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Abstract. — This paper attempts to look at the fundamental problem of fault detec-
tion and isolation (FDI) in nonlinear systems. Using the idea of input reconstruction
by means of dynamic inversion the authors first discuss the properties of input (or
fault) observability in linear systems. The extension of the results to nonlinear systems
as well as the mathematical conditions of the calculation of the inverse system,
which provides the inverse in finite algorithmic steps, are given. The applicability
of the inversion process to fault reconstruction in nonlinear systems is demonstrated.
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1. INTRODUCTION

In the solution of the problem of fault detection
and isolation (FDI) the principle of analytical re-
dundancy can be used when direct measurements
from the system are not available. One method to
infer the component fault status and analytically
detect the existence of a fault is to look for anoma-
lies in the plant’s output relative to a model-based
estimate of that output. Plant models, however,
are generally incomplete and inaccurate. More-
over, the fault detection and isolation algorithms
often assume the presence of a particular failure
mode. These plant dynamics and failure mode
modeling errors can either cause a high false alarm
rate, or make it difficult to detect the faults. Any
robust detection and isolation method that is de-
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signed to overcome the problems associated with
these modeling errors must be able to distinguish
between model uncertainties and fault signals in
order to avoid excessive false alarms or missed
detections.

One possible approach to robustness relies on the
use of models that describe the behaviour of the
plant more precisely. This often leads to varying
structure, time dependent or nonlinear models
whose successful treatment depends on the devel-
opment of new, more complex theories. To start
with nonlinear system models, however, may lead
to difficulties not only from the point of view of
theoretical complexity but also realizability. Be-
side of this, one of the underlying problems with
the application of nonlinear approaches is that
most of the standard results established in linear
system theory must be relinquished, even though
they comprise the basis of our understanding
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of dynamical systems. Nevertheless, it has been
widely recognized already that the application of
nonlinear system models is much more a matter
of necessity than pure mathematical virtuosity.

In this paper, we approach the FDI problem for
nonlinear systems by using the idea of dynamic in-
version. The idea is basically relies on the concept
of system inversion studied by Silverman (1969)
for LTI and also considered by Isidori (1995) for
nonlinear systems. It will be shown that, by using
this idea, linear and nonlinear problems can be
treated in the same theoretical framework and the
nonlinear solutions can be given through the gen-
eralization of the inversion algorithm originally
developed for LTI systems.

2. PROBLEM FORMULATION

Consider the general state space model of the
dynamical system subject to multiple, possible
simultaneous faults

ẋ(t) = f(x, u) +
m∑
i

gi(x, u)νi

y(t) = h(x, u) +
m∑
i

�i(x, u)νi (1)

where f, g, h, � are analytic functions of time with
x(t) ∈ X ⊂ R

n, u(t) ∈ R
m, y(t) ∈ R

m, the
vector valued state, input and output variables
of the system, respectively. ν(t) is the fault signal
(ν1, . . . , νm)T whose elements νi : [0,+∞) → R

are arbitrary functions of time. Note that the
fault signals νi can represent both actuator and
sensor faults, in general. The goal is to detect the
occurrence of the components νi independently
from each other and identify the fault component
which specifically occurred.

In model-based FDI the fault detection and isola-
tion problem can be characterized as a two step
procedure containing: (i) detection and isolation
of faults on the basis of the residual signal gener-
ated by a filter or detector, (ii) isolation of the
fault which is accomplished by using a special
logic or hypothesis testing to evaluate the situ-
ation.

In our approach we focus on problem area (i) only
and going to construct a detector, i.e., another
dynamic system with outputs ν and inputs ϑ =
(ϑy, ϑu) that contains the measurements of the
signals u, y and possible their time derivatives or
integrals. This detector can be thought of in the
most general form as

ζ̇(t) = ϕ(ζ, y, ẏ, . . . , u, u̇, . . .),

ν(t) = ω(ζ, y, ẏ, . . . , u, u̇, . . .) (2)

with the state variable ζ(t) assuming ϕ, ω are
arbitrary analytic functions of time. The filter

reproduces the fault signal at its output that is
zero in normal operation of the system, while it
differs from zero if a particular fault happened.

The detector should satisfy a number of require-
ments. It should distinguish among different fail-
ure modes νi, e.g., between two independent faults
in two particular actuators. Moreover, it is aimed
to completely decouple the faults from the effect
of disturbances and also from the input signals.
Note that for LTI systems the filter (2), accom-
plishing these requirements, traditionally serves
as a robust residual generator which assign the
fault effects and the disturbances into disjoint
subspaces in the detector output space.

There are various ways to follow in generating
residuals. Traditional methods are based on the
error dynamics of a state observer, see e.g., the ge-
ometric design approach initiated by Massoumnia
(1986) for LTI systems. The same idea was used
by Edelmayer et al. (1997) for LTV, moreover,
Hammouri et al. (1999) and De Persis and Isidori
(2001) for bilinear and nonlinear systems, respec-
tively. The parity space approaches were discussed
in Gertler (1998), the unknown input observer
in Chen and Patton (1998) the multiple model
and the generalized likelihood ratio approaches in
Basseville and Nikiforov (1993), just to mention
a few. These approaches are used in a number of
situations differing in the assumptions on noise,
disturbances, robustness properties and in the
specific design methods. For comparison, see some
representations in the literature like Mangoubi
(1998) and Mangoubi and Edelmayer (2000).

It will be shown in this paper that (robust) resid-
ual generation can be viewed as an input recon-
struction process what addresses the problem of
designing a filter which, on the basis of input
and output measurements, returns the unknown
inputs (failure modes and disturbance signals) by
utilizing the inverse representation of the system,
see the explanation of Fig. 1. This idea has first
appeared in Szigeti et al. (2001) for LTI systems.
One of the advantages of this approach is that
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Fig. 1. Input reconstruction and the idea of system
inversion: Σ is the plant, D is the detector
which, most conveniently, can be obtained as
the (left) inverse Σ−1

� of the original system



the extension of the idea to nonlinear systems
is possible. Note that this generalization usually
cannot be made for the fault detection methods
developed to most LTI systems. One special case
of the concept with the application to nonlinear
systems was published in Szigeti et al. (2000).

It can be seen that, for the reconstruction of un-
measured fault signals at the output of a detector,
the property of input observability should be an
important quality of the system. Basic issues of in-
put observability for linear systems were discussed
earlier such as e.g. in Hou and Patton (1998). In
this paper we not only review these preliminary
results briefly, but bring notice to new properties
and give the generalization of the concepts to
nonlinear problems.

2.1 Input (fault) observability for LTI systems

Input or fault observability of linear dynamical
systems are closely related to its invertibility. In
order to show this important property consider
the representation of the LTI system as

ẋ = Ax + Bu,

y = Cx + Du. (3)

Definition 1. Consider the dynamical system in
(3). If for any two identical outputs y1 = y2 the
corresponding inputs are equal (u1 = u2) then the
system is called input observable.

Remark 1. For any known initial condition x(0) =
ξ with ξ ∈ R

n input observability implies left
invertibility of (3).

Proposition 1. Consider the pairs (u1, ξ1), (u2, ξ2).
Then y1 = y2 iff u1 = u2 and ξ1 and ξ2 are
indistinguishable.
Proof. Assume that system (3) is input observable
and consider the representation for the input
output pairs (u1, y1), (u2, y2) as

ẋ = Ax + Bu1, x(0) = ξ1

y1 = Cx + Du1,

ẋ = Ax + Bu2, x(0) = ξ2

y2 = Cx + Du2. (4)

Subtracting the state and output responses and
denoting the state residual x1 − x2 by x̃ we get:

˙̃x = Ax̃ + B(u1 − u2)

x̃(0) = ξ1 − ξ2

y1 − y2 = C(x1 − x2) + D(u1 − u2) = 0.

It follows from the definition that (u1 − u2) = 0.
Then, by differentiation

y1 − y2 = CeAt(ξ1 − ξ2) = 0

CAieAt(ξ1 − ξ2) = 0,

for i = 0, . . . , n − 1. For t = 0 we get:

CAi(ξ1 − ξ2) = 0.

If y1 = y2 then u1 = u2 and (ξ1 − ξ2) is unobserv-
able (i.e., ξ1 and ξ2 are indistinguishable).

On the other hand, if u1 = u2 and ξ1 = ξ2 then,
by the Cauchy formula, it follows that y1 = y2.

�
Proposition 2. Consider the following restriction
of the input set:

Ωo = {u ∈ Ω : u(0) = 0, u̇(0) = 0, . . . ,

. . . , u(n−1)(0) = 0}.
Pondering system (3) over the input set Ωo, left in-
vertibility and input observability are equivalent.

Proof. On the one hand, Remark 1 is true for
the restriction Ωo, i.e., for this case, input observ-
ability implies left invertibility. On the other, let
us suppose that the system is left invertible. For
y = 0 and arbitrary xo we can write

0 = Cx + Du,

0 = CAx + CBu + Du̇,

...

0 = CAn−1x + CAn−2Bu + . . .

+CBu(n−2) + Du(n−1),

and for t = 0 we get

0 = Cx(0),

0 = CAx(0),
...

0 = CAn−1x(0)

which means that x(0) is unobservable. Hence, by
y = 0, left invertibility implies u = 0 which means
input observability. �
Remark 2. Note that if we work with fault detec-
tion problems all derivatives of the fault signals
in the diagnostic system models would be zero
for t = 0 since the condition ν(t) = 0 is always
supposed for t ≥ to > 0. This means that the
residual system is invertible if and only if it is
input observable.

2.2 Input observability for nonlinear systems

For generalization of the principles of input ob-
servability and left invertibility to more general
classes of nonlinear systems we need to consider
the following simple properties: Consider the sys-
tem Σ on Fig 2/a, which is given in algebraic state
space representation. Σ is said to be left invertible
(that is to say it has a left inverse) if there exist
a corresponding system representation on Fig 2/b
and a differential algebraic polynomial

P (u, u̇, . . . , y, ẏ, . . .)



Σ� �u(t) y(t)

a./

Σ−1� �y(t) u(t)

b./

Fig. 2. The system Σ and its inverse representa-
tion Σ−1

such that the composition, shown on Fig 3, will
result the identity for each pair (u, y) satisfying
P �= 0. For certain classes of nonlinear state space
representations one can find algorithms (and also
sufficient or necessary conditions) of invertibility,
such as e.g., in Isidori (1995).

Σ Σ−1� �u(t) y(t) �u(t)

Fig. 3. Composition of systems Σ and Σ−1 result-
ing the system of identity

As the main result of this paper a novel method is
proposed that can be viewed as the extension of
the procedure described by Isidori. This provides
the inverse system Σ−1 in some finite k < m algo-
rithmic steps. The construction of the procedure
is discussed in the next section.

2.3 Inversion to fault reconstruction

Consider the nonlinear system

ẋ = f(x) +
m∑

i=1

gi(x)νi, u ∈ R
m, y ∈ R

m

y = h(x), (5)

where, in order to make the further notations
simpler, neither the known input u nor any other
disturbance signals are included in the represen-
tation.

The relative degree of (5) is the integer ri deriva-
tives of yi = hi(x), s.t.,

(i) Lgj
Lf

khi(x) = 0 for 0 ≤ k < ri − 1

(ii) ∃j Lgj
Lri−1hi(x) �= 0. (6)

If the relative degree ri does not exist i.e.,

∀j, k Lgj
Lf

khi(x) = 0,

then ri equals to +∞.

It can be seen, that the ith output derivatives have
the forms:

y(i) = Lk
fhi(x), k = 0, 1, . . . , ri − 1,

y(ri) = Lri

f hi(x) +
m∑

j=1

Lgj
L

(ri−1)
f hi(x)νj .

Let the vector relative degree r1 ∈ Z
m of (5) be

defined as

r = (r1, . . . , rm). (7)

If the matrix A(x) defined as

A(x) =




L
(r1−1)
f hi(x)

...
L

(rm−1)
f hi(x)


 [g1(x), . . . , gm(x)] (8)

is nonsingular, then the inverse of the system can
be computed from




y1
(r1)

...
ym

(rm)


 =




L
r1
1

f h1(x)
...

L
r1

m

f hm(x)


 + A(x)




ν1

...
νm


 (9)

see, Isidori (1995), and this will be referred as a
1-step algorithm to obtain an inverse. The non
singularity of A(x), however is a strong require-
ment that restricts the possible use of this algo-
rithm. In the rest of this paragraph an extension
of this approach will be elaborated. The idea is
to construct new output functions and use their
derivatives leading to a procedure that generates
the inverse in some finite steps. Note that this idea
has already appeared in Szigeti et al. (2001).

Suppose now that the matrix A1(x) = A(x) con-
structed in this first step is well defined, i.e., each
pseudo relative degree is finite, but A1(x) is singu-
lar. Denote the vector relative degree associated
to A1 by ρ1 = (ρ1

1, ρ
1
2, . . . , ρ

1
m) = r.

Suppose that maxx rankA1(x) = d1 and the
first d1 rows are linearly independent. Then,
there exist a matrix F1(x) ∈ R

(m−d1)xm, rank
F1(x) = (m − d1), with entries Fij(x), i =
1, 2, . . . ,m − d1, j = 1, 2, . . . ,m that are polyno-
mial functions in Lgj

Lri−1
f hi(x) such that

F1(x)A1(x) = 0. (10)

Using the following vectorial notations

y(r) = (y(r1)
1 , y

(r2)
2 , . . . , y(rm)

m )T ,

Lr
fh(x) = (Lr1

f h1(x), . . . , Lrm

f hm(x))T ,

one can write

F1(x)(y(r) − L
(r)
f h(x)) = 0.

These equations will be considered later as addi-
tional new output relations. Denote the projection
of R

m onto R
d1 of the first d1 coordinates, by

P1 = Pd1 : R
m → R

d1 i.e.,

P1(y1, y2, . . . , ym) = (y1, y2, . . . , yd1).

Then the new output relations will be defined as

[
P1y − P1h(x)

F1(x)(y(r) − L
(r)
f h(x))

]
= 0. (11)

Next calculate the derivatives of all components
of these new output relations up to the inputs
appear. This way one can define a second set of



relative degrees, i.e., a new pseudo vector relative
degree denoted by

ρ2 = (ρ2
1, . . . , ρ

2
d1

, ρ2
d1+1, . . . , ρ

2
m).

It is clear that the first d1 elements of ρ2 are
identical to those of ρ1, since the first d1 rows
of (11) are identical to the original ones in (8).

Define now the matrix A2(x) such that its first
d1 rows are the same as those rows of A1(x), but
the remaining m − d1 rows are selected from the
derivatives of the new output relations. These will
have the form:

A2(x, y)d1+k,j =
m∑

i=1

(Lgj
L

r2
k−1

f Fki(x)(y(r1
i )

i hi(x))) −

−FkiLgj
(x)Lr1

i +r2
k−1

f hi(x)

where

d2 = rankA2(x) ≥ rankA1(x) = d1.

If d1 = d2 < m holds then the system is not
invertible. If d2 = m then the input functions
can be obtained in this step from the equation
analogous to (9) as

r2∑
l=0

(
r2

l

)
Ll

fF (x)⊗ (y(r1+r2−l) − Lr1+r2−l
f h(x)) +

+A2(x, yr)ν = 0 (12)

where the operator ⊗ is the Kronecker product,
and the procedure stops. The vector relative de-
gree can be written as

r2 = (r2
1, . . . , r

2
d1

, r2
d1+1, . . . , r

2
m),

where, for i = 1, . . . ,m

r2
i = ρ2

i , i = 1, . . . , d1; r2
d1+i = ρ1

d1+i + ρ2
d1+i.

In (12) the following vector notations were used(
r2

l

)
=

[(
r2
1

l1

)
, . . . ,

(
r2
m

lm

)]
, l = (l1, . . . , lm).

Remark 3. Assuming the technical hypothesis that
for a given k and rk

FkiLgj
(x)Lr1

i +r2
k−1

f hi(x) �= 0,

Lgj
L

r2
k−1

f Fki(x) = 0 ∀i, j,

then the definition of A2 will be replaced by

A2(x)d1+k,j = −FkiLgj
(x)Lr1

i +r2
k−1

f hi(x).

If A2(x, y(r1)) (or A2(x), resp.) is not invertible
but rankA2 = d2 < m, then it is possible to
select its linearly independent rows. Assume that
the first d2 rows are linearly independent (if not,
one can permute the rows) and it is possible
to define an (m − d2) × m-dimensional matrix
F2(x, y(r1)) (or F2(x), resp.) analogously to F1

in (10). The algorithm continues by defining new
output equations analogously to (11). Assume
now, that the above algorithm terminates in k
steps, i.e., when dk = m. Then the relative degree
will be defined as follows.
Definition 2. The (vector) relative degree com-
puted by the above algorithm is the ordered set
of integers:

r = (r1
1, . . . , r

1
d1

; r2
d1+1, . . . , r

2
d2

; . . . ; rk
dk−1+1, . . . , r

k
m).

where for k ≥ 2,

r1
i = r1, i = 1, . . . , d1, rj

i =
j∑

l=1

ρj
i ,

dj ≤ i ≤ dj + 1, 2 ≤ j ≤ k.

It can be noticed that the relative degree defined
above is not unique, since it depends on the order
of selection of the independent original and new
output relations. It satisfies, however, that

r1
1 + . . . rk

m ≤ n. (13)

Remark 4. This relative degree plays the same
role as the one defined in (6) in constructing
canonical (or normal) forms for the inverse dy-
namics. The basic difference in the structure of
normal forms described e.g., in Chapter 5 of
Isidori (1995), when using the coordinates Φ(x) =
(dh1, . . . , L

r1−1
f h1; . . . ;hm, . . . , Lrm−1

f hm; . . . , φn)
is that in our case the output components and
their derivatives appear in the state transform.
This implies that the normal equations are not
explicit, they can, however, be transformed into a
matrix pencil form

Q(Φ, y, ẏ, . . .)Φ̇ = CF (Φ),

where CF (Φ) is a symbol for the usual non-
linear canonic forms consisting of m blocks
(Φi

2, . . . ,Φrj−1+ij , . . .). If the above algorithm
generates matrices A1(x), A2(x), . . . , Ak(x), which
are functions of the state only, then the matrix
pencil Q will depend only on x, i.e., Q = Q(x).
If (13) is satisfied with equality, then the system
has no zero dynamics as expected.
Example 1. For illustration of the idea, consider
the following system representation:

ẋ1 = x1 + (x2 − 1)ν1,

ẋ2 = x3 + (x1 + 1)ν1,

ẋ3 = x2 + (1 + x1x3)ν2,

y1 = x1, y2 = x2,

f(x) = (x1, x3, x2)T ,

g1(x) = (x2 − 1, x1 + 1, 0)T ,

g2(x) = (0, 0, 1 + x1x3)T .

Differentiating the output in the first step (k = 1),
we get



ẏ1 = x1 + (x2 − 1)ν1,

ẏ2 = x3 + (x1 + 1)ν1.

It can be seen that the pseudo relative degree is
ρ1 = (1, 1), and the matrix

A1(x) =
[

x2 − 1 0
x1 + 1 0

]

is singular. The matrix F1(x) in (10) can be chosen
as

F1(x) = [x1 + 1,−(x2 − 1)].

In the second step (k = 2) define the new output
in the form

y3 = (x1+1)ẏ1−(x2−1)ẏ2 = (x1+1)x1−(x2−1)x3

and, by calculating the derivatives we get

ẏ1 = x1 + (x2 − 1)ν1,

ẏ3 = (2x1 + 1)(x1 + (x2 − 1)ν1) −
(x3 + (x1 + 1)u1)x3 +

(1 − x2)(x2 + (1 + x1x3)ν2) =

(2x1 + 1)x1 + (1 − x2)x2 − x3
2 +

((2x1 + 1)(x2 − 1) − (x1 + 1)x3)ν1 +

(1 − x2)(1 + x1x3)ν2.

It follows that the pseudo relative degree is ρ2 =
(1, 1), and the matrix

A2(x) =
[

x2 − 1 (2x1 + 1)(x2 − 1) − (x1 + 1)x3

0 (1 − x2)(1 + x1x3)

]T

is nonsingular. The relative degree is r2 = (1, 2).
Since the sum of the relative degrees is equal to
the state dimension, the inverse has no dynamics
and the unknown inputs can be obtained as

ν1 =
ẏ1 − y1

y2 − 1
, ν2 =

ẋ3 − y2

1 + y1x3
,

where x3 = ẏ2 − (y1 + 1)(ẏ1 − 1)/(y2 − 1).

3. CONCLUSIONS

In this paper the fault detection and isolation
problem for nonlinear systems in view of the fault
reconstruction process by means of dynamic sys-
tem inversion has been discussed. It was shown
that a detector relying on the inverse represen-
tation of the original system fully reconstruct
the failure modes at its output on the basis of
standard input and output (sometimes state vari-
able) measurements. The main contribution of
this work is an algorithm which can be used for the
calculation of the inverse. The procedure can be
viewed as a generalization of the 1-step algorithm
proposed by Isidori (1995) for systems represented
in canonical normal form. The method proposed
by this paper resolves the strong requirement in-
cluded in this 1-step algorithm by providing the

inverse in some k > 1 finite steps thus making the
applicability of the method less restrictive in the
practice.
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