the 
smaller the estimation covariance of the corresponding 
state vectors or their combination, therefore the 
filtering performance would be better. 

iP i

i

 
In federated Kalman filter equations, the covariance 
matrix of  the i-th local filter  can be decomposed as: iP
  

When the information-sharing factors are set as 
nN /121 ==== βββ "" , it has been observed from 

simulation results that the global estimation x  
provides the best estimate accuracy when there is no 
disturbed changes of the local systems (Fang, 1998). 
The higher the value of a particular 

fˆ

iβ  value, the larger 
the contribution that this i-th local filter makes to the 
overall estimate. Therefore, the performance of the 
federated Kalman filter is closer to the performance of 
the i local filter. During the filter design procedure, 
it is desired that the total performance of the federated 
Kalman filter is as close as possible to the performance 
of the optimal local filter. That is to say to give bigger 
information-sharing factors to the local filters of the 
more accurate subsystems, and smaller 

th−

iβ  to the local 
filters of the less accurate subsystems to reduce their 
respective influences on the global estimation accuracy. 
Therefore, adaptive determination of the information-
sharing factors according to the estimation accuracy of 
different subsystems could reflect the change of the 
estimation accuracy so as to reduce the influences of 
the faults in subsystems and accuracy degradation.  

T
ii LLP Λ=                                (19) 

 
Where },,,{ 21 iniii diag λλλ ""=Λ ; 1iλ ~ inλ is the 
eigenvalues of ;  is the corresponding eigenvectors 
matrix. 

iP L

 
Because the eigenvalues 1iλ ~ inλ  of   can be positive 
or negative, a new problem is how to use it to measure 
the filter performance. One solution is to use  to 

replace  to perform the eigenvalue decomposition, 
i.e., to do the generalised eigenvalue decomposition.  
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Where 1 2{ , , , }i i idiag λ λ λ′ ′ ′Λ = " " ′ . 
 
Obviously,  
 

2 , 1, 2 , ,ij ij j nλ λ′ = = ""          (21) 
  
As a result of the above discussion, the information-
sharing factor represents the unitary portion of 
estimation information from the local Kalman filter in 
the total fusion estimation. So the basic idea here is to 
change the information-sharing factor according to the 
performance of the corresponding local filter and hence 
to change the proportion of the estimation information 
from the local filter in the global information. The key 
issue here is to find an index to measure the 
performance of the local filter which may be used to 
determine changes to the information sharing factors. 

The following information-sharing factors are chosen: 
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Where tr i

′Λ is the trace of matrix , defined as: i
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  It can be proved that the above-mentioned information-
sharing factors still satisfy the “conservation of Given the covariance matrix of i-th local filter, a 

conclusion from Carlson (1990) is provided as follows:  
 

     



information” principle so that the information sharing 
factors iβ  sum to unity: 
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At the same time, iβ  has an explicit physical meaning, 
i.e., adaptive change of iβ  reflects the on-line 
performance change of the local filter and also 
adaptively adjusts the proportion of estimation 
information which local filters contribute to the overall 
estimation information.   Figure 2 Comparison of positioning errors of 

INS/GPS/TAN integrated navigation system.  
4. CASE STUDY  

 According to the simulation conditions described above 
an INS/GPS/TAN integrated navigation system was 
implemented using the adaptive Kalman filtering 
algorithm described in Section 3. To test the 
performance of the adaptive Kalman filter, we degrade 
the GPS receiver accuracy artificially at time 1200s to 
2000s by adding a constant value to the incoming 
position measurement. 

Kalman filtering is the most common filter design 
implemented in integrated navigation system. In 
addition Federated Kalman filtering has been a key 
technique in these applications. The advantage of the 
federated filter architecture is obtained through the 
sharing of the estimation information by the sensor-
dedicated local filters. In a typical integrated Inertial 
Navigation System (INS)/Global Positioning System 
(GPS)/Terrain Aided Navigation (TAN) navigation 
system, the INS serves as the reference system for the 
local filters and the master filter, while the GPS and 
TAN systems work as local filters. The local filters 
receive the measurements directly from the sensors, 
and then provide the error state information to the 
master filter for recombination. A typical 
INS/GPS/TAN navigation profile (Wang, et al., 2000) 
is used in this paper as the case study of the proposed 
information sharing method.  A comparison of the 
proposed adaptive Kalman filter, the federated Kalman 
filter and the centralised Kalman filter is made with 
respect to filter performance by comparing the filter 
error state performance plots for each filter 
implementation. The initialisation data of the 
simulation model is listed in Table 1. The error sources 
parameters of the simulation model. Their physical 
meanings and values are listed in Table 2. 

 
The initial information sharing factors are: 
 

3.0,7.0,0 21 === βββm  
 
Figure 2 shows the altitude errors of the INS/GPS/TAN 
integrated navigation system using centralised Kalman 
filtering, federated Kalman filtering and adaptive 
Kalman filtering respectively. From the simulation 
results shown in Figure 2, the proposed adaptive 
Kalman filter provides comparable estimation accuracy 
to the optimal centralised Kalman filter when the 
performance of local filters do not change. When slow 
performance degradation occurs in the INS/GPS system 
at time 1200s to 2000s, the estimation errors of the 
federated Kalman filter increase significantly 
eventually since it depends on the local estimation 
information of the degraded GPS system. At the same 
time, the estimation errors of the centralized Kalman 
filter increases as the GPS accuracy reduces. By 
comparison, the proposed adaptive approach controls 
the influence of faulty sub-systems to the overall 
estimation and adjusts the information sharing 
proportion in real-time according to the performance 
change of the subsystem sensors. Consequently the 
overall estimation can achieve improved accuracy. 

 
Table 1 Initialisation data of the simulation model 

 
Parameters Meaning Value 

000 ,, hL λ  Initial position: 
latitude, longitude, 
altitude 

N D30
D120E

, 
, 500m 

000 ,, UNE VVV
 

Initial velocity: 
eastward, 
northward, skyward 

100m/s, 0m/s, 
0m/s 

000 ,, hL δδλδ
 

Initial errors of 
position 

10 m5,010,0 ′′′′
 

00 ,, NE VV δδδ
 

Initial errors of 
velocity 

0.6 m/s, 
0.6m/s, 
0.6m/s 

000 ,, UNE φφφ
 

Initial errors of 
angle 

10 030,010,0 ′′′′
 

 
 

5. CONCLUSIONS 
 

In this paper, the structural features and information 
sharing principle of federated Kalman filtering have 
been discussed. To enhance the adaptability of the 
federated filtering algorithm, an adaptive determination 
method of the information sharing factors, based on 
generalised eigenvalue decomposition of the 
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Table 2 Error sources parameters of the simulation model 
 

Error Source Parameters Root-mean-square value Correlation time (s) 
Gyro constant drift bUbNbE εεε ,,  

hh
h

/1.0,/
1.0,/1.0

D

DD

 
 

Gyro white noise drift gUgNgE ωωω ,,  hhh /01.0,/01.0,/01.0 DDD   
Gyro first-order Markov drift 

rUrNrE εεε ,,  
hhh /1.0,/1.0,/1.0 DDD  300s, 300s, 300s 

Accelerometer first order Markov zero-
offset aUaNaE σσσ ,,  

ggg 444 10,10,10 −−−  600 s, 600s, 600s 

GPS receiver position error: latitude, 
longitude, altitude 

m50,02,02 ′′′′  100s, 100s, 100s 

GPS receiver velocity error  
(eastward, northward, skyward) 

0.3 m/s, 0.3m/s, 0.3m/s 100s, 100s, 100s 

Digital map error mγ  5m  

Terrain linearisation error  lγ 8m  

Electronic Altitude meter error rγ  5m  
Baric altitude meter error 50m 1000s 
 

     


